
Neurosurgeon
Collaborative Intelligence Between the Cloud and

Mobile Edge

Stefanos Laskaridis 
sl829@cam.ac.uk

R244: Large-Scale Data Processing and Optimisation

by Y. Kang, J.Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars and L. Tang

mailto:sl829@cam.ac.uk

Summary

a. Status quo
Approach

b. Mobile-only
Approach

c. Neurosurgeon
Approach

[2.41, 0.87]
[7,92, 0.87]

Figure 1: Status quo, mobile-only and the Neurosurgeon approach.
Status quo approach performs all computation remotely in the cloud,
the mobile-only approach performs all computation locally on the mo-
bile device, and the Neurosurgeon approach partitions computation
between the cloud and mobile device.

bile device are sent to the cloud for processing, as shown
in Figure 1a. However, with this approach, large amounts
of data (e.g., images, video and audio) are uploaded to the
server via the wireless network, resulting in high latency and
energy costs.

While data transfer becomes the latency and energy bot-
tleneck, performance and energy efficiency of modern mo-
bile hardware have continued to improve through powerful
mobile SoC integration [14, 15]. Motivated by this observa-
tion, this work re-examines the computation breakdown for
intelligent applications between mobile and cloud. In partic-
ular, we investigate how computation can be pushed out of
the cloud and onto the mobile devices on the edge to execute
all or parts of these conventionally cloud-only applications.
Key questions we address in this work include:

1. How feasible it is to execute large-scale intelligent
workloads on today’s mobile platforms?

2. At what point is the cost of transferring speech and
image data over the wireless network too high to justify
cloud processing?

3. What role should the mobile edge play in provid-
ing processing support for intelligent applications requiring
heavy computation?

Based on our investigation using 8 DNN-based intelligent
applications spanning the domains of vision, speech, and
natural language, we discover that, for some applications,
due to the high data transfer overhead, locally executing on
the mobile device (Figure 1b) can be up to 11⇥ faster than
the cloud-only approach (Figure 1a). Furthermore, we find
that instead of limiting the computation to be either executed
entirely in the cloud or entirely on the mobile, a fine-grained
layer-level partitioning strategy based on a DNN’s topology
and constituent layers can achieve far superior end-to-end la-
tency performance and mobile energy efficiency. By pushing
compute out of the cloud and onto the mobile devices, we
also improve datacenter throughput, allowing a given dat-
acenter to support many more user queries, and creating a
win-win situation for both the mobile and cloud systems.

Given the observation that ideal fine-grained DNN parti-
tion points depend on the layer compositions of the DNN,
the particular mobile platform used, the wireless network
configuration and the server load, we design a lightweight
dynamic scheduler, Neurosurgeon. Neurosurgeon is a
runtime system spanning cloud and mobile platforms that

automatically identifies the ideal partition points in DNNs
and orchestrates the distribution of computation between the
mobile device and the datacenter. As Figure 1c shows, Neu-

rosurgeon partitions the DNN computation and takes ad-
vantage of the processing power of both the mobile and the
cloud while reducing data transfer overhead. The detailed
contributions of this paper are as follows:

• In-depth examination of the status quo – We show
the latency and energy consumption of executing state-
of-the-art DNNs in the cloud and on the mobile device.
We observe that uploading via the wireless network is the
bottleneck of the status quo approach, and mobile execu-
tion often provides better latency and energy consump-
tion than the status quo approach. (Section 3)

• DNN compute and data size characteristics study –
We provide an in-depth layer-level characterization of
the compute and data size of 8 DNNs spanning across
computer vision, speech and natural language process-
ing. Our investigation reveals that DNN layers have sig-
nificantly different compute and data size characteristics
depending on their type and configurations. (Section 4)

• DNN computation partitioning across the cloud and
mobile edge – Based on the compute and data character-
ization of DNN layers, we show that partitioning DNN at
layer granularity offers significant performance benefits.
We then design a systematic approach to identify the op-
timal points to partition computation for reduced latency
and mobile energy consumption across a suite of appli-
cations. (Section 4)

•
Neurosurgeon runtime system and layer performance
prediction models – We develop a set of models to pre-
dict the latency and power consumption of a DNN layer
based on its type and configuration, and create Neuro-

surgeon, a system to intelligently partition DNN com-
putation between the mobile and cloud. We demonstrate
that Neurosurgeon significantly improves end-to-end
latency, reduces mobile energy consumption, and im-
proves datacenter throughput. (Sections 5 and 6)

Our evaluation on a suite of 8 DNN applications shows
that using Neurosurgeon on average improves end-to-
end latency by 3.1⇥, reduces mobile energy consumption
by 59.5%, and improves datacenter throughput by 1.5⇥.

2. Background
In this section, we provide an overview of Deep Neural
Network (DNN) and describe how computer vision, speech,
and natural language processing applications leverage DNNs
as their core machine learning algorithm.

DNNs are organized in a directed graph where each node
is a processing element (a neuron) that applies a function to
its input and generates an output. Figure 2 depicts a 5 layer

a. Status quo
Approach

b. Mobile-only
Approach

c. Neurosurgeon
Approach

[2.41, 0.87]
[7,92, 0.87]

Figure 1: Status quo, mobile-only and the Neurosurgeon approach.
Status quo approach performs all computation remotely in the cloud,
the mobile-only approach performs all computation locally on the mo-
bile device, and the Neurosurgeon approach partitions computation
between the cloud and mobile device.

bile device are sent to the cloud for processing, as shown
in Figure 1a. However, with this approach, large amounts
of data (e.g., images, video and audio) are uploaded to the
server via the wireless network, resulting in high latency and
energy costs.

While data transfer becomes the latency and energy bot-
tleneck, performance and energy efficiency of modern mo-
bile hardware have continued to improve through powerful
mobile SoC integration [14, 15]. Motivated by this observa-
tion, this work re-examines the computation breakdown for
intelligent applications between mobile and cloud. In partic-
ular, we investigate how computation can be pushed out of
the cloud and onto the mobile devices on the edge to execute
all or parts of these conventionally cloud-only applications.
Key questions we address in this work include:

1. How feasible it is to execute large-scale intelligent
workloads on today’s mobile platforms?

2. At what point is the cost of transferring speech and
image data over the wireless network too high to justify
cloud processing?

3. What role should the mobile edge play in provid-
ing processing support for intelligent applications requiring
heavy computation?

Based on our investigation using 8 DNN-based intelligent
applications spanning the domains of vision, speech, and
natural language, we discover that, for some applications,
due to the high data transfer overhead, locally executing on
the mobile device (Figure 1b) can be up to 11⇥ faster than
the cloud-only approach (Figure 1a). Furthermore, we find
that instead of limiting the computation to be either executed
entirely in the cloud or entirely on the mobile, a fine-grained
layer-level partitioning strategy based on a DNN’s topology
and constituent layers can achieve far superior end-to-end la-
tency performance and mobile energy efficiency. By pushing
compute out of the cloud and onto the mobile devices, we
also improve datacenter throughput, allowing a given dat-
acenter to support many more user queries, and creating a
win-win situation for both the mobile and cloud systems.

Given the observation that ideal fine-grained DNN parti-
tion points depend on the layer compositions of the DNN,
the particular mobile platform used, the wireless network
configuration and the server load, we design a lightweight
dynamic scheduler, Neurosurgeon. Neurosurgeon is a
runtime system spanning cloud and mobile platforms that

automatically identifies the ideal partition points in DNNs
and orchestrates the distribution of computation between the
mobile device and the datacenter. As Figure 1c shows, Neu-

rosurgeon partitions the DNN computation and takes ad-
vantage of the processing power of both the mobile and the
cloud while reducing data transfer overhead. The detailed
contributions of this paper are as follows:

• In-depth examination of the status quo – We show
the latency and energy consumption of executing state-
of-the-art DNNs in the cloud and on the mobile device.
We observe that uploading via the wireless network is the
bottleneck of the status quo approach, and mobile execu-
tion often provides better latency and energy consump-
tion than the status quo approach. (Section 3)

• DNN compute and data size characteristics study –
We provide an in-depth layer-level characterization of
the compute and data size of 8 DNNs spanning across
computer vision, speech and natural language process-
ing. Our investigation reveals that DNN layers have sig-
nificantly different compute and data size characteristics
depending on their type and configurations. (Section 4)

• DNN computation partitioning across the cloud and
mobile edge – Based on the compute and data character-
ization of DNN layers, we show that partitioning DNN at
layer granularity offers significant performance benefits.
We then design a systematic approach to identify the op-
timal points to partition computation for reduced latency
and mobile energy consumption across a suite of appli-
cations. (Section 4)

•
Neurosurgeon runtime system and layer performance
prediction models – We develop a set of models to pre-
dict the latency and power consumption of a DNN layer
based on its type and configuration, and create Neuro-

surgeon, a system to intelligently partition DNN com-
putation between the mobile and cloud. We demonstrate
that Neurosurgeon significantly improves end-to-end
latency, reduces mobile energy consumption, and im-
proves datacenter throughput. (Sections 5 and 6)

Our evaluation on a suite of 8 DNN applications shows
that using Neurosurgeon on average improves end-to-
end latency by 3.1⇥, reduces mobile energy consumption
by 59.5%, and improves datacenter throughput by 1.5⇥.

2. Background
In this section, we provide an overview of Deep Neural
Network (DNN) and describe how computer vision, speech,
and natural language processing applications leverage DNNs
as their core machine learning algorithm.

DNNs are organized in a directed graph where each node
is a processing element (a neuron) that applies a function to
its input and generates an output. Figure 2 depicts a 5 layer

a. Status quo
Approach

b. Mobile-only
Approach

c. Neurosurgeon
Approach

[2.41, 0.87]
[7,92, 0.87]

Figure 1: Status quo, mobile-only and the Neurosurgeon approach.
Status quo approach performs all computation remotely in the cloud,
the mobile-only approach performs all computation locally on the mo-
bile device, and the Neurosurgeon approach partitions computation
between the cloud and mobile device.

bile device are sent to the cloud for processing, as shown
in Figure 1a. However, with this approach, large amounts
of data (e.g., images, video and audio) are uploaded to the
server via the wireless network, resulting in high latency and
energy costs.

While data transfer becomes the latency and energy bot-
tleneck, performance and energy efficiency of modern mo-
bile hardware have continued to improve through powerful
mobile SoC integration [14, 15]. Motivated by this observa-
tion, this work re-examines the computation breakdown for
intelligent applications between mobile and cloud. In partic-
ular, we investigate how computation can be pushed out of
the cloud and onto the mobile devices on the edge to execute
all or parts of these conventionally cloud-only applications.
Key questions we address in this work include:

1. How feasible it is to execute large-scale intelligent
workloads on today’s mobile platforms?

2. At what point is the cost of transferring speech and
image data over the wireless network too high to justify
cloud processing?

3. What role should the mobile edge play in provid-
ing processing support for intelligent applications requiring
heavy computation?

Based on our investigation using 8 DNN-based intelligent
applications spanning the domains of vision, speech, and
natural language, we discover that, for some applications,
due to the high data transfer overhead, locally executing on
the mobile device (Figure 1b) can be up to 11⇥ faster than
the cloud-only approach (Figure 1a). Furthermore, we find
that instead of limiting the computation to be either executed
entirely in the cloud or entirely on the mobile, a fine-grained
layer-level partitioning strategy based on a DNN’s topology
and constituent layers can achieve far superior end-to-end la-
tency performance and mobile energy efficiency. By pushing
compute out of the cloud and onto the mobile devices, we
also improve datacenter throughput, allowing a given dat-
acenter to support many more user queries, and creating a
win-win situation for both the mobile and cloud systems.

Given the observation that ideal fine-grained DNN parti-
tion points depend on the layer compositions of the DNN,
the particular mobile platform used, the wireless network
configuration and the server load, we design a lightweight
dynamic scheduler, Neurosurgeon. Neurosurgeon is a
runtime system spanning cloud and mobile platforms that

automatically identifies the ideal partition points in DNNs
and orchestrates the distribution of computation between the
mobile device and the datacenter. As Figure 1c shows, Neu-

rosurgeon partitions the DNN computation and takes ad-
vantage of the processing power of both the mobile and the
cloud while reducing data transfer overhead. The detailed
contributions of this paper are as follows:

• In-depth examination of the status quo – We show
the latency and energy consumption of executing state-
of-the-art DNNs in the cloud and on the mobile device.
We observe that uploading via the wireless network is the
bottleneck of the status quo approach, and mobile execu-
tion often provides better latency and energy consump-
tion than the status quo approach. (Section 3)

• DNN compute and data size characteristics study –
We provide an in-depth layer-level characterization of
the compute and data size of 8 DNNs spanning across
computer vision, speech and natural language process-
ing. Our investigation reveals that DNN layers have sig-
nificantly different compute and data size characteristics
depending on their type and configurations. (Section 4)

• DNN computation partitioning across the cloud and
mobile edge – Based on the compute and data character-
ization of DNN layers, we show that partitioning DNN at
layer granularity offers significant performance benefits.
We then design a systematic approach to identify the op-
timal points to partition computation for reduced latency
and mobile energy consumption across a suite of appli-
cations. (Section 4)

•
Neurosurgeon runtime system and layer performance
prediction models – We develop a set of models to pre-
dict the latency and power consumption of a DNN layer
based on its type and configuration, and create Neuro-

surgeon, a system to intelligently partition DNN com-
putation between the mobile and cloud. We demonstrate
that Neurosurgeon significantly improves end-to-end
latency, reduces mobile energy consumption, and im-
proves datacenter throughput. (Sections 5 and 6)

Our evaluation on a suite of 8 DNN applications shows
that using Neurosurgeon on average improves end-to-
end latency by 3.1⇥, reduces mobile energy consumption
by 59.5%, and improves datacenter throughput by 1.5⇥.

2. Background
In this section, we provide an overview of Deep Neural
Network (DNN) and describe how computer vision, speech,
and natural language processing applications leverage DNNs
as their core machine learning algorithm.

DNNs are organized in a directed graph where each node
is a processing element (a neuron) that applies a function to
its input and generates an output. Figure 2 depicts a 5 layer

2Image taken from [1]

Status Quo

3

Status Quo
• Deep Neural Networks in “intelligent” applications

• Apple Siri, Google Now, Microsoft Cortana

• Deep Neural Network applications are mostly offloaded to powerful private
or public clouds for computation

• Computer Vision

• Natural Language Processing

• Speech Recognition

• Large volume of data transfers cause latency and energy consumption.

