Collaborative Intelligence Between the Cloud and Mobile Edge

by Y. Kang, J.Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars and L. Tang

Stefanos Laskaridis sl829@cam.ac.uk

R244: Large-Scale Data Processing and Optimisation

Summary

Status Quo

Status Quo

- Deep Neural Networks in "intelligent" applications
 - Apple Siri, Google Now, Microsoft Cortana
- Deep Neural Network applications are mostly offloaded to powerful private or public clouds for computation
 - Computer Vision
 - Natural Language Processing
 - Speech Recognition
- Large volume of data transfers cause **latency** and **energy consumption**.
- However, SoC advancements urged authors to revisit the problem.

The Mobile edge

Experiment Setup

Mobile Platform

- Tegra K1 SoC
- 4+1 quad core ARM Cortex A15 CPU
- 2GB DDR3L 933MHz
- NVIDIA Kepler with 192 CUDA cores

Power Consumption Watts Up? meter

Software

- Deep Learning: Caffe
- mCPU: OpenBLAS
- GPU: cuDNN

Server Platform

- 4U Intel Dual CPU Chassis, 8xPCIe 3.0 x 16 slots
- 2x Intel Xeon E5-2620, 2.1 GHz
- 1TB HDD
- 16x16GB DDR3 1866MHz ECC
- NVIDIA Tesla K40 M-class 12GB PCIe

Testing the Mobile Edge

- Experiment running an Image of 152KB image through AlexNet [3]
- Measuring:
 - Communication Latency: 3G, LTE, WiFi
 - Computation Latency: mCPU, mGPU, cloud GPU
 - End-to-end Latency
 - Energy Consumption

Testing the Mobile Edge

Neurosurgeon: Partitioning between Cloud and Mobile

CNN

Convolution

Inpu	ut Vo	olum	e (+j	pad 1	(7	x7x3) Filter W0 (3x3x3)	Filter W1 (3x3x3) Output Volume (3x3x2)
x[:	;,:,	,0]	_				w0[:,:,0]	w1[:,:,0]	0[:,:,0]
0	0	0	0	0	0	0	-1 -1 0	1 0 0	4 1 0
0	2	0	1	2	1	0	-1 -1 1	1 -1 -1	8 -1 -8
0	0	1	0	0	0	0	0 -1 1	1 1 0	5 -6 -6
0	1	1	1	2	1	0	w0[:,:,1]	w1[:,:,1]	o[:,:,1]
0	0	1	2	0	0	0	-1 -1 1	-1 0 -1	-5 -7 -1
0	1	2	0	2	1	0	-100	-1 0 1	-6 -2 -2
0	0	0	0	0	0	0	011	0 -1 -1	-6 -5 -4
v I v		11	_	/		/	w0[:,:,2]	w1[+,:,2]	
0	0	0	0	0	0	0	-1 1 1	1 0 1	
0	0	1	1	0	1	0	-101	-1 0 -1	
0	1	1	L	σ	1	0	1 -1 1	-1 0 -1	
0	1	1	0	2	1	0			
0	1	2	2	1	1	0	Bias b0 (1x1x1)	Bias 61 (1x1x1)	
0	1	2	2	1	1	0	B01:,:,07	DI[:,:,0]	
0	0	1	2	2	1	0		0	
0	0	0	0	Ø	0	0			
x[:	,:,	27	/		/			toggl	e movement
0	0	0	0	0	0	Ø			
0	0	1	2	0	2	0			
0	0	1	2	1	0	0			
0	1	2	0	1	0	0			
0	0	0	0	0	2	0			
0	2	2	2	2	0	0			
0	0	0	0	0	0	0			

Pooling

DNN Layer types

• Fully Connected Layer (fc)

All neurons are connected with all the neurons of the previous layer. Depth is the number of filters. Stride is how much we slide the filter each time. [2]

• Convolutional & Local Layer (conv, local)

Convolves an image with one or more filters to produce a set of maps.

Pooling Layer (pool)

Downsamples an image to simplify representation. Can be average, max, or L2. [2]

- Activation Layer (sig, relu, htanh) Applies non-linear function to its input (sigmoid, Rectified Linear Unit, Tanh)
- Normalisation layer (norm) Normalises features across feature map.
- Softmax Layer (softmax) Probability distribution over possible classes.
- Argmax Layer (argmax) Chooses class with higher probability.
- Dropout Layer (dropout) Randomly ignores neurons as regularisation to prevent overfitting.

AlexNet

AlexNet

- Convolutional layers produce a lot of data.
- Pooling layers reduce a lot of data.
- Fully connected layers operate on few data but have high latency.

Partitioning

- First layers have most of the data (convolutions and pooling)
- Later layers have most of the latency (fully connected layers)
- **Key idea**: Compute locally until the point it make sense and then offload to cloud.

More Applications

	Abbreviation	Network	Input	Layers
Image Classification	IMC	AlexNet	Image	24
	VGG	VGG	Image	46
Facial Recognition	FACE	DeepFace	Image	10
Digit Recognition	DIG	MNIST	Image	9
Speech Recognition	ASR	Kaldi	Speech	13
Part-of-speech Tagging	POS	SENNA	Word vectors	3
Named Entity Recognition	NER	SENNA	Word vectors	3
Word Chunking	СНК	SENNA	Word vectors	3

VGG

Images taken from [1]

FACE

DIG

ASR

POS

NER

CHK

- Partitions DNN based on:
 - DNN Topology
 - Computation latency
 - Data size output
 - Dynamic factors
 - Wireless network
 - Datacenter workload

- Profiles device and cloud server
 - To generate prediction models
 - One time, in advance
 - Results stored in device for decision-making
- Two, distinct goals:
 - Latency minimisation

Regression model per DNN Layer

Linear or logarithmic regression model. GFLOPS for performance.

Layer	Regression Variables		
Convolution	(filter_size/stride)^2 * (# filters)		
Local, Pooling	input, output feature maps		
Fully Connected	# Input/Output neurons		
Softmax, Argmax	# Input/Output neurons		
Activation, Normalisation	# neurons		

Partitioning Algorithm

1: **Input:**

- 2: N: number of layers in the DNN
- 3: $\{L_i | i = 1 \cdots N\}$: layers in the DNN
- 4: $\{D_i | i = 1 \cdots N\}$: data size at each layer
- 5: $f, g(L_i)$: regression models predicting the latency and power of executing L_i
- 6: *K*: current datacenter load level
- 7: B: current wireless network uplink bandwidth
- 8: PU: wireless network uplink power consumption
- 9: procedure PARTITION DECISION

10: for each
$$i$$
 in $1 \cdots N$ do

11:
$$TM_i \leftarrow f_{mobile}(L_i) // \text{Latency of mobile execution}$$

12:
$$TC_i \leftarrow f_{cloud}(L_i, K) // \text{Latency of cloud execution}$$

13:
$$PM_i \leftarrow g_{mobile}(L_i) / / Power of mobile execution$$

14:
$$TU_i \leftarrow D_i/B //$$
 Transfer latency

15: if
$$OptTarget == latency$$
 then
16: return $\arg\min\left(\sum_{i=1}^{j} TM_i + \sum_{k=j+1}^{N} TC_k + TU_j\right)$ Cloud Calculation
17: else if $OptTarget == energy$ then
18: return $\arg\min\left(\sum_{i=1}^{j} TM_i \times PM_i + TU_j \times PU\right)$ Uplink power consumption

Device calculation

Benchmark Results -Latency Optimisation

Mispredicts when performance is close to one another.

Mohile	Wireless	Benchmarks							
MODILE	network	IMC	VGG	FACE	DIG	ASR	POS	NER	CHK
	Wi-Fi	input	input	input	input	input	fc3		
CPU	LTE	input	input	input	argmax	input	fc3		
	3G	argmax	input	input	argmax	input		fc3	
	Wi-Fi	pool5	input	input	argmax	input		fc3	
GPU	LTE	argmax	argmax	input	argmax	input		fc3	
	3G	argmax	argmax	argmax	argmax	input		fc3	

Benchmark Results -Power Optimisation

Even in suboptimal cases, 24.2% less energy than status quo

Mobilo	Wireless	Benchmarks							
MODIIC	network	IMC	VGG	FACE	DIG	ASR	POS	NER	CHK
	Wi-Fi	input	input	input	input	input		fc3	
CPU	LTE	input	input	input	input	input	fc3		
	3G	input	input	input	argmax	input		fc3	
	Wi-Fi	input	input	input	argmax	input		fc3	
GPU	LTE	pool5	input	input	argmax	input		fc3	
	3G	argmax	argmax	input	argmax	input		fc3	

Testing under Network Variation

In real world scenarios, network quality may vary.