• However, SoC advancements urged authors to revisit the problem.

4

The Mobile edge

5

Experiment Setup

Mobile Platform

• Tegra K1 SoC

• 4+1 quad core ARM Cortex A15 CPU

• 2GB DDR3L 933MHz

• NVIDIA Kepler with 192 CUDA cores

6

Server Platform

• 4U Intel Dual CPU Chassis, 8xPCIe 3.0
x 16 slots

• 2x Intel Xeon E5-2620, 2.1 GHz

• 1TB HDD

• 16x16GB DDR3 1866MHz ECC

• NVIDIA Tesla K40 M-class 12GB PCIe

Power Consumption 
Watts Up? meter

Software

• Deep Learning: Caffe

• mCPU: OpenBLAS

• GPU: cuDNN

Testing the Mobile Edge
• Experiment running an Image of 152KB image through

AlexNet [3]

• Measuring:

• Communication Latency: 3G, LTE, WiFi

• Computation Latency: mCPU, mGPU, cloud GPU

• End-to-end Latency

• Energy Consumption

7

Testing the Mobile Edge

More power but
shorter bursts

Transmission
has the

dominating
cost

8Images taken from [1]

Neurosurgeon: 
Partitioning between

Cloud and Mobile

9

cNN

10Images taken from [2]

Convolution Pooling

DNN Layer types
• Fully Connected Layer (fc) 

All neurons are connected with all the neurons of the previous layer. Depth is the number of filters.
Stride is how much we slide the filter each time. [2]

• Convolutional & Local Layer (conv, local) 
Convolves an image with one or more filters to produce a set of maps.

• Pooling Layer (pool) 
Downsamples an image to simplify representation. Can be average, max, or L2. [2]

• Activation Layer (sig, relu, htanh) 
Applies non-linear function to its input (sigmoid, Rectified Linear Unit, Tanh)

• Normalisation layer (norm) 
Normalises features across feature map.

• Softmax Layer (softmax) 
Probability distribution over possible classes.

• Argmax Layer (argmax) 
Chooses class with higher probability.

• Dropout Layer (dropout) 
Randomly ignores neurons as regularisation to prevent overfitting.

11

AlexNet

Inference-only 
(fw propagation)

12Images taken from [1] and [3]

2x over  
cloud-only

18% more
energy-efficient

AlexNet

13

• Fully connected layers operate on few
data but have high latency.

Images taken from [3]

• Convolutional layers produce a lot of data.

• Pooling layers reduce a lot of data.

Partitioning

• First layers have most of the data (convolutions and
pooling)

• Later layers have most of the latency (fully connected
layers)

• Key idea: Compute locally until the point it make sense
and then offload to cloud.

14

More Applications
Abbreviation Network Input Layers

Image Classification IMC AlexNet Image 24

VGG VGG Image 46

Facial Recognition FACE DeepFace Image 10

Digit Recognition DIG MNIST Image 9

Speech Recognition ASR Kaldi Speech 13

Part-of-speech Tagging POS SENNA Word vectors 3

Named Entity
Recognition

NER SENNA Word vectors 3

Word Chunking CHK SENNA Word vectors 3

15

VGG

Partition points
0

5

10

15

20

La
te

nc
y

(s
)

(a) VGG
Partition points

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

La
te

nc
y

(s
)

(b) FACE

Partition points
0
1
2
3
4
5
6

La
te

nc
y

(s
)

(c) DIG
Partition points

0
1
2
3
4
5
6
7

La
te

nc
y

(s
)

(d) ASR
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(e) POS
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(f) NER
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(g) CHK

Server processing latency Data communication latency Mobile processing latency

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Partition points
0

10
20
30
40
50
60
70

En
er

gy
(J

)

(a) VGG
Partition points

0
2
4
6
8

10
12
14

En
er

gy
(J

)

(b) FACE

Partition points
0
5

10
15
20
25

En
er

gy
(J

)

(c) DIG
Partition points

0
5

10
15
20
25
30

En
er

gy
(J

)

(d) ASR
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(e) POS
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(f) NER
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(g) CHK

Data communication energy Mobile processing energy

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

Partition points
0

5

10

15

20

La
te

nc
y

(s
)

(a) VGG
Partition points

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

La
te

nc
y

(s
)

(b) FACE

Partition points
0
1
2
3
4
5
6

La
te

nc
y

(s
)

(c) DIG
Partition points

0
1
2
3
4
5
6
7

La
te

nc
y

(s
)

(d) ASR
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(e) POS
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(f) NER
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(g) CHK

Server processing latency Data communication latency Mobile processing latency

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Partition points
0

10
20
30
40
50
60
70

En
er

gy
(J

)

(a) VGG
Partition points

0
2
4
6
8

10
12
14

En
er

gy
(J

)

(b) FACE

Partition points
0
5

10
15
20
25

En
er

gy
(J

)

(c) DIG
Partition points

0
5

10
15
20
25
30

En
er

gy
(J

)

(d) ASR
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(e) POS
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(f) NER
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(g) CHK

Data communication energy Mobile processing energy

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

16Images taken from [1]

input
conv1.1
relu1.1
conv1.2
relu1.2
pool1
conv2.1
relu2.1
conv2.2
relu2.2
pool2
conv3.1
relu3.1
conv3.2
relu3.2
conv3.3
relu3.3
conv3.4
relu3.4
pool3
conv4.1
relu4.1
conv4.2
relu4.2
conv4.3
relu4.3
conv4.4
relu4.4
pool4
conv5.1
relu5.1
conv5.2
relu5.2
conv5.3
relu5.3
conv5.4
relu5.4
pool5
fc6
relu6
drop6
fc7
relu7
drop7
fc8
softm

ax
argm

ax

Layers

0

50

100

150

200

250

La
te

nc
y

(m
s)

input
conv1
pool2
conv3
local4
local5
local6
fc7
fc8
softm

ax
argm

ax

Layers

0

20

40

60

80

100

La
te

nc
y

(m
s)

input
conv1
pool1
conv2
pool2
fc1
relu1
fc2
softm

ax
argm

ax

Layers

0

1

2

3

4

5

La
te

nc
y

(m
s)

input
fc1
sig1
fc2
sig2
fc3
sig3
fc4
sig4
fc5
sig5
fc6
sig6
fc7

Layers

0

10

20

30

40

50

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4
La

te
nc

y
(m

s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

0
2
4
6
8
10
12
14

D
ata

size
(M

B
)

(a) VGG

0.0

0.5

1.0

1.5

2.0

2.5

D
ata

size
(M

B
)

(b) FACE

0

1

2

3

4

5
D

ata
size

(M
B

)

(c) DIG

0

1

2

3

4

5

D
ata

size
(M

B
)

(d) ASR

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(e) POS

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(f) NER

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(g) CHK

Layer latency Size of output data

Figure 7: The per layer latency on the mobile GPU (left light-color bar) and size of data (right dark-color bar) after each layer’s execution.

vantage of the powerful server to execute the more compute-
heavy layers at the back-end. In the case of AlexNet us-
ing the mobile GPU and Wi-Fi, partitioning between the
last pooling layer (pool5) and the first fully-connected
layer (fc6) achieves the lowest latency, as marked in Fig-
ure 6a, improving 2.0⇥ over cloud-only processing.
Partition for Energy – Similar to latency, due to the high
energy cost of wireless data transfer, transferring the input
for cloud-only processing is not the most energy-efficiency
approach. As marked in Figure 6b, partitioning in the middle
of the DNN achieves the best mobile energy consumption,
18% more energy efficient than the cloud-only approach.
Key Observations – Partitioning at the layer granularity can
provide significant latency and energy efficiency improve-
ments. For AlexNet using the GPU and Wi-Fi, the best par-
tition points are between the intermediate layers of the DNN.

4.4 Generalizing to More DNNs
We expand our investigation to 7 more intelligent appli-
cations to study their data and computation characteristics
and their impact on computation partitioning opportunity.
We use the DNNs provided in the Tonic suite [9], as well
as VGG, a state-of-the-art image classification DNN, and
LTE as the wireless network configuration. Details about the
benchmarks are listed in Table 3. We count the number of
layers of each DNN starting from the first non-input layer to
the last layer, including argmax if present.
CV Applications – The three remaining computer vision
DNNs (VGG, FACE and DIG) have similar characteristics as
AlexNet (Figure 5), as shown in Figures 7a –7c. The front-
end layers are convolution layers increasing data, and pool-
ing layers reducing data. The data size in the back-end lay-
ers are similar or smaller than the original input data. The
latency for the back-end layers are higher than most of the

Table 3: Benchmark Specifications

App Abbr. Network Input Layers

Image classification IMC AlexNet [21] Image 24
VGG VGG [26] Image 46

Facial recognition FACE DeepFace [27] Image 10
Digit recognition DIG MNIST [28] Image 9

Speech recognition ASR Kaldi [29] Speech features 13
Part-of-speech tagging POS SENNA [30] Word vectors 3

Named entity recognition NER SENNA [30] Word vectors 3
Word chunking CHK SENNA [30] Word vectors 3

front-end layers (e.g., fc6 is the most time-consuming layer
in VGG), except for DIG where convolution layers are most
time-consuming. Similar to AlexNet, these characteristics
indicate partitioning opportunities in the middle of the DNN.
Figure 8a shows that the partition point for best latency for
VGG is in the intermediate layers. In addition, Figures 8a -
8c show that different CV applications have different par-
tition points for best latency, and Figures 9a - 9c show the
different partition points for best energy for these DNNs.
ASR and NLP Applications – The remaining four DNNs in
the suite (ASR, POS, NER and CHK) only consist of fully-
connected layers and activation layers. The layer break-
downs are shown in Figures 7d - 7g, where, throughout the
execution, layers of the same type incur similar latency and
the data size stay relatively constant except for the very first
and last layer of each DNN. These DNNs do not have data-
increasing layers (i.e., convolution layers) or data-reducing
layers (i.e., pooling layers). As a result, there only exist op-
portunities for partitioning the computation at the extrem-
ities of these networks. Figures 8d - 8g and Figures 9d -
9g show the different partition points for best latency and
energy for these DNNs, respectively. There are data com-
munication components in the right-most bars (mobile-only
processing) for these applications because the output of the
DNN is sent to the cloud for post-processing steps required
by these applications.

input
conv1.1
relu1.1
conv1.2
relu1.2
pool1
conv2.1
relu2.1
conv2.2
relu2.2
pool2
conv3.1
relu3.1
conv3.2
relu3.2
conv3.3
relu3.3
conv3.4
relu3.4
pool3
conv4.1
relu4.1
conv4.2
relu4.2
conv4.3
relu4.3
conv4.4
relu4.4
pool4
conv5.1
relu5.1
conv5.2
relu5.2
conv5.3
relu5.3
conv5.4
relu5.4
pool5
fc6
relu6
drop6
fc7
relu7
drop7
fc8
softm

ax
argm

ax

Layers

0

50

100

150

200

250

La
te

nc
y

(m
s)

input
conv1
pool2
conv3
local4
local5
local6
fc7
fc8
softm

ax
argm

ax

Layers

0

20

40

60

80

100

La
te

nc
y

(m
s)

input
conv1
pool1
conv2
pool2
fc1
relu1
fc2
softm

ax
argm

ax

Layers

0

1

2

3

4

5

La
te

nc
y

(m
s)

input
fc1
sig1
fc2
sig2
fc3
sig3
fc4
sig4
fc5
sig5
fc6
sig6
fc7

Layers

0

10

20

30

40

50

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

0
2
4
6
8
10
12
14

D
ata

size
(M

B
)

(a) VGG

0.0

0.5

1.0

1.5

2.0

2.5

D
ata

size
(M

B
)

(b) FACE

0

1

2

3

4

5

D
ata

size
(M

B
)

(c) DIG

0

1

2

3

4

5

D
ata

size
(M

B
)

(d) ASR

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(e) POS

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(f) NER

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(g) CHK

Layer latency Size of output data

Figure 7: The per layer latency on the mobile GPU (left light-color bar) and size of data (right dark-color bar) after each layer’s execution.

vantage of the powerful server to execute the more compute-
heavy layers at the back-end. In the case of AlexNet us-
ing the mobile GPU and Wi-Fi, partitioning between the
last pooling layer (pool5) and the first fully-connected
layer (fc6) achieves the lowest latency, as marked in Fig-
ure 6a, improving 2.0⇥ over cloud-only processing.
Partition for Energy – Similar to latency, due to the high
energy cost of wireless data transfer, transferring the input
for cloud-only processing is not the most energy-efficiency
approach. As marked in Figure 6b, partitioning in the middle
of the DNN achieves the best mobile energy consumption,
18% more energy efficient than the cloud-only approach.
Key Observations – Partitioning at the layer granularity can
provide significant latency and energy efficiency improve-
ments. For AlexNet using the GPU and Wi-Fi, the best par-
tition points are between the intermediate layers of the DNN.

4.4 Generalizing to More DNNs
We expand our investigation to 7 more intelligent appli-
cations to study their data and computation characteristics
and their impact on computation partitioning opportunity.
We use the DNNs provided in the Tonic suite [9], as well
as VGG, a state-of-the-art image classification DNN, and
LTE as the wireless network configuration. Details about the
benchmarks are listed in Table 3. We count the number of
layers of each DNN starting from the first non-input layer to
the last layer, including argmax if present.
CV Applications – The three remaining computer vision
DNNs (VGG, FACE and DIG) have similar characteristics as
AlexNet (Figure 5), as shown in Figures 7a –7c. The front-
end layers are convolution layers increasing data, and pool-
ing layers reducing data. The data size in the back-end lay-
ers are similar or smaller than the original input data. The
latency for the back-end layers are higher than most of the

Table 3: Benchmark Specifications

App Abbr. Network Input Layers

Image classification IMC AlexNet [21] Image 24
VGG VGG [26] Image 46

Facial recognition FACE DeepFace [27] Image 10
Digit recognition DIG MNIST [28] Image 9

Speech recognition ASR Kaldi [29] Speech features 13
Part-of-speech tagging POS SENNA [30] Word vectors 3

Named entity recognition NER SENNA [30] Word vectors 3
Word chunking CHK SENNA [30] Word vectors 3

front-end layers (e.g., fc6 is the most time-consuming layer
in VGG), except for DIG where convolution layers are most
time-consuming. Similar to AlexNet, these characteristics
indicate partitioning opportunities in the middle of the DNN.
Figure 8a shows that the partition point for best latency for
VGG is in the intermediate layers. In addition, Figures 8a -
8c show that different CV applications have different par-
tition points for best latency, and Figures 9a - 9c show the
different partition points for best energy for these DNNs.
ASR and NLP Applications – The remaining four DNNs in
the suite (ASR, POS, NER and CHK) only consist of fully-
connected layers and activation layers. The layer break-
downs are shown in Figures 7d - 7g, where, throughout the
execution, layers of the same type incur similar latency and
the data size stay relatively constant except for the very first
and last layer of each DNN. These DNNs do not have data-
increasing layers (i.e., convolution layers) or data-reducing
layers (i.e., pooling layers). As a result, there only exist op-
portunities for partitioning the computation at the extrem-
ities of these networks. Figures 8d - 8g and Figures 9d -
9g show the different partition points for best latency and
energy for these DNNs, respectively. There are data com-
munication components in the right-most bars (mobile-only
processing) for these applications because the output of the
DNN is sent to the cloud for post-processing steps required
by these applications.

FACE

Partition points
0

5

10

15

20

La
te

nc
y

(s
)

(a) VGG
Partition points

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

La
te

nc
y

(s
)

(b) FACE

Partition points
0
1
2
3
4
5
6

La
te

nc
y

(s
)

(c) DIG
Partition points

0
1
2
3
4
5
6
7

La
te

nc
y

(s
)

(d) ASR
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(e) POS
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(f) NER
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(g) CHK

Server processing latency Data communication latency Mobile processing latency

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Partition points
0

10
20
30
40
50
60
70

En
er

gy
(J

)

(a) VGG
Partition points

0
2
4
6
8

10
12
14

En
er

gy
(J

)

(b) FACE

Partition points
0
5

10
15
20
25

En
er

gy
(J

)

(c) DIG
Partition points

0
5

10
15
20
25
30

En
er

gy
(J

)

(d) ASR
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(e) POS
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(f) NER
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(g) CHK

Data communication energy Mobile processing energy

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

Partition points
0

5

10

15

20

La
te

nc
y

(s
)

(a) VGG
Partition points

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

La
te

nc
y

(s
)

(b) FACE

Partition points
0
1
2
3
4
5
6

La
te

nc
y

(s
)

(c) DIG
Partition points

0
1
2
3
4
5
6
7

La
te

nc
y

(s
)

(d) ASR
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(e) POS
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(f) NER
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(g) CHK

Server processing latency Data communication latency Mobile processing latency

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Partition points
0

10
20
30
40
50
60
70

En
er

gy
(J

)

(a) VGG
Partition points

0
2
4
6
8

10
12
14

En
er

gy
(J

)

(b) FACE

Partition points
0
5

10
15
20
25

En
er

gy
(J

)

(c) DIG
Partition points

0
5

10
15
20
25
30

En
er

gy
(J

)

(d) ASR
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(e) POS
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(f) NER
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(g) CHK

Data communication energy Mobile processing energy

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

17Images taken from [1]

input
conv1.1
relu1.1
conv1.2
relu1.2
pool1
conv2.1
relu2.1
conv2.2
relu2.2
pool2
conv3.1
relu3.1
conv3.2
relu3.2
conv3.3
relu3.3
conv3.4
relu3.4
pool3
conv4.1
relu4.1
conv4.2
relu4.2
conv4.3
relu4.3
conv4.4
relu4.4
pool4
conv5.1
relu5.1
conv5.2
relu5.2
conv5.3
relu5.3
conv5.4
relu5.4
pool5
fc6
relu6
drop6
fc7
relu7
drop7
fc8
softm

ax
argm

ax

Layers

0

50

100

150

200

250

La
te

nc
y

(m
s)

input
conv1
pool2
conv3
local4
local5
local6
fc7
fc8
softm

ax
argm

ax

Layers

0

20

40

60

80

100

La
te

nc
y

(m
s)

input
conv1
pool1
conv2
pool2
fc1
relu1
fc2
softm

ax
argm

ax

Layers

0

1

2

3

4

5

La
te

nc
y

(m
s)

input
fc1
sig1
fc2
sig2
fc3
sig3
fc4
sig4
fc5
sig5
fc6
sig6
fc7

Layers

0

10

20

30

40

50

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

0
2
4
6
8
10
12
14

D
ata

size
(M

B
)

(a) VGG

0.0

0.5

1.0

1.5

2.0

2.5

D
ata

size
(M

B
)

(b) FACE

0

1

2

3

4

5

D
ata

size
(M

B
)

(c) DIG

0

1

2

3

4

5

D
ata

size
(M

B
)

(d) ASR

0.0

1.1

2.2

3.4

4.5
D

ata
size

(M
B

)
⇥10�2

(e) POS

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(f) NER

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(g) CHK

Layer latency Size of output data

Figure 7: The per layer latency on the mobile GPU (left light-color bar) and size of data (right dark-color bar) after each layer’s execution.

vantage of the powerful server to execute the more compute-
heavy layers at the back-end. In the case of AlexNet us-
ing the mobile GPU and Wi-Fi, partitioning between the
last pooling layer (pool5) and the first fully-connected
layer (fc6) achieves the lowest latency, as marked in Fig-
ure 6a, improving 2.0⇥ over cloud-only processing.
Partition for Energy – Similar to latency, due to the high
energy cost of wireless data transfer, transferring the input
for cloud-only processing is not the most energy-efficiency
approach. As marked in Figure 6b, partitioning in the middle
of the DNN achieves the best mobile energy consumption,
18% more energy efficient than the cloud-only approach.
Key Observations – Partitioning at the layer granularity can
provide significant latency and energy efficiency improve-
ments. For AlexNet using the GPU and Wi-Fi, the best par-
tition points are between the intermediate layers of the DNN.

4.4 Generalizing to More DNNs
We expand our investigation to 7 more intelligent appli-
cations to study their data and computation characteristics
and their impact on computation partitioning opportunity.
We use the DNNs provided in the Tonic suite [9], as well
as VGG, a state-of-the-art image classification DNN, and
LTE as the wireless network configuration. Details about the
benchmarks are listed in Table 3. We count the number of
layers of each DNN starting from the first non-input layer to
the last layer, including argmax if present.
CV Applications – The three remaining computer vision
DNNs (VGG, FACE and DIG) have similar characteristics as
AlexNet (Figure 5), as shown in Figures 7a –7c. The front-
end layers are convolution layers increasing data, and pool-
ing layers reducing data. The data size in the back-end lay-
ers are similar or smaller than the original input data. The
latency for the back-end layers are higher than most of the

Table 3: Benchmark Specifications

App Abbr. Network Input Layers

Image classification IMC AlexNet [21] Image 24
VGG VGG [26] Image 46

Facial recognition FACE DeepFace [27] Image 10
Digit recognition DIG MNIST [28] Image 9

Speech recognition ASR Kaldi [29] Speech features 13
Part-of-speech tagging POS SENNA [30] Word vectors 3

Named entity recognition NER SENNA [30] Word vectors 3
Word chunking CHK SENNA [30] Word vectors 3

front-end layers (e.g., fc6 is the most time-consuming layer
in VGG), except for DIG where convolution layers are most
time-consuming. Similar to AlexNet, these characteristics
indicate partitioning opportunities in the middle of the DNN.
Figure 8a shows that the partition point for best latency for
VGG is in the intermediate layers. In addition, Figures 8a -
8c show that different CV applications have different par-
tition points for best latency, and Figures 9a - 9c show the
different partition points for best energy for these DNNs.
ASR and NLP Applications – The remaining four DNNs in
the suite (ASR, POS, NER and CHK) only consist of fully-
connected layers and activation layers. The layer break-
downs are shown in Figures 7d - 7g, where, throughout the
execution, layers of the same type incur similar latency and
the data size stay relatively constant except for the very first
and last layer of each DNN. These DNNs do not have data-
increasing layers (i.e., convolution layers) or data-reducing
layers (i.e., pooling layers). As a result, there only exist op-
portunities for partitioning the computation at the extrem-
ities of these networks. Figures 8d - 8g and Figures 9d -
9g show the different partition points for best latency and
energy for these DNNs, respectively. There are data com-
munication components in the right-most bars (mobile-only
processing) for these applications because the output of the
DNN is sent to the cloud for post-processing steps required
by these applications.

input
conv1.1
relu1.1
conv1.2
relu1.2
pool1
conv2.1
relu2.1
conv2.2
relu2.2
pool2
conv3.1
relu3.1
conv3.2
relu3.2
conv3.3
relu3.3
conv3.4
relu3.4
pool3
conv4.1
relu4.1
conv4.2
relu4.2
conv4.3
relu4.3
conv4.4
relu4.4
pool4
conv5.1
relu5.1
conv5.2
relu5.2
conv5.3
relu5.3
conv5.4
relu5.4
pool5
fc6
relu6
drop6
fc7
relu7
drop7
fc8
softm

ax
argm

ax

Layers

0

50

100

150

200

250

La
te

nc
y

(m
s)

input
conv1
pool2
conv3
local4
local5
local6
fc7
fc8
softm

ax
argm

ax

Layers

0

20

40

60

80

100

La
te

nc
y

(m
s)

input
conv1
pool1
conv2
pool2
fc1
relu1
fc2
softm

ax
argm

ax

Layers

0

1

2

3

4

5

La
te

nc
y

(m
s)

input
fc1
sig1
fc2
sig2
fc3
sig3
fc4
sig4
fc5
sig5
fc6
sig6
fc7

Layers

0

10

20

30

40

50

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

0
2
4
6
8
10
12
14

D
ata

size
(M

B
)

(a) VGG

0.0

0.5

1.0

1.5

2.0

2.5

D
ata

size
(M

B
)

(b) FACE

0

1

2

3

4

5

D
ata

size
(M

B
)

(c) DIG

0

1

2

3

4

5

D
ata

size
(M

B
)

(d) ASR

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(e) POS

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(f) NER

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(g) CHK

Layer latency Size of output data

Figure 7: The per layer latency on the mobile GPU (left light-color bar) and size of data (right dark-color bar) after each layer’s execution.

vantage of the powerful server to execute the more compute-
heavy layers at the back-end. In the case of AlexNet us-
ing the mobile GPU and Wi-Fi, partitioning between the
last pooling layer (pool5) and the first fully-connected
layer (fc6) achieves the lowest latency, as marked in Fig-
ure 6a, improving 2.0⇥ over cloud-only processing.
Partition for Energy – Similar to latency, due to the high
energy cost of wireless data transfer, transferring the input
for cloud-only processing is not the most energy-efficiency
approach. As marked in Figure 6b, partitioning in the middle
of the DNN achieves the best mobile energy consumption,
18% more energy efficient than the cloud-only approach.
Key Observations – Partitioning at the layer granularity can
provide significant latency and energy efficiency improve-
ments. For AlexNet using the GPU and Wi-Fi, the best par-
tition points are between the intermediate layers of the DNN.

4.4 Generalizing to More DNNs
We expand our investigation to 7 more intelligent appli-
cations to study their data and computation characteristics
and their impact on computation partitioning opportunity.
We use the DNNs provided in the Tonic suite [9], as well
as VGG, a state-of-the-art image classification DNN, and
LTE as the wireless network configuration. Details about the
benchmarks are listed in Table 3. We count the number of
layers of each DNN starting from the first non-input layer to
the last layer, including argmax if present.
CV Applications – The three remaining computer vision
DNNs (VGG, FACE and DIG) have similar characteristics as
AlexNet (Figure 5), as shown in Figures 7a –7c. The front-
end layers are convolution layers increasing data, and pool-
ing layers reducing data. The data size in the back-end lay-
ers are similar or smaller than the original input data. The
latency for the back-end layers are higher than most of the

Table 3: Benchmark Specifications

App Abbr. Network Input Layers

Image classification IMC AlexNet [21] Image 24
VGG VGG [26] Image 46

Facial recognition FACE DeepFace [27] Image 10
Digit recognition DIG MNIST [28] Image 9

Speech recognition ASR Kaldi [29] Speech features 13
Part-of-speech tagging POS SENNA [30] Word vectors 3

Named entity recognition NER SENNA [30] Word vectors 3
Word chunking CHK SENNA [30] Word vectors 3

front-end layers (e.g., fc6 is the most time-consuming layer
in VGG), except for DIG where convolution layers are most
time-consuming. Similar to AlexNet, these characteristics
indicate partitioning opportunities in the middle of the DNN.
Figure 8a shows that the partition point for best latency for
VGG is in the intermediate layers. In addition, Figures 8a -
8c show that different CV applications have different par-
tition points for best latency, and Figures 9a - 9c show the
different partition points for best energy for these DNNs.
ASR and NLP Applications – The remaining four DNNs in
the suite (ASR, POS, NER and CHK) only consist of fully-
connected layers and activation layers. The layer break-
downs are shown in Figures 7d - 7g, where, throughout the
execution, layers of the same type incur similar latency and
the data size stay relatively constant except for the very first
and last layer of each DNN. These DNNs do not have data-
increasing layers (i.e., convolution layers) or data-reducing
layers (i.e., pooling layers). As a result, there only exist op-
portunities for partitioning the computation at the extrem-
ities of these networks. Figures 8d - 8g and Figures 9d -
9g show the different partition points for best latency and
energy for these DNNs, respectively. There are data com-
munication components in the right-most bars (mobile-only
processing) for these applications because the output of the
DNN is sent to the cloud for post-processing steps required
by these applications.