Cloud-only will suffer the consequences.

Neurosurgeon dynamically adapts offloading to mitigate the problem.

Testing under Server Load Variation

End-to-end latency of AlexNet Mobile CPU-only, transfers via Wi-Fi

Current server load is determined by pinging.

Avoid latency, by taking server load into consideration.

This strategy is further **dropping server load**, allowing for more user queries to be served.

Results

- End-to-end latency improvement:
 - average: 3.1x
 - up to: 40.7x
- Energy consumption improvement:
 - average: 59.5%
 - up to: 94.7%
- Datacenter throughput improvement:
 - average: 1.5x
 - up to: 6.7x

Relevant work

Popular computation offloading solutions

	MAUI [34]	Comet [35]	Odessa [36]	CloneCloud [37]	Neurosurgeon
No need to transfer program state			1		\checkmark
Data-centric compute partitioning					\checkmark
Low/no runtime overhead	1		\checkmark	\checkmark	\checkmark
Requires no application-specific profiling		\checkmark			\checkmark
No programmer annotation needed		1	\checkmark	\checkmark	\checkmark
Server load sensitive			1		\checkmark

Benchmark Result -MAUI

36

MAUI: Making Smartphones Last Longer with Code Offload

Eduardo Cuervo¹, Aruna Balasubramanian[‡], Dae-ki Cho^{*}, Alec Wolman[§], Stefan Saroiu[§], Ranveer Chandra[§], Paramvir Bahl[§] [†]Duke University, [‡]University of Massachusetts Amherst, ^{*}UCLA, [§]Microsoft Research

ABSTRACT

This paper presents MAUI, a system that enables fine-grained energy-aware offload of mobile code to the infrastructure. Previous approaches to these problems either relied heavily on programmer support to partition an application, or they were coarse-grained requiring full process (or full VM) migration. MAUI uses the benefits of a managed code environment to offer the best of both worlds: it supports fine-grained code offload to maximize energy savings with minimal burden on the programmer. MAUI decides at runtime which methods should be remotely executed, driven by an optimization engine that achieves the best energy savings possible under the mobile device's current connectivity constrains. In our evalGiven the tremendous size of the mobile handset market, solving the energy impediment has quickly become the mobile industry's foremost challenge [14].

One popular technique to reduce the energy needs of mobile devices is remote execution: applications can take advantage of the resource-rich infrastructure by delegating code execution to remote servers. For the last two decades, there have been many attempts to make mobile devices use remote execution to improve performance and energy consumption. Most of these attempts took one of the following two approaches to remote execution. The first approach is to rely on programmers – to specify how to partition a program, what state needs to be remoted, and how to adapt the pro-

MAUI scheduling for a layer depends on previous invocations.

	MAUI	Neurosurgeon	
Partitioning	Control-based	Data-centric	
Profiling	Dynamic	Static	
Partitioning Granularity	Per annotated function	Per layer	
Optimises for	Power efficiency	Latency XOR Power Efficiency	
Specificity	General	DNN Specific	

Privacy Preserving Shared Models

- Based on the edge computing paradigm.
- Models where a general model is trained in the cloud and online learning is supplementing this model on the device [8].

Review & Critique

Review: The good parts

- The name! :)
- Brand new paper published in ASPLOS '17 (1 citation from Cambridge [5])
- Rational extension of current model of execution based on SoC developments.
- All around benchmarks, substantial speedups.
- Inclusive of GPU computation and different network setups.