DIG
Partition points

0

5

10

15

20

La
te

nc
y

(s
)

(a) VGG
Partition points

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

La
te

nc
y

(s
)

(b) FACE

Partition points
0
1
2
3
4
5
6

La
te

nc
y

(s
)

(c) DIG
Partition points

0
1
2
3
4
5
6
7

La
te

nc
y

(s
)

(d) ASR
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(e) POS
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(f) NER
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(g) CHK

Server processing latency Data communication latency Mobile processing latency

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Partition points
0

10
20
30
40
50
60
70

En
er

gy
(J

)

(a) VGG
Partition points

0
2
4
6
8

10
12
14

En
er

gy
(J

)

(b) FACE

Partition points
0
5

10
15
20
25

En
er

gy
(J

)

(c) DIG
Partition points

0
5

10
15
20
25
30

En
er

gy
(J

)

(d) ASR
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(e) POS
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(f) NER
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(g) CHK

Data communication energy Mobile processing energy

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

18Images taken from [1]

Partition points
0

5

10

15

20

La
te

nc
y

(s
)

(a) VGG
Partition points

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

La
te

nc
y

(s
)

(b) FACE

Partition points
0
1
2
3
4
5
6

La
te

nc
y

(s
)

(c) DIG
Partition points

0
1
2
3
4
5
6
7

La
te

nc
y

(s
)

(d) ASR
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(e) POS
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(f) NER
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(g) CHK

Server processing latency Data communication latency Mobile processing latency

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Partition points
0

10
20
30
40
50
60
70

En
er

gy
(J

)

(a) VGG
Partition points

0
2
4
6
8

10
12
14

En
er

gy
(J

)

(b) FACE

Partition points
0
5

10
15
20
25

En
er

gy
(J

)

(c) DIG
Partition points

0
5

10
15
20
25
30

En
er

gy
(J

)

(d) ASR
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(e) POS
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(f) NER
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(g) CHK

Data communication energy Mobile processing energy

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

input
conv1.1
relu1.1
conv1.2
relu1.2
pool1
conv2.1
relu2.1
conv2.2
relu2.2
pool2
conv3.1
relu3.1
conv3.2
relu3.2
conv3.3
relu3.3
conv3.4
relu3.4
pool3
conv4.1
relu4.1
conv4.2
relu4.2
conv4.3
relu4.3
conv4.4
relu4.4
pool4
conv5.1
relu5.1
conv5.2
relu5.2
conv5.3
relu5.3
conv5.4
relu5.4
pool5
fc6
relu6
drop6
fc7
relu7
drop7
fc8
softm

ax
argm

ax

Layers

0

50

100

150

200

250

La
te

nc
y

(m
s)

input
conv1
pool2
conv3
local4
local5
local6
fc7
fc8
softm

ax
argm

ax

Layers

0

20

40

60

80

100

La
te

nc
y

(m
s)

input
conv1
pool1
conv2
pool2
fc1
relu1
fc2
softm

ax
argm

ax

Layers

0

1

2

3

4

5

La
te

nc
y

(m
s)

input
fc1
sig1
fc2
sig2
fc3
sig3
fc4
sig4
fc5
sig5
fc6
sig6
fc7

Layers

0

10

20

30

40

50

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

0
2
4
6
8
10
12
14

D
ata

size
(M

B
)

(a) VGG

0.0

0.5

1.0

1.5

2.0

2.5

D
ata

size
(M

B
)

(b) FACE

0

1

2

3

4

5

D
ata

size
(M

B
)

(c) DIG

0

1

2

3

4

5

D
ata

size
(M

B
)

(d) ASR

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(e) POS

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(f) NER

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(g) CHK

Layer latency Size of output data

Figure 7: The per layer latency on the mobile GPU (left light-color bar) and size of data (right dark-color bar) after each layer’s execution.

vantage of the powerful server to execute the more compute-
heavy layers at the back-end. In the case of AlexNet us-
ing the mobile GPU and Wi-Fi, partitioning between the
last pooling layer (pool5) and the first fully-connected
layer (fc6) achieves the lowest latency, as marked in Fig-
ure 6a, improving 2.0⇥ over cloud-only processing.
Partition for Energy – Similar to latency, due to the high
energy cost of wireless data transfer, transferring the input
for cloud-only processing is not the most energy-efficiency
approach. As marked in Figure 6b, partitioning in the middle
of the DNN achieves the best mobile energy consumption,
18% more energy efficient than the cloud-only approach.
Key Observations – Partitioning at the layer granularity can
provide significant latency and energy efficiency improve-
ments. For AlexNet using the GPU and Wi-Fi, the best par-
tition points are between the intermediate layers of the DNN.

4.4 Generalizing to More DNNs
We expand our investigation to 7 more intelligent appli-
cations to study their data and computation characteristics
and their impact on computation partitioning opportunity.
We use the DNNs provided in the Tonic suite [9], as well
as VGG, a state-of-the-art image classification DNN, and
LTE as the wireless network configuration. Details about the
benchmarks are listed in Table 3. We count the number of
layers of each DNN starting from the first non-input layer to
the last layer, including argmax if present.
CV Applications – The three remaining computer vision
DNNs (VGG, FACE and DIG) have similar characteristics as
AlexNet (Figure 5), as shown in Figures 7a –7c. The front-
end layers are convolution layers increasing data, and pool-
ing layers reducing data. The data size in the back-end lay-
ers are similar or smaller than the original input data. The
latency for the back-end layers are higher than most of the

Table 3: Benchmark Specifications

App Abbr. Network Input Layers

Image classification IMC AlexNet [21] Image 24
VGG VGG [26] Image 46

Facial recognition FACE DeepFace [27] Image 10
Digit recognition DIG MNIST [28] Image 9

Speech recognition ASR Kaldi [29] Speech features 13
Part-of-speech tagging POS SENNA [30] Word vectors 3

Named entity recognition NER SENNA [30] Word vectors 3
Word chunking CHK SENNA [30] Word vectors 3

front-end layers (e.g., fc6 is the most time-consuming layer
in VGG), except for DIG where convolution layers are most
time-consuming. Similar to AlexNet, these characteristics
indicate partitioning opportunities in the middle of the DNN.
Figure 8a shows that the partition point for best latency for
VGG is in the intermediate layers. In addition, Figures 8a -
8c show that different CV applications have different par-
tition points for best latency, and Figures 9a - 9c show the
different partition points for best energy for these DNNs.
ASR and NLP Applications – The remaining four DNNs in
the suite (ASR, POS, NER and CHK) only consist of fully-
connected layers and activation layers. The layer break-
downs are shown in Figures 7d - 7g, where, throughout the
execution, layers of the same type incur similar latency and
the data size stay relatively constant except for the very first
and last layer of each DNN. These DNNs do not have data-
increasing layers (i.e., convolution layers) or data-reducing
layers (i.e., pooling layers). As a result, there only exist op-
portunities for partitioning the computation at the extrem-
ities of these networks. Figures 8d - 8g and Figures 9d -
9g show the different partition points for best latency and
energy for these DNNs, respectively. There are data com-
munication components in the right-most bars (mobile-only
processing) for these applications because the output of the
DNN is sent to the cloud for post-processing steps required
by these applications.

input
conv1.1
relu1.1
conv1.2
relu1.2
pool1
conv2.1
relu2.1
conv2.2
relu2.2
pool2
conv3.1
relu3.1
conv3.2
relu3.2
conv3.3
relu3.3
conv3.4
relu3.4
pool3
conv4.1
relu4.1
conv4.2
relu4.2
conv4.3
relu4.3
conv4.4
relu4.4
pool4
conv5.1
relu5.1
conv5.2
relu5.2
conv5.3
relu5.3
conv5.4
relu5.4
pool5
fc6
relu6
drop6
fc7
relu7
drop7
fc8
softm

ax
argm

ax

Layers

0

50

100

150

200

250

La
te

nc
y

(m
s)

input
conv1
pool2
conv3
local4
local5
local6
fc7
fc8
softm

ax
argm

ax

Layers

0

20

40

60

80

100

La
te

nc
y

(m
s)

input
conv1
pool1
conv2
pool2
fc1
relu1
fc2
softm

ax
argm

ax

Layers

0

1

2

3

4

5

La
te

nc
y

(m
s)

input
fc1
sig1
fc2
sig2
fc3
sig3
fc4
sig4
fc5
sig5
fc6
sig6
fc7

Layers

0

10

20

30

40

50

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

0
2
4
6
8
10
12
14

D
ata

size
(M

B
)

(a) VGG

0.0

0.5

1.0

1.5

2.0

2.5

D
ata

size
(M

B
)

(b) FACE

0

1

2

3

4

5

D
ata

size
(M

B
)

(c) DIG

0

1

2

3

4

5

D
ata

size
(M

B
)

(d) ASR

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(e) POS

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(f) NER

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(g) CHK

Layer latency Size of output data

Figure 7: The per layer latency on the mobile GPU (left light-color bar) and size of data (right dark-color bar) after each layer’s execution.

vantage of the powerful server to execute the more compute-
heavy layers at the back-end. In the case of AlexNet us-
ing the mobile GPU and Wi-Fi, partitioning between the
last pooling layer (pool5) and the first fully-connected
layer (fc6) achieves the lowest latency, as marked in Fig-
ure 6a, improving 2.0⇥ over cloud-only processing.
Partition for Energy – Similar to latency, due to the high
energy cost of wireless data transfer, transferring the input
for cloud-only processing is not the most energy-efficiency
approach. As marked in Figure 6b, partitioning in the middle
of the DNN achieves the best mobile energy consumption,
18% more energy efficient than the cloud-only approach.
Key Observations – Partitioning at the layer granularity can
provide significant latency and energy efficiency improve-
ments. For AlexNet using the GPU and Wi-Fi, the best par-
tition points are between the intermediate layers of the DNN.

4.4 Generalizing to More DNNs
We expand our investigation to 7 more intelligent appli-
cations to study their data and computation characteristics
and their impact on computation partitioning opportunity.
We use the DNNs provided in the Tonic suite [9], as well
as VGG, a state-of-the-art image classification DNN, and
LTE as the wireless network configuration. Details about the
benchmarks are listed in Table 3. We count the number of
layers of each DNN starting from the first non-input layer to
the last layer, including argmax if present.
CV Applications – The three remaining computer vision
DNNs (VGG, FACE and DIG) have similar characteristics as
AlexNet (Figure 5), as shown in Figures 7a –7c. The front-
end layers are convolution layers increasing data, and pool-
ing layers reducing data. The data size in the back-end lay-
ers are similar or smaller than the original input data. The
latency for the back-end layers are higher than most of the

Table 3: Benchmark Specifications

App Abbr. Network Input Layers

Image classification IMC AlexNet [21] Image 24
VGG VGG [26] Image 46

Facial recognition FACE DeepFace [27] Image 10
Digit recognition DIG MNIST [28] Image 9

Speech recognition ASR Kaldi [29] Speech features 13
Part-of-speech tagging POS SENNA [30] Word vectors 3

Named entity recognition NER SENNA [30] Word vectors 3
Word chunking CHK SENNA [30] Word vectors 3

front-end layers (e.g., fc6 is the most time-consuming layer
in VGG), except for DIG where convolution layers are most
time-consuming. Similar to AlexNet, these characteristics
indicate partitioning opportunities in the middle of the DNN.
Figure 8a shows that the partition point for best latency for
VGG is in the intermediate layers. In addition, Figures 8a -
8c show that different CV applications have different par-
tition points for best latency, and Figures 9a - 9c show the
different partition points for best energy for these DNNs.
ASR and NLP Applications – The remaining four DNNs in
the suite (ASR, POS, NER and CHK) only consist of fully-
connected layers and activation layers. The layer break-
downs are shown in Figures 7d - 7g, where, throughout the
execution, layers of the same type incur similar latency and
the data size stay relatively constant except for the very first
and last layer of each DNN. These DNNs do not have data-
increasing layers (i.e., convolution layers) or data-reducing
layers (i.e., pooling layers). As a result, there only exist op-
portunities for partitioning the computation at the extrem-
ities of these networks. Figures 8d - 8g and Figures 9d -
9g show the different partition points for best latency and
energy for these DNNs, respectively. There are data com-
munication components in the right-most bars (mobile-only
processing) for these applications because the output of the
DNN is sent to the cloud for post-processing steps required
by these applications.

ASR
Partition points

0

5

10

15

20

La
te

nc
y

(s
)

(a) VGG
Partition points

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

La
te

nc
y

(s
)

(b) FACE

Partition points
0
1
2
3
4
5
6

La
te

nc
y

(s
)

(c) DIG
Partition points

0
1
2
3
4
5
6
7

La
te

nc
y

(s
)

(d) ASR
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(e) POS
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(f) NER
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(g) CHK

Server processing latency Data communication latency Mobile processing latency

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Partition points
0

10
20
30
40
50
60
70

En
er

gy
(J

)
(a) VGG

Partition points
0
2
4
6
8

10
12
14

En
er

gy
(J

)

(b) FACE

Partition points
0
5

10
15
20
25

En
er

gy
(J

)

(c) DIG
Partition points

0
5

10
15
20
25
30

En
er

gy
(J

)

(d) ASR
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(e) POS
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(f) NER
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(g) CHK

Data communication energy Mobile processing energy

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

19Images taken from [1]

Partition points
0

5

10

15

20

La
te

nc
y

(s
)

(a) VGG
Partition points

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

La
te

nc
y

(s
)

(b) FACE

Partition points
0
1
2
3
4
5
6

La
te

nc
y

(s
)

(c) DIG
Partition points

0
1
2
3
4
5
6
7

La
te

nc
y

(s
)

(d) ASR
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(e) POS
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(f) NER
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(g) CHK

Server processing latency Data communication latency Mobile processing latency

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Partition points
0

10
20
30
40
50
60
70

En
er

gy
(J

)

(a) VGG
Partition points

0
2
4
6
8

10
12
14

En
er

gy
(J

)

(b) FACE

Partition points
0
5

10
15
20
25

En
er

gy
(J

)

(c) DIG
Partition points

0
5

10
15
20
25
30

En
er

gy
(J

)

(d) ASR
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(e) POS
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(f) NER
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(g) CHK

Data communication energy Mobile processing energy

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

input
conv1.1
relu1.1
conv1.2
relu1.2
pool1
conv2.1
relu2.1
conv2.2
relu2.2
pool2
conv3.1
relu3.1
conv3.2
relu3.2
conv3.3
relu3.3
conv3.4
relu3.4
pool3
conv4.1
relu4.1
conv4.2
relu4.2
conv4.3
relu4.3
conv4.4
relu4.4
pool4
conv5.1
relu5.1
conv5.2
relu5.2
conv5.3
relu5.3
conv5.4
relu5.4
pool5
fc6
relu6
drop6
fc7
relu7
drop7
fc8
softm

ax
argm

ax

Layers

0

50

100

150

200

250

La
te

nc
y

(m
s)

input
conv1
pool2
conv3
local4
local5
local6
fc7
fc8
softm

ax
argm

ax

Layers

0

20

40

60

80

100

La
te

nc
y

(m
s)

input
conv1
pool1
conv2
pool2
fc1
relu1
fc2
softm

ax
argm

ax

Layers

0

1

2

3

4

5

La
te

nc
y

(m
s)

input
fc1
sig1
fc2
sig2
fc3
sig3
fc4
sig4
fc5
sig5
fc6
sig6
fc7

Layers

0

10

20

30

40

50

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

0
2
4
6
8
10
12
14

D
ata

size
(M

B
)

(a) VGG

0.0

0.5

1.0

1.5

2.0

2.5

D
ata

size
(M

B
)

(b) FACE

0

1

2

3

4

5

D
ata

size
(M

B
)

(c) DIG

0

1

2

3

4

5

D
ata

size
(M

B
)

(d) ASR

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(e) POS

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(f) NER

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(g) CHK

Layer latency Size of output data

Figure 7: The per layer latency on the mobile GPU (left light-color bar) and size of data (right dark-color bar) after each layer’s execution.

vantage of the powerful server to execute the more compute-
heavy layers at the back-end. In the case of AlexNet us-
ing the mobile GPU and Wi-Fi, partitioning between the
last pooling layer (pool5) and the first fully-connected
layer (fc6) achieves the lowest latency, as marked in Fig-
ure 6a, improving 2.0⇥ over cloud-only processing.
Partition for Energy – Similar to latency, due to the high
energy cost of wireless data transfer, transferring the input
for cloud-only processing is not the most energy-efficiency
approach. As marked in Figure 6b, partitioning in the middle
of the DNN achieves the best mobile energy consumption,
18% more energy efficient than the cloud-only approach.
Key Observations – Partitioning at the layer granularity can
provide significant latency and energy efficiency improve-
ments. For AlexNet using the GPU and Wi-Fi, the best par-
tition points are between the intermediate layers of the DNN.

4.4 Generalizing to More DNNs
We expand our investigation to 7 more intelligent appli-
cations to study their data and computation characteristics
and their impact on computation partitioning opportunity.
We use the DNNs provided in the Tonic suite [9], as well
as VGG, a state-of-the-art image classification DNN, and
LTE as the wireless network configuration. Details about the
benchmarks are listed in Table 3. We count the number of
layers of each DNN starting from the first non-input layer to
the last layer, including argmax if present.
CV Applications – The three remaining computer vision
DNNs (VGG, FACE and DIG) have similar characteristics as
AlexNet (Figure 5), as shown in Figures 7a –7c. The front-
end layers are convolution layers increasing data, and pool-
ing layers reducing data. The data size in the back-end lay-
ers are similar or smaller than the original input data. The
latency for the back-end layers are higher than most of the

Table 3: Benchmark Specifications

App Abbr. Network Input Layers

Image classification IMC AlexNet [21] Image 24
VGG VGG [26] Image 46

Facial recognition FACE DeepFace [27] Image 10
Digit recognition DIG MNIST [28] Image 9

Speech recognition ASR Kaldi [29] Speech features 13
Part-of-speech tagging POS SENNA [30] Word vectors 3

Named entity recognition NER SENNA [30] Word vectors 3
Word chunking CHK SENNA [30] Word vectors 3

front-end layers (e.g., fc6 is the most time-consuming layer
in VGG), except for DIG where convolution layers are most
time-consuming. Similar to AlexNet, these characteristics
indicate partitioning opportunities in the middle of the DNN.
Figure 8a shows that the partition point for best latency for
VGG is in the intermediate layers. In addition, Figures 8a -
8c show that different CV applications have different par-
tition points for best latency, and Figures 9a - 9c show the
different partition points for best energy for these DNNs.
ASR and NLP Applications – The remaining four DNNs in
the suite (ASR, POS, NER and CHK) only consist of fully-
connected layers and activation layers. The layer break-
downs are shown in Figures 7d - 7g, where, throughout the
execution, layers of the same type incur similar latency and
the data size stay relatively constant except for the very first
and last layer of each DNN. These DNNs do not have data-
increasing layers (i.e., convolution layers) or data-reducing
layers (i.e., pooling layers). As a result, there only exist op-
portunities for partitioning the computation at the extrem-
ities of these networks. Figures 8d - 8g and Figures 9d -
9g show the different partition points for best latency and
energy for these DNNs, respectively. There are data com-
munication components in the right-most bars (mobile-only
processing) for these applications because the output of the
DNN is sent to the cloud for post-processing steps required
by these applications.

input
conv1.1
relu1.1
conv1.2
relu1.2
pool1
conv2.1
relu2.1
conv2.2
relu2.2
pool2
conv3.1
relu3.1
conv3.2
relu3.2
conv3.3
relu3.3
conv3.4
relu3.4
pool3
conv4.1
relu4.1
conv4.2
relu4.2
conv4.3
relu4.3
conv4.4
relu4.4
pool4
conv5.1
relu5.1
conv5.2
relu5.2
conv5.3
relu5.3
conv5.4
relu5.4
pool5
fc6
relu6
drop6
fc7
relu7
drop7
fc8
softm

ax
argm

ax

Layers

0

50

100

150

200

250

La
te

nc
y

(m
s)

input
conv1
pool2
conv3
local4
local5
local6
fc7
fc8
softm

ax
argm

ax

Layers

0

20

40

60

80

100

La
te

nc
y

(m
s)

input
conv1
pool1
conv2
pool2
fc1
relu1
fc2
softm

ax
argm

ax

Layers

0

1

2

3

4

5

La
te

nc
y

(m
s)

input
fc1
sig1
fc2
sig2
fc3
sig3
fc4
sig4
fc5
sig5
fc6
sig6
fc7

Layers

0

10

20

30

40

50

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

0
2
4
6
8
10
12
14

D
ata

size
(M

B
)

(a) VGG

0.0

0.5

1.0

1.5

2.0

2.5

D
ata

size
(M

B
)

(b) FACE

0

1

2

3

4

5

D
ata

size
(M

B
)

(c) DIG

0

1

2

3

4

5

D
ata

size
(M

B
)

(d) ASR

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(e) POS

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(f) NER

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(g) CHK

Layer latency Size of output data

Figure 7: The per layer latency on the mobile GPU (left light-color bar) and size of data (right dark-color bar) after each layer’s execution.

vantage of the powerful server to execute the more compute-
heavy layers at the back-end. In the case of AlexNet us-
ing the mobile GPU and Wi-Fi, partitioning between the
last pooling layer (pool5) and the first fully-connected
layer (fc6) achieves the lowest latency, as marked in Fig-
ure 6a, improving 2.0⇥ over cloud-only processing.
Partition for Energy – Similar to latency, due to the high
energy cost of wireless data transfer, transferring the input
for cloud-only processing is not the most energy-efficiency
approach. As marked in Figure 6b, partitioning in the middle
of the DNN achieves the best mobile energy consumption,
18% more energy efficient than the cloud-only approach.
Key Observations – Partitioning at the layer granularity can
provide significant latency and energy efficiency improve-
ments. For AlexNet using the GPU and Wi-Fi, the best par-
tition points are between the intermediate layers of the DNN.

4.4 Generalizing to More DNNs
We expand our investigation to 7 more intelligent appli-
cations to study their data and computation characteristics
and their impact on computation partitioning opportunity.
We use the DNNs provided in the Tonic suite [9], as well
as VGG, a state-of-the-art image classification DNN, and
LTE as the wireless network configuration. Details about the
benchmarks are listed in Table 3. We count the number of
layers of each DNN starting from the first non-input layer to
the last layer, including argmax if present.
CV Applications – The three remaining computer vision
DNNs (VGG, FACE and DIG) have similar characteristics as
AlexNet (Figure 5), as shown in Figures 7a –7c. The front-
end layers are convolution layers increasing data, and pool-
ing layers reducing data. The data size in the back-end lay-
ers are similar or smaller than the original input data. The
latency for the back-end layers are higher than most of the

Table 3: Benchmark Specifications

App Abbr. Network Input Layers

Image classification IMC AlexNet [21] Image 24
VGG VGG [26] Image 46

Facial recognition FACE DeepFace [27] Image 10
Digit recognition DIG MNIST [28] Image 9

Speech recognition ASR Kaldi [29] Speech features 13
Part-of-speech tagging POS SENNA [30] Word vectors 3

Named entity recognition NER SENNA [30] Word vectors 3
Word chunking CHK SENNA [30] Word vectors 3

front-end layers (e.g., fc6 is the most time-consuming layer
in VGG), except for DIG where convolution layers are most
time-consuming. Similar to AlexNet, these characteristics
indicate partitioning opportunities in the middle of the DNN.
Figure 8a shows that the partition point for best latency for
VGG is in the intermediate layers. In addition, Figures 8a -
8c show that different CV applications have different par-
tition points for best latency, and Figures 9a - 9c show the
different partition points for best energy for these DNNs.
ASR and NLP Applications – The remaining four DNNs in
the suite (ASR, POS, NER and CHK) only consist of fully-
connected layers and activation layers. The layer break-
downs are shown in Figures 7d - 7g, where, throughout the
execution, layers of the same type incur similar latency and
the data size stay relatively constant except for the very first
and last layer of each DNN. These DNNs do not have data-
increasing layers (i.e., convolution layers) or data-reducing
layers (i.e., pooling layers). As a result, there only exist op-
portunities for partitioning the computation at the extrem-
ities of these networks. Figures 8d - 8g and Figures 9d -
9g show the different partition points for best latency and
energy for these DNNs, respectively. There are data com-
munication components in the right-most bars (mobile-only
processing) for these applications because the output of the
DNN is sent to the cloud for post-processing steps required
by these applications.

POS
Partition points

0

5

10

15

20

La
te

nc
y

(s
)

(a) VGG
Partition points

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

La
te

nc
y

(s
)

(b) FACE

Partition points
0
1
2
3
4
5
6

La
te

nc
y

(s
)

(c) DIG
Partition points

0
1
2
3
4
5
6
7

La
te

nc
y

(s
)

(d) ASR
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(e) POS
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(f) NER
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(g) CHK

Server processing latency Data communication latency Mobile processing latency

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Partition points
0

10
20
30
40
50
60
70

En
er

gy
(J

)

(a) VGG
Partition points

0
2
4
6
8

10
12
14

En
er

gy
(J

)

(b) FACE

Partition points
0
5

10
15
20
25

En
er

gy
(J

)

(c) DIG
Partition points

0
5

10
15
20
25
30

En
er

gy
(J

)

(d) ASR
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(e) POS
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(f) NER
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(g) CHK

Data communication energy Mobile processing energy

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

20Images taken from [1]

Partition points
0

5

10

15

20

La
te

nc
y

(s
)

(a) VGG
Partition points

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

La
te

nc
y

(s
)

(b) FACE

Partition points
0
1
2
3
4
5
6

La
te

nc
y

(s
)

(c) DIG
Partition points

0
1
2
3
4
5
6
7

La
te

nc
y

(s
)

(d) ASR
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(e) POS
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(f) NER
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(g) CHK

Server processing latency Data communication latency Mobile processing latency

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Partition points
0

10
20
30
40
50
60
70

En
er

gy
(J

)

(a) VGG
Partition points

0
2
4
6
8

10
12
14

En
er

gy
(J

)

(b) FACE

Partition points
0
5

10
15
20
25

En
er

gy
(J

)

(c) DIG
Partition points

0
5

10
15
20
25
30

En
er

gy
(J

)

(d) ASR
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(e) POS
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(f) NER
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(g) CHK

Data communication energy Mobile processing energy

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

input
conv1.1
relu1.1
conv1.2
relu1.2
pool1
conv2.1
relu2.1
conv2.2
relu2.2
pool2
conv3.1
relu3.1
conv3.2
relu3.2
conv3.3
relu3.3
conv3.4
relu3.4
pool3
conv4.1
relu4.1
conv4.2
relu4.2
conv4.3
relu4.3
conv4.4
relu4.4
pool4
conv5.1
relu5.1
conv5.2
relu5.2
conv5.3
relu5.3
conv5.4
relu5.4
pool5
fc6
relu6
drop6
fc7
relu7
drop7
fc8
softm

ax
argm

ax

Layers

0

50

100

150

200

250

La
te

nc
y

(m
s)

input
conv1
pool2
conv3
local4
local5
local6
fc7
fc8
softm

ax
argm

ax

Layers

0

20

40

60

80

100

La
te

nc
y

(m
s)

input
conv1
pool1
conv2
pool2
fc1
relu1
fc2
softm

ax
argm

ax

Layers

0

1

2

3

4

5

La
te

nc
y

(m
s)

input
fc1
sig1
fc2
sig2
fc3
sig3
fc4
sig4
fc5
sig5
fc6
sig6
fc7

Layers

0

10

20

30

40

50

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

0
2
4
6
8
10
12
14

D
ata

size
(M

B
)

(a) VGG

0.0

0.5

1.0

1.5

2.0

2.5

D
ata

size
(M

B
)

(b) FACE

0

1

2

3

4

5

D
ata

size
(M

B
)

(c) DIG

0

1

2

3

4

5

D
ata

size
(M

B
)

(d) ASR

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(e) POS

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(f) NER

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(g) CHK

Layer latency Size of output data

Figure 7: The per layer latency on the mobile GPU (left light-color bar) and size of data (right dark-color bar) after each layer’s execution.

vantage of the powerful server to execute the more compute-
heavy layers at the back-end. In the case of AlexNet us-
ing the mobile GPU and Wi-Fi, partitioning between the
last pooling layer (pool5) and the first fully-connected
layer (fc6) achieves the lowest latency, as marked in Fig-
ure 6a, improving 2.0⇥ over cloud-only processing.
Partition for Energy – Similar to latency, due to the high
energy cost of wireless data transfer, transferring the input
for cloud-only processing is not the most energy-efficiency
approach. As marked in Figure 6b, partitioning in the middle
of the DNN achieves the best mobile energy consumption,
18% more energy efficient than the cloud-only approach.
Key Observations – Partitioning at the layer granularity can
provide significant latency and energy efficiency improve-
ments. For AlexNet using the GPU and Wi-Fi, the best par-
tition points are between the intermediate layers of the DNN.