Critique

- DNN specific (in contrast with MAUI)
- Profiling has hardcoded the regression models for each type of layer (difficult to expand, does not learn how to assess)
 - How would an rNN get split with Neurosurgeon?
- Profiler assumes one type of hardware server-side.
 - Different sized containers based on load.
 - Different datacenter forwarding behind load balancer.
- Adoption: NVIDIA Tegra K1 is a high-end SoC
 - Lower-end processors may shift offloading to the cloud.

Critique

- Distinct optimisation for latency, energy efficiency.
 - Why not offer a Pareto's optimality curve and pick point based on user profile?

Critique

1: **Input:**

2: N: number of layers in the DNN

3: $\{L_i | i = 1 \cdots N\}$: layers in the DNN

- 4: $\{D_i | i = 1 \cdots N\}$: data size at each layer
- 5: $f, g(L_i)$: regression models predicting the latency and power of executing L_i
- 6: *K*: current datacenter load level
- 7: B: current wireless network uplink bandwidth
- 8: PU: wireless network uplink power consumption
- 9: procedure PARTITIONDECISION
- 10: for each i in $1 \cdots N$ do
- 11: $TM_i \leftarrow f_{mobile}(L_i)$
- 12: $TC_i \leftarrow f_{cloud}(L_i, K)$
- 13: $PM_i \leftarrow g_{mobile}(L_i)$
- 14: $TU_i \leftarrow D_i/B$
- 15: **if** OptTarget == latency **then**

16:
$$\operatorname{return} \arg\min_{j=1\cdots N} (\sum_{i=1}^{j} TM_i + \sum_{k=j+1}^{N} TC_k + TU_j)$$

- 17: else if OptTarget == energy then
- 18: **return** $\underset{j=1\cdots N}{\operatorname{arg\,min}} (\sum_{i=1}^{j} TM_i \times PM_i + TU_j \times PU)$

Smartphones support multitasking. Why not include K mobile?

Suggestions

- Work with model decomposition and compression algorithms to push more computation locally (such as DeepX [6])
- Other hardware could be taken into consideration (e.g. DSP) for further efficiency (such as DeepEar [7])
- Could Reinforcement Learning be of any help in learning how to partition instead of static profiler?
- Offloading to devices in local network. (MAUI [4])

Thank you Q&A

Stefanos Laskaridis sl829@cam.ac.uk

References

- Kang, Y., Hauswald, J., Gao, C., Rovinski, A., Mudge, T., Mars, J., & Tang, L. (2017). Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge. Proceedings of the Twenty-Second International Conference on Architectural Support for Programming Languages and Operating Systems, 615–629. https://doi.org/10.1145/3037697.3037698
- 2. Stanford CS231n Andrej Karpathy <u>http://cs231n.github.io/convolutional-networks/</u>
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Advances In Neural Information Processing Systems, 1–9. <u>https://doi.org/http://dx.doi.org/10.1016/j.protcy.2014.09.007</u>
- Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A., Saroiu, S., Chandra, R., & Bahl, P. (2010). Maui. Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services MobiSys '10, 49. <u>https://doi.org/10.1145/1814433.1814441</u>
- Zhao, J., Mortier, R., Crowcroft, J., & Wang, L. (n.d.). User-centric Composable Services : A New Generation of Personal Data Analytics Normalised Inference Time (%). Retrieved from <u>https://arxiv.org/pdf/1710.09027.pdf</u>

References

- Lane, N. D., Bhattacharya, S., Georgiev, P., Forlivesi, C., Jiao, L., Qendro, L., & Kawsar, F. (2016). DeepX: A Software Accelerator for Low-Power Deep Learning Inference on Mobile Devices. 2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN 2016 - Proceedings, (1). <u>https://doi.org/ 10.1109/IPSN.2016.7460664</u>
- Lane, N. D., Georgiev, P., & Qendro, L. (2015). DeepEar: Robust Smartphone Audio Sensing in Unconstrained Acoustic Environments using Deep Learning. Ubicomp, 283–294. <u>https://doi.org/</u> <u>10.1145/2750858.2804262</u>
- Servia-Rodriguez, S., Wang, L., Zhao, J. R., Mortier, R., & Haddadi, H. (2017). Personal Model Training under Privacy Constraints. Retrieved from <u>http://arxiv.org/abs/1703.00380</u>