4.4 Generalizing to More DNNs
We expand our investigation to 7 more intelligent appli-
cations to study their data and computation characteristics
and their impact on computation partitioning opportunity.
We use the DNNs provided in the Tonic suite [9], as well
as VGG, a state-of-the-art image classification DNN, and
LTE as the wireless network configuration. Details about the
benchmarks are listed in Table 3. We count the number of
layers of each DNN starting from the first non-input layer to
the last layer, including argmax if present.
CV Applications – The three remaining computer vision
DNNs (VGG, FACE and DIG) have similar characteristics as
AlexNet (Figure 5), as shown in Figures 7a –7c. The front-
end layers are convolution layers increasing data, and pool-
ing layers reducing data. The data size in the back-end lay-
ers are similar or smaller than the original input data. The
latency for the back-end layers are higher than most of the

Table 3: Benchmark Specifications

App Abbr. Network Input Layers

Image classification IMC AlexNet [21] Image 24
VGG VGG [26] Image 46

Facial recognition FACE DeepFace [27] Image 10
Digit recognition DIG MNIST [28] Image 9

Speech recognition ASR Kaldi [29] Speech features 13
Part-of-speech tagging POS SENNA [30] Word vectors 3

Named entity recognition NER SENNA [30] Word vectors 3
Word chunking CHK SENNA [30] Word vectors 3

front-end layers (e.g., fc6 is the most time-consuming layer
in VGG), except for DIG where convolution layers are most
time-consuming. Similar to AlexNet, these characteristics
indicate partitioning opportunities in the middle of the DNN.
Figure 8a shows that the partition point for best latency for
VGG is in the intermediate layers. In addition, Figures 8a -
8c show that different CV applications have different par-
tition points for best latency, and Figures 9a - 9c show the
different partition points for best energy for these DNNs.
ASR and NLP Applications – The remaining four DNNs in
the suite (ASR, POS, NER and CHK) only consist of fully-
connected layers and activation layers. The layer break-
downs are shown in Figures 7d - 7g, where, throughout the
execution, layers of the same type incur similar latency and
the data size stay relatively constant except for the very first
and last layer of each DNN. These DNNs do not have data-
increasing layers (i.e., convolution layers) or data-reducing
layers (i.e., pooling layers). As a result, there only exist op-
portunities for partitioning the computation at the extrem-
ities of these networks. Figures 8d - 8g and Figures 9d -
9g show the different partition points for best latency and
energy for these DNNs, respectively. There are data com-
munication components in the right-most bars (mobile-only
processing) for these applications because the output of the
DNN is sent to the cloud for post-processing steps required
by these applications.

input
conv1.1
relu1.1
conv1.2
relu1.2
pool1
conv2.1
relu2.1
conv2.2
relu2.2
pool2
conv3.1
relu3.1
conv3.2
relu3.2
conv3.3
relu3.3
conv3.4
relu3.4
pool3
conv4.1
relu4.1
conv4.2
relu4.2
conv4.3
relu4.3
conv4.4
relu4.4
pool4
conv5.1
relu5.1
conv5.2
relu5.2
conv5.3
relu5.3
conv5.4
relu5.4
pool5
fc6
relu6
drop6
fc7
relu7
drop7
fc8
softm

ax
argm

ax

Layers

0

50

100

150

200

250

La
te

nc
y

(m
s)

input
conv1
pool2
conv3
local4
local5
local6
fc7
fc8
softm

ax
argm

ax

Layers

0

20

40

60

80

100

La
te

nc
y

(m
s)

input
conv1
pool1
conv2
pool2
fc1
relu1
fc2
softm

ax
argm

ax

Layers

0

1

2

3

4

5

La
te

nc
y

(m
s)

input
fc1
sig1
fc2
sig2
fc3
sig3
fc4
sig4
fc5
sig5
fc6
sig6
fc7

Layers

0

10

20

30

40

50

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

0
2
4
6
8
10
12
14

D
ata

size
(M

B
)

(a) VGG

0.0

0.5

1.0

1.5

2.0

2.5

D
ata

size
(M

B
)

(b) FACE

0

1

2

3

4

5

D
ata

size
(M

B
)

(c) DIG

0

1

2

3

4

5

D
ata

size
(M

B
)

(d) ASR

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(e) POS

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(f) NER

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(g) CHK

Layer latency Size of output data

Figure 7: The per layer latency on the mobile GPU (left light-color bar) and size of data (right dark-color bar) after each layer’s execution.

vantage of the powerful server to execute the more compute-
heavy layers at the back-end. In the case of AlexNet us-
ing the mobile GPU and Wi-Fi, partitioning between the
last pooling layer (pool5) and the first fully-connected
layer (fc6) achieves the lowest latency, as marked in Fig-
ure 6a, improving 2.0⇥ over cloud-only processing.
Partition for Energy – Similar to latency, due to the high
energy cost of wireless data transfer, transferring the input
for cloud-only processing is not the most energy-efficiency
approach. As marked in Figure 6b, partitioning in the middle
of the DNN achieves the best mobile energy consumption,
18% more energy efficient than the cloud-only approach.
Key Observations – Partitioning at the layer granularity can
provide significant latency and energy efficiency improve-
ments. For AlexNet using the GPU and Wi-Fi, the best par-
tition points are between the intermediate layers of the DNN.

4.4 Generalizing to More DNNs
We expand our investigation to 7 more intelligent appli-
cations to study their data and computation characteristics
and their impact on computation partitioning opportunity.
We use the DNNs provided in the Tonic suite [9], as well
as VGG, a state-of-the-art image classification DNN, and
LTE as the wireless network configuration. Details about the
benchmarks are listed in Table 3. We count the number of
layers of each DNN starting from the first non-input layer to
the last layer, including argmax if present.
CV Applications – The three remaining computer vision
DNNs (VGG, FACE and DIG) have similar characteristics as
AlexNet (Figure 5), as shown in Figures 7a –7c. The front-
end layers are convolution layers increasing data, and pool-
ing layers reducing data. The data size in the back-end lay-
ers are similar or smaller than the original input data. The
latency for the back-end layers are higher than most of the

Table 3: Benchmark Specifications

App Abbr. Network Input Layers

Image classification IMC AlexNet [21] Image 24
VGG VGG [26] Image 46

Facial recognition FACE DeepFace [27] Image 10
Digit recognition DIG MNIST [28] Image 9

Speech recognition ASR Kaldi [29] Speech features 13
Part-of-speech tagging POS SENNA [30] Word vectors 3

Named entity recognition NER SENNA [30] Word vectors 3
Word chunking CHK SENNA [30] Word vectors 3

front-end layers (e.g., fc6 is the most time-consuming layer
in VGG), except for DIG where convolution layers are most
time-consuming. Similar to AlexNet, these characteristics
indicate partitioning opportunities in the middle of the DNN.
Figure 8a shows that the partition point for best latency for
VGG is in the intermediate layers. In addition, Figures 8a -
8c show that different CV applications have different par-
tition points for best latency, and Figures 9a - 9c show the
different partition points for best energy for these DNNs.
ASR and NLP Applications – The remaining four DNNs in
the suite (ASR, POS, NER and CHK) only consist of fully-
connected layers and activation layers. The layer break-
downs are shown in Figures 7d - 7g, where, throughout the
execution, layers of the same type incur similar latency and
the data size stay relatively constant except for the very first
and last layer of each DNN. These DNNs do not have data-
increasing layers (i.e., convolution layers) or data-reducing
layers (i.e., pooling layers). As a result, there only exist op-
portunities for partitioning the computation at the extrem-
ities of these networks. Figures 8d - 8g and Figures 9d -
9g show the different partition points for best latency and
energy for these DNNs, respectively. There are data com-
munication components in the right-most bars (mobile-only
processing) for these applications because the output of the
DNN is sent to the cloud for post-processing steps required
by these applications.

NER
Partition points

0

5

10

15

20

La
te

nc
y

(s
)

(a) VGG
Partition points

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

La
te

nc
y

(s
)

(b) FACE

Partition points
0
1
2
3
4
5
6

La
te

nc
y

(s
)

(c) DIG
Partition points

0
1
2
3
4
5
6
7

La
te

nc
y

(s
)

(d) ASR
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(e) POS
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(f) NER
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(g) CHK

Server processing latency Data communication latency Mobile processing latency

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Partition points
0

10
20
30
40
50
60
70

En
er

gy
(J

)

(a) VGG
Partition points

0
2
4
6
8

10
12
14

En
er

gy
(J

)

(b) FACE

Partition points
0
5

10
15
20
25

En
er

gy
(J

)

(c) DIG
Partition points

0
5

10
15
20
25
30

En
er

gy
(J

)

(d) ASR
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(e) POS
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(f) NER
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(g) CHK

Data communication energy Mobile processing energy

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

21Images taken from [1]

input
conv1.1
relu1.1
conv1.2
relu1.2
pool1
conv2.1
relu2.1
conv2.2
relu2.2
pool2
conv3.1
relu3.1
conv3.2
relu3.2
conv3.3
relu3.3
conv3.4
relu3.4
pool3
conv4.1
relu4.1
conv4.2
relu4.2
conv4.3
relu4.3
conv4.4
relu4.4
pool4
conv5.1
relu5.1
conv5.2
relu5.2
conv5.3
relu5.3
conv5.4
relu5.4
pool5
fc6
relu6
drop6
fc7
relu7
drop7
fc8
softm

ax
argm

ax

Layers

0

50

100

150

200

250

La
te

nc
y

(m
s)

input
conv1
pool2
conv3
local4
local5
local6
fc7
fc8
softm

ax
argm

ax

Layers

0

20

40

60

80

100

La
te

nc
y

(m
s)

input
conv1
pool1
conv2
pool2
fc1
relu1
fc2
softm

ax
argm

ax

Layers

0

1

2

3

4

5

La
te

nc
y

(m
s)

input
fc1
sig1
fc2
sig2
fc3
sig3
fc4
sig4
fc5
sig5
fc6
sig6
fc7

Layers

0

10

20

30

40

50

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

0
2
4
6
8
10
12
14

D
ata

size
(M

B
)

(a) VGG

0.0

0.5

1.0

1.5

2.0

2.5
D

ata
size

(M
B

)

(b) FACE

0

1

2

3

4

5

D
ata

size
(M

B
)

(c) DIG

0

1

2

3

4

5

D
ata

size
(M

B
)

(d) ASR

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(e) POS

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(f) NER

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(g) CHK

Layer latency Size of output data

Figure 7: The per layer latency on the mobile GPU (left light-color bar) and size of data (right dark-color bar) after each layer’s execution.

vantage of the powerful server to execute the more compute-
heavy layers at the back-end. In the case of AlexNet us-
ing the mobile GPU and Wi-Fi, partitioning between the
last pooling layer (pool5) and the first fully-connected
layer (fc6) achieves the lowest latency, as marked in Fig-
ure 6a, improving 2.0⇥ over cloud-only processing.
Partition for Energy – Similar to latency, due to the high
energy cost of wireless data transfer, transferring the input
for cloud-only processing is not the most energy-efficiency
approach. As marked in Figure 6b, partitioning in the middle
of the DNN achieves the best mobile energy consumption,
18% more energy efficient than the cloud-only approach.
Key Observations – Partitioning at the layer granularity can
provide significant latency and energy efficiency improve-
ments. For AlexNet using the GPU and Wi-Fi, the best par-
tition points are between the intermediate layers of the DNN.

4.4 Generalizing to More DNNs
We expand our investigation to 7 more intelligent appli-
cations to study their data and computation characteristics
and their impact on computation partitioning opportunity.
We use the DNNs provided in the Tonic suite [9], as well
as VGG, a state-of-the-art image classification DNN, and
LTE as the wireless network configuration. Details about the
benchmarks are listed in Table 3. We count the number of
layers of each DNN starting from the first non-input layer to
the last layer, including argmax if present.
CV Applications – The three remaining computer vision
DNNs (VGG, FACE and DIG) have similar characteristics as
AlexNet (Figure 5), as shown in Figures 7a –7c. The front-
end layers are convolution layers increasing data, and pool-
ing layers reducing data. The data size in the back-end lay-
ers are similar or smaller than the original input data. The
latency for the back-end layers are higher than most of the

Table 3: Benchmark Specifications

App Abbr. Network Input Layers

Image classification IMC AlexNet [21] Image 24
VGG VGG [26] Image 46

Facial recognition FACE DeepFace [27] Image 10
Digit recognition DIG MNIST [28] Image 9

Speech recognition ASR Kaldi [29] Speech features 13
Part-of-speech tagging POS SENNA [30] Word vectors 3

Named entity recognition NER SENNA [30] Word vectors 3
Word chunking CHK SENNA [30] Word vectors 3

front-end layers (e.g., fc6 is the most time-consuming layer
in VGG), except for DIG where convolution layers are most
time-consuming. Similar to AlexNet, these characteristics
indicate partitioning opportunities in the middle of the DNN.
Figure 8a shows that the partition point for best latency for
VGG is in the intermediate layers. In addition, Figures 8a -
8c show that different CV applications have different par-
tition points for best latency, and Figures 9a - 9c show the
different partition points for best energy for these DNNs.
ASR and NLP Applications – The remaining four DNNs in
the suite (ASR, POS, NER and CHK) only consist of fully-
connected layers and activation layers. The layer break-
downs are shown in Figures 7d - 7g, where, throughout the
execution, layers of the same type incur similar latency and
the data size stay relatively constant except for the very first
and last layer of each DNN. These DNNs do not have data-
increasing layers (i.e., convolution layers) or data-reducing
layers (i.e., pooling layers). As a result, there only exist op-
portunities for partitioning the computation at the extrem-
ities of these networks. Figures 8d - 8g and Figures 9d -
9g show the different partition points for best latency and
energy for these DNNs, respectively. There are data com-
munication components in the right-most bars (mobile-only
processing) for these applications because the output of the
DNN is sent to the cloud for post-processing steps required
by these applications.

Partition points
0

5

10

15

20

La
te

nc
y

(s
)

(a) VGG
Partition points

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

La
te

nc
y

(s
)

(b) FACE

Partition points
0
1
2
3
4
5
6

La
te

nc
y

(s
)

(c) DIG
Partition points

0
1
2
3
4
5
6
7

La
te

nc
y

(s
)

(d) ASR
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(e) POS
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(f) NER
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(g) CHK

Server processing latency Data communication latency Mobile processing latency

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Partition points
0

10
20
30
40
50
60
70

En
er

gy
(J

)

(a) VGG
Partition points

0
2
4
6
8

10
12
14

En
er

gy
(J

)

(b) FACE

Partition points
0
5

10
15
20
25

En
er

gy
(J

)

(c) DIG
Partition points

0
5

10
15
20
25
30

En
er

gy
(J

)

(d) ASR
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(e) POS
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(f) NER
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(g) CHK

Data communication energy Mobile processing energy

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

input
conv1.1
relu1.1
conv1.2
relu1.2
pool1
conv2.1
relu2.1
conv2.2
relu2.2
pool2
conv3.1
relu3.1
conv3.2
relu3.2
conv3.3
relu3.3
conv3.4
relu3.4
pool3
conv4.1
relu4.1
conv4.2
relu4.2
conv4.3
relu4.3
conv4.4
relu4.4
pool4
conv5.1
relu5.1
conv5.2
relu5.2
conv5.3
relu5.3
conv5.4
relu5.4
pool5
fc6
relu6
drop6
fc7
relu7
drop7
fc8
softm

ax
argm

ax

Layers

0

50

100

150

200

250

La
te

nc
y

(m
s)

input
conv1
pool2
conv3
local4
local5
local6
fc7
fc8
softm

ax
argm

ax

Layers

0

20

40

60

80

100

La
te

nc
y

(m
s)

input
conv1
pool1
conv2
pool2
fc1
relu1
fc2
softm

ax
argm

ax

Layers

0

1

2

3

4

5

La
te

nc
y

(m
s)

input
fc1
sig1
fc2
sig2
fc3
sig3
fc4
sig4
fc5
sig5
fc6
sig6
fc7

Layers

0

10

20

30

40

50

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

0
2
4
6
8
10
12
14

D
ata

size
(M

B
)

(a) VGG

0.0

0.5

1.0

1.5

2.0

2.5

D
ata

size
(M

B
)

(b) FACE

0

1

2

3

4

5

D
ata

size
(M

B
)

(c) DIG

0

1

2

3

4

5

D
ata

size
(M

B
)

(d) ASR

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(e) POS

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(f) NER

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(g) CHK

Layer latency Size of output data

Figure 7: The per layer latency on the mobile GPU (left light-color bar) and size of data (right dark-color bar) after each layer’s execution.

vantage of the powerful server to execute the more compute-
heavy layers at the back-end. In the case of AlexNet us-
ing the mobile GPU and Wi-Fi, partitioning between the
last pooling layer (pool5) and the first fully-connected
layer (fc6) achieves the lowest latency, as marked in Fig-
ure 6a, improving 2.0⇥ over cloud-only processing.
Partition for Energy – Similar to latency, due to the high
energy cost of wireless data transfer, transferring the input
for cloud-only processing is not the most energy-efficiency
approach. As marked in Figure 6b, partitioning in the middle
of the DNN achieves the best mobile energy consumption,
18% more energy efficient than the cloud-only approach.
Key Observations – Partitioning at the layer granularity can
provide significant latency and energy efficiency improve-
ments. For AlexNet using the GPU and Wi-Fi, the best par-
tition points are between the intermediate layers of the DNN.

4.4 Generalizing to More DNNs
We expand our investigation to 7 more intelligent appli-
cations to study their data and computation characteristics
and their impact on computation partitioning opportunity.
We use the DNNs provided in the Tonic suite [9], as well
as VGG, a state-of-the-art image classification DNN, and
LTE as the wireless network configuration. Details about the
benchmarks are listed in Table 3. We count the number of
layers of each DNN starting from the first non-input layer to
the last layer, including argmax if present.
CV Applications – The three remaining computer vision
DNNs (VGG, FACE and DIG) have similar characteristics as
AlexNet (Figure 5), as shown in Figures 7a –7c. The front-
end layers are convolution layers increasing data, and pool-
ing layers reducing data. The data size in the back-end lay-
ers are similar or smaller than the original input data. The
latency for the back-end layers are higher than most of the

Table 3: Benchmark Specifications

App Abbr. Network Input Layers

Image classification IMC AlexNet [21] Image 24
VGG VGG [26] Image 46

Facial recognition FACE DeepFace [27] Image 10
Digit recognition DIG MNIST [28] Image 9

Speech recognition ASR Kaldi [29] Speech features 13
Part-of-speech tagging POS SENNA [30] Word vectors 3

Named entity recognition NER SENNA [30] Word vectors 3
Word chunking CHK SENNA [30] Word vectors 3

front-end layers (e.g., fc6 is the most time-consuming layer
in VGG), except for DIG where convolution layers are most
time-consuming. Similar to AlexNet, these characteristics
indicate partitioning opportunities in the middle of the DNN.
Figure 8a shows that the partition point for best latency for
VGG is in the intermediate layers. In addition, Figures 8a -
8c show that different CV applications have different par-
tition points for best latency, and Figures 9a - 9c show the
different partition points for best energy for these DNNs.
ASR and NLP Applications – The remaining four DNNs in
the suite (ASR, POS, NER and CHK) only consist of fully-
connected layers and activation layers. The layer break-
downs are shown in Figures 7d - 7g, where, throughout the
execution, layers of the same type incur similar latency and
the data size stay relatively constant except for the very first
and last layer of each DNN. These DNNs do not have data-
increasing layers (i.e., convolution layers) or data-reducing
layers (i.e., pooling layers). As a result, there only exist op-
portunities for partitioning the computation at the extrem-
ities of these networks. Figures 8d - 8g and Figures 9d -
9g show the different partition points for best latency and
energy for these DNNs, respectively. There are data com-
munication components in the right-most bars (mobile-only
processing) for these applications because the output of the
DNN is sent to the cloud for post-processing steps required
by these applications.

CHK
Partition points

0

5

10

15

20

La
te

nc
y

(s
)

(a) VGG
Partition points

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

La
te

nc
y

(s
)

(b) FACE

Partition points
0
1
2
3
4
5
6

La
te

nc
y

(s
)

(c) DIG
Partition points

0
1
2
3
4
5
6
7

La
te

nc
y

(s
)

(d) ASR
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(e) POS
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(f) NER
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(g) CHK

Server processing latency Data communication latency Mobile processing latency

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Partition points
0

10
20
30
40
50
60
70

En
er

gy
(J

)

(a) VGG
Partition points

0
2
4
6
8

10
12
14

En
er

gy
(J

)

(b) FACE

Partition points
0
5

10
15
20
25

En
er

gy
(J

)

(c) DIG
Partition points

0
5

10
15
20
25
30

En
er

gy
(J

)

(d) ASR
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(e) POS
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)
(f) NER

Partition points
0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(g) CHK

Data communication energy Mobile processing energy

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

22Images taken from [1]

Partition points
0

5

10

15

20

La
te

nc
y

(s
)

(a) VGG
Partition points

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

La
te

nc
y

(s
)

(b) FACE

Partition points
0
1
2
3
4
5
6

La
te

nc
y

(s
)

(c) DIG
Partition points

0
1
2
3
4
5
6
7

La
te

nc
y

(s
)

(d) ASR
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(e) POS
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(f) NER
Partition points

0
1
2
3
4
5
6

La
te

nc
y

(s
)

⇥10�2

(g) CHK

Server processing latency Data communication latency Mobile processing latency

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

Figure 8: End-to-end latency when choosing different partition points. Each bar represents the end-to-end latency if the DNN is partitioned after each
layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar represents mobile-only
execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best latency are each marked by F.

Partition points
0

10
20
30
40
50
60
70

En
er

gy
(J

)

(a) VGG
Partition points

0
2
4
6
8

10
12
14

En
er

gy
(J

)

(b) FACE

Partition points
0
5

10
15
20
25

En
er

gy
(J

)

(c) DIG
Partition points

0
5

10
15
20
25
30

En
er

gy
(J

)

(d) ASR
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(e) POS
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(f) NER
Partition points

0.00
0.05
0.10
0.15
0.20
0.25

En
er

gy
(J

)

(g) CHK

Data communication energy Mobile processing energy

Figure 9: Mobile energy consumption when choosing different partition points. Each bar represents the mobile energy consumption if the DNN is
partitioned after each layer, where the left-most bar represents cloud-only processing (i.e., partitioning at the beginning) while the right-most bar
represents mobile-only execution (i.e., partitioning at the end). The wireless network configuration is LTE. The partition points for best energy are
each marked by F.

Key Observations – 1) In DNNs with convolution and pool-
ing layers (e.g. Computer Vision applications), the data size
increases after convolution layers and decreases after pool-
ing layers, while the per-layer computation generally in-
creases through the execution. 2) DNNs with only fully-
connected layers of similar size and activation layers see
small variations in per-layer latency and data size (e.g., ASR
and NLP DNNs). 3) The best way to partition a DNN de-
pends on its topology and constituent layers. Computer vi-
sion DNNs sometimes have better partition points in the
middle of the DNN, while it is more beneficial to partition
at the beginning or the end for ASR and NLP DNNs. The
strong variations in the best partition point suggest there is a
need for a system to partition DNN computation between the
mobile and cloud based on the neural network architecture.

5. Neurosurgeon
The best partition point for a DNN architecture depends on
the DNN’s topology, which manifests itself in the computa-
tion and data size variations of each layer. In addition, dy-

namic factors such as state of the wireless network and dat-
acenter load affect the best partition point even for the same
DNN architecture. For example, mobile devices’ wireless
connections often experience high variances [31], directly
affecting the data transfer latency. Datacenters typically ex-
perience diurnal load patterns [32], leading to high variance
in its DNN query service time. Due to these dynamic fac-
tors, there is a need for an automatic system to intelligently
select the best point to partition the DNN to optimize for
end-to-end latency or mobile device energy consumption. To
address this need, we present the design of Neurosurgeon,
an intelligent DNN partitioning engine. Neurosurgeon con-
sists of a deployment phase and a runtime system that man-
ages the partitioned execution of an intelligent application.
Figure 10 shows the design of Neurosurgeon, which has
two stages: deployment and runtime.
At Deployment – Neurosurgeon profiles the mobile device
and the server to generate performance prediction models
for the spectrum of DNN layer types (enumerated in Sec-
tion 4.1). Note that Neurosurgeon’s profiling is application

input
conv1.1
relu1.1
conv1.2
relu1.2
pool1
conv2.1
relu2.1
conv2.2
relu2.2
pool2
conv3.1
relu3.1
conv3.2
relu3.2
conv3.3
relu3.3
conv3.4
relu3.4
pool3
conv4.1
relu4.1
conv4.2
relu4.2
conv4.3
relu4.3
conv4.4
relu4.4
pool4
conv5.1
relu5.1
conv5.2
relu5.2
conv5.3
relu5.3
conv5.4
relu5.4
pool5
fc6
relu6
drop6
fc7
relu7
drop7
fc8
softm

ax
argm

ax

Layers

0

50

100

150

200

250

La
te

nc
y

(m
s)

input
conv1
pool2
conv3
local4
local5
local6
fc7
fc8
softm

ax
argm

ax

Layers

0

20

40

60

80

100

La
te

nc
y

(m
s)

input
conv1
pool1
conv2
pool2
fc1
relu1
fc2
softm

ax
argm

ax

Layers

0

1

2

3

4

5

La
te

nc
y

(m
s)

input
fc1
sig1
fc2
sig2
fc3
sig3
fc4
sig4
fc5
sig5
fc6
sig6
fc7

Layers

0

10

20

30

40

50

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

0
2
4
6
8
10
12
14

D
ata

size
(M

B
)

(a) VGG

0.0

0.5

1.0

1.5

2.0

2.5

D
ata

size
(M

B
)

(b) FACE

0

1

2

3

4

5

D
ata

size
(M

B
)

(c) DIG

0

1

2

3

4

5

D
ata

size
(M

B
)

(d) ASR

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(e) POS

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(f) NER

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(g) CHK

Layer latency Size of output data

Figure 7: The per layer latency on the mobile GPU (left light-color bar) and size of data (right dark-color bar) after each layer’s execution.

vantage of the powerful server to execute the more compute-
heavy layers at the back-end. In the case of AlexNet us-
ing the mobile GPU and Wi-Fi, partitioning between the
last pooling layer (pool5) and the first fully-connected
layer (fc6) achieves the lowest latency, as marked in Fig-
ure 6a, improving 2.0⇥ over cloud-only processing.
Partition for Energy – Similar to latency, due to the high
energy cost of wireless data transfer, transferring the input
for cloud-only processing is not the most energy-efficiency
approach. As marked in Figure 6b, partitioning in the middle
of the DNN achieves the best mobile energy consumption,
18% more energy efficient than the cloud-only approach.
Key Observations – Partitioning at the layer granularity can
provide significant latency and energy efficiency improve-
ments. For AlexNet using the GPU and Wi-Fi, the best par-
tition points are between the intermediate layers of the DNN.

4.4 Generalizing to More DNNs
We expand our investigation to 7 more intelligent appli-
cations to study their data and computation characteristics
and their impact on computation partitioning opportunity.
We use the DNNs provided in the Tonic suite [9], as well
as VGG, a state-of-the-art image classification DNN, and
LTE as the wireless network configuration. Details about the
benchmarks are listed in Table 3. We count the number of
layers of each DNN starting from the first non-input layer to
the last layer, including argmax if present.
CV Applications – The three remaining computer vision
DNNs (VGG, FACE and DIG) have similar characteristics as
AlexNet (Figure 5), as shown in Figures 7a –7c. The front-
end layers are convolution layers increasing data, and pool-
ing layers reducing data. The data size in the back-end lay-
ers are similar or smaller than the original input data. The
latency for the back-end layers are higher than most of the

Table 3: Benchmark Specifications

App Abbr. Network Input Layers

Image classification IMC AlexNet [21] Image 24
VGG VGG [26] Image 46

Facial recognition FACE DeepFace [27] Image 10
Digit recognition DIG MNIST [28] Image 9

Speech recognition ASR Kaldi [29] Speech features 13
Part-of-speech tagging POS SENNA [30] Word vectors 3

Named entity recognition NER SENNA [30] Word vectors 3
Word chunking CHK SENNA [30] Word vectors 3

front-end layers (e.g., fc6 is the most time-consuming layer
in VGG), except for DIG where convolution layers are most
time-consuming. Similar to AlexNet, these characteristics
indicate partitioning opportunities in the middle of the DNN.
Figure 8a shows that the partition point for best latency for
VGG is in the intermediate layers. In addition, Figures 8a -
8c show that different CV applications have different par-
tition points for best latency, and Figures 9a - 9c show the
different partition points for best energy for these DNNs.
ASR and NLP Applications – The remaining four DNNs in
the suite (ASR, POS, NER and CHK) only consist of fully-
connected layers and activation layers. The layer break-
downs are shown in Figures 7d - 7g, where, throughout the
execution, layers of the same type incur similar latency and
the data size stay relatively constant except for the very first
and last layer of each DNN. These DNNs do not have data-
increasing layers (i.e., convolution layers) or data-reducing
layers (i.e., pooling layers). As a result, there only exist op-
portunities for partitioning the computation at the extrem-
ities of these networks. Figures 8d - 8g and Figures 9d -
9g show the different partition points for best latency and
energy for these DNNs, respectively. There are data com-
munication components in the right-most bars (mobile-only
processing) for these applications because the output of the
DNN is sent to the cloud for post-processing steps required
by these applications.

input
conv1.1
relu1.1
conv1.2
relu1.2
pool1
conv2.1
relu2.1
conv2.2
relu2.2
pool2
conv3.1
relu3.1
conv3.2
relu3.2
conv3.3
relu3.3
conv3.4
relu3.4
pool3
conv4.1
relu4.1
conv4.2
relu4.2
conv4.3
relu4.3
conv4.4
relu4.4
pool4
conv5.1
relu5.1
conv5.2
relu5.2
conv5.3
relu5.3
conv5.4
relu5.4
pool5
fc6
relu6
drop6
fc7
relu7
drop7
fc8
softm

ax
argm

ax

Layers

0

50

100

150

200

250

La
te

nc
y

(m
s)

input
conv1
pool2
conv3
local4
local5
local6
fc7
fc8
softm

ax
argm

ax

Layers

0

20

40

60

80

100

La
te

nc
y

(m
s)

input
conv1
pool1
conv2
pool2
fc1
relu1
fc2
softm

ax
argm

ax

Layers

0

1

2

3

4

5

La
te

nc
y

(m
s)

input
fc1
sig1
fc2
sig2
fc3
sig3
fc4
sig4
fc5
sig5
fc6
sig6
fc7

Layers

0

10

20

30

40

50

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

input
fc1
htanh
fc3

Layers

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

(m
s)

0
2
4
6
8
10
12
14

D
ata

size
(M

B
)

(a) VGG

0.0

0.5

1.0

1.5

2.0

2.5

D
ata

size
(M

B
)

(b) FACE

0

1

2

3

4

5

D
ata

size
(M

B
)

(c) DIG

0

1

2

3

4

5

D
ata

size
(M

B
)

(d) ASR

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(e) POS

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(f) NER

0.0

1.1

2.2

3.4

4.5

D
ata

size
(M

B
)

⇥10�2

(g) CHK

Layer latency Size of output data

Figure 7: The per layer latency on the mobile GPU (left light-color bar) and size of data (right dark-color bar) after each layer’s execution.

vantage of the powerful server to execute the more compute-
heavy layers at the back-end. In the case of AlexNet us-
ing the mobile GPU and Wi-Fi, partitioning between the
last pooling layer (pool5) and the first fully-connected
layer (fc6) achieves the lowest latency, as marked in Fig-
ure 6a, improving 2.0⇥ over cloud-only processing.
Partition for Energy – Similar to latency, due to the high
energy cost of wireless data transfer, transferring the input
for cloud-only processing is not the most energy-efficiency
approach. As marked in Figure 6b, partitioning in the middle
of the DNN achieves the best mobile energy consumption,
18% more energy efficient than the cloud-only approach.
Key Observations – Partitioning at the layer granularity can
provide significant latency and energy efficiency improve-
ments. For AlexNet using the GPU and Wi-Fi, the best par-
tition points are between the intermediate layers of the DNN.

4.4 Generalizing to More DNNs
We expand our investigation to 7 more intelligent appli-
cations to study their data and computation characteristics
and their impact on computation partitioning opportunity.
We use the DNNs provided in the Tonic suite [9], as well
as VGG, a state-of-the-art image classification DNN, and
LTE as the wireless network configuration. Details about the
benchmarks are listed in Table 3. We count the number of
layers of each DNN starting from the first non-input layer to
the last layer, including argmax if present.
CV Applications – The three remaining computer vision
DNNs (VGG, FACE and DIG) have similar characteristics as
AlexNet (Figure 5), as shown in Figures 7a –7c. The front-
end layers are convolution layers increasing data, and pool-
ing layers reducing data. The data size in the back-end lay-
ers are similar or smaller than the original input data. The
latency for the back-end layers are higher than most of the

Table 3: Benchmark Specifications

App Abbr. Network Input Layers

Image classification IMC AlexNet [21] Image 24
VGG VGG [26] Image 46

Facial recognition FACE DeepFace [27] Image 10
Digit recognition DIG MNIST [28] Image 9

Speech recognition ASR Kaldi [29] Speech features 13
Part-of-speech tagging POS SENNA [30] Word vectors 3

Named entity recognition NER SENNA [30] Word vectors 3
Word chunking CHK SENNA [30] Word vectors 3

front-end layers (e.g., fc6 is the most time-consuming layer
in VGG), except for DIG where convolution layers are most
time-consuming. Similar to AlexNet, these characteristics
indicate partitioning opportunities in the middle of the DNN.
Figure 8a shows that the partition point for best latency for
VGG is in the intermediate layers. In addition, Figures 8a -
8c show that different CV applications have different par-
tition points for best latency, and Figures 9a - 9c show the
different partition points for best energy for these DNNs.
ASR and NLP Applications – The remaining four DNNs in
the suite (ASR, POS, NER and CHK) only consist of fully-
connected layers and activation layers. The layer break-
downs are shown in Figures 7d - 7g, where, throughout the
execution, layers of the same type incur similar latency and
the data size stay relatively constant except for the very first
and last layer of each DNN. These DNNs do not have data-
increasing layers (i.e., convolution layers) or data-reducing
layers (i.e., pooling layers). As a result, there only exist op-
portunities for partitioning the computation at the extrem-
ities of these networks. Figures 8d - 8g and Figures 9d -
9g show the different partition points for best latency and
energy for these DNNs, respectively. There are data com-
munication components in the right-most bars (mobile-only
processing) for these applications because the output of the
DNN is sent to the cloud for post-processing steps required
by these applications.

Neurosurgeon

23

Neurosurgeon
• Partitions DNN based on:

• DNN Topology

• Computation latency

• Data size output

• Dynamic factors

• Wireless network

• Datacenter workload

24

Neurosurgeon
• Profiles device and cloud server

• To generate prediction models

• One time, in advance

• Results stored in device for decision-making

• Two, distinct goals:

• Latency minimisation

• Energy optimisation

25

Neurosurgeon

+++++++++
+++

+++
+++

++++++++++++
+++

+++

+++++++++
++++++ +++

++++
+++

++
+++

+++
+++

CONV FC

POOL ACT
…

+++++++++
+++

+++
+++

++++++++++++
+++

+++

+++++++++
++++++ +++

++++
+++

++
+++

+++
+++

CONV FC

POOL ACT
…

1) Generate
prediction models

Deployment Phase

Target Application

1) Extract layer
configurations

Runtime Phase

4) Partitioned
Execution

2) Predict layer
performance

3) Evaluate
partition points

Prediction
Model

Prediction
Model

Prediction
Model

Prediction
Model

Prediction
Model

Figure 10: Overview of Neurosurgeon. At deployment, Neurosurgeon generates prediction models for each layer type. During runtime, Neuro-

surgeon predicts each layer’s latency/energy cost based on the layer’s type and configuration, and selects the best partition point based on various
dynamic factors.

agnostic and only needs to be done once for a given set of
mobile and server platforms; per-application profiling is not
needed. This set of prediction models are stored on the mo-
bile device and later used to predict the latency and energy
cost of each layer (Section 5.1).
During Runtime – During the execution of an DNN-based
intelligent application on the mobile device, Neurosur-

geon dynamically decides the best partition point for the
DNN. As illustrated in Figure 10, the steps are as follows:
1) Neurosurgeon analyzes and extracts the DNN architec-
ture’s layer types and configurations; 2) the system uses the
stored layer performance prediction models to estimate the
latency and energy consumption for executing each layer on
the mobile and cloud; 3) with these predictions, combined
with the current wireless connection bandwidth and data-
center load level, Neurosurgeon selects the best partition
point, optimizing for best end-to-end latency or best mobile
energy consumption; 4) Neurosurgeon executes the DNN,
partitioning work between the mobile and cloud.

5.1 Performance Prediction Model
Neurosurgeon models the per-layer latency and the energy
consumption of arbitrary neural network architecture. This
approach allows Neurosurgeon to estimate the latency and
energy consumption of a DNN’s constituent layers without
executing the DNN.

We observe that for each layer type, there is a large la-
tency variation across layer configurations. Thus, to con-
struct the prediction model for each layer type, we vary the
configurable parameters of the layer and measure the latency
and power consumption for each configuration. Using these
profiles, we establish a regression model for each layer type
to predict the latency and power of the layer based on its con-
figuration. We describe each layer’s regression model vari-
ables later in this section. We use GFLOPS (Giga Floating
Point Operations per Second) as our performance metric.
Based on the layer type, we use either a logarithmic or linear
function as the regression function. The logarithmic-based
regression is used to model the performance plateau as the
computation requirement of the layer approaches the limit of
the available hardware resources.

Convolution, local and pooling layers’ configurable pa-
rameters include the input feature map dimension, number,
size and stride of the filters. The regression model for con-
volution layer is based on two variables: the number of fea-
tures in the input feature maps, and (filter size/stride)2 ⇥
(# of filters), which represents the amount of computa-
tion applied to each pixel in the input feature maps. For local
and pooling layers, we use the size of the input and output
feature maps as the regression model variables.

In a fully-connected layer, the input data is multiplied by
the learned weight matrix to generate the output vector. We
use the number of input neurons and number of output neu-
rons as the regression model variables. Softmax and argmax
layers are handled similarly.

Activation layers have fewer configurable parameters
compared to other layers because activation layers have a
one-to-one mapping between their input data and output. We
use the number of neurons as the regression model variable.
We apply the same approach to normalization layers.

As previously mentioned, it is a one-time profiling step
required for each mobile and server hardware platform to
generate a set of prediction models. The models enable Neu-

rosurgeon to estimate the latency and energy cost of each
layer based its configuration, which allows Neurosur-

geon to support future neural network architectures without
additional profiling overhead.

5.2 Dynamic DNN Partitioning
Utilizing the layer performance prediction models, Neuro-

surgeon dynamically selects the best DNN partition points,
as described in Algorithm 1. The algorithm has two-steps:
analysis of the target DNN and partition point selection.
Analysis of the Target DNN – Neurosurgeon analyzes
the target DNN’s constituent layers, and uses the prediction
models to estimate, for each layer, the latency on mobile and
cloud, and power consumption on the mobile. Specifically,
at lines 11 and 12 of Algorithm 1, Neurosurgeon extracts
each layer’s type and configuration (Li) and uses the regres-
sion models to predict the latency of executing layer Li on

26Image taken from [1]

Regression model
per DNN Layer

Layer Regression Variables

Convolution (filter_size/stride)^2 *  
(# filters)

Local, Pooling input, output feature maps

Fully Connected # Input/Output neurons

Softmax, Argmax # Input/Output neurons

Activation, Normalisation # neurons

Linear or logarithmic regression model. GFLOPS for performance.

27

Partitioning Algorithm

Table 4: Neurosurgeon’s partition point selections for best end-to-end latency. Green block indicates Neurosurgeon makes the optimal partition
choice and white block means a suboptimal partition point is picked. On average, Neurosurgeon achieves within 98.5% of the optimal performance.

Mobile Wireless
network

Benchmarks
IMC VGG FACE DIG ASR POS NER CHK

CPU
Wi-Fi input input input input input fc3
LTE input input input argmax input fc3
3G argmax input input argmax input fc3

GPU
Wi-Fi pool5 input input argmax input fc3
LTE argmax argmax input argmax input fc3
3G argmax argmax argmax argmax input fc3

Figure 11: Latency speedup achieved by Neurosurgeon normalized to status quo approach (executing entire DNN in the cloud). Results
for three wireless networks (Wi-Fi, LTE and 3G) and mobile CPU and GPU are shown here. Neurosurgeon improves the end-to-end DNN
inference latency by 3.1⇥ on average (geometric mean) and up to 40.7⇥.

mobile (TMi) and cloud (TCi), while taking into consid-
eration of current datacenter load level (K). Line 13 esti-
mates the power of executing layer Li on the mobile device
(PMi) and line 14 calculates the wireless data transfer la-
tency (TUi) based on the latest wireless network bandwidth.
Partition Point Selection – Neurosurgeon then selects the
best partition point. The candidate points are after each layer.
Lines 16 and 18 evaluate the performance when partitioning
at each candidate point and select the point for either best
end-to-end latency or best mobile energy consumption. Be-
cause of the simplicity of the regression models, this evalu-
ation is lightweight and efficient.
Algorithm 1 Neurosurgeon DNN partitioning algorithm
1: Input:
2: N : number of layers in the DNN
3: {L

i

|i = 1 · · ·N}: layers in the DNN
4: {D

i

|i = 1 · · ·N}: data size at each layer
5: f, g(L

i

): regression models predicting the latency and power of exe-
cuting L

i

6: K: current datacenter load level
7: B: current wireless network uplink bandwidth
8: PU : wireless network uplink power consumption
9: procedure PARTITIONDECISION

10: for each i in 1 · · ·N do
11: TM

i

 f
mobile

(L
i

)
12: TC

i

 f
cloud

(L
i

,K)
13: PM

i

 g
mobile

(L
i

)
14: TU

i

 D
i

/B

15: if OptTarget == latency then

16: return argmin
j=1···N

(
jP

i=1
TM

i

+
NP

k=j+1
TC

k

+ TU
j

)

17: else if OptTarget == energy then

18: return argmin
j=1···N

(
jP

i=1
TM

i

⇥ PM
i

+ TU
j

⇥ PU)

5.3 Partitioned Execution
We prototype Neurosurgeon by creating modified in-
stances of Caffe [18] to serve as our mobile-side (NSmobile)
and server-side (NSserver) infrastructures. Through these
two variations of Caffe, we implement our client-server in-
terface using Thrift [33], an open source flexible RPC inter-
face for inter-process communication. To allow for flexibil-
ity in the dynamic selection of partition points, both NSmo-

bile and NSserver host complete DNN models, and par-
tition points are enforced by NSmobile and NSserver run-
time. Given a partition decision by NSmobile, execution
begins on the mobile device and cascades through the lay-
ers of the DNN leading up to that partition point. Upon
completion of that layer, NSmobile sends the output of that
layer from the mobile device to NSserver residing on the
server side. NSserver then executes the remaining DNN
layers. Upon the completion of the DNN execution, the fi-
nal result is sent back to NSmobile on the mobile device
from NSserver. Note that there is exactly one partition
point within the DNN for which information is sent from
the mobile device to the cloud.

6. Evaluation
We evaluate Neurosurgeon using 8 DNNs (Table 3) as
our benchmarks across Wi-Fi, LTE and 3G wireless con-
nections with both CPU-only and GPU mobile platforms.
We demonstrate Neurosurgeon achieves significant end-to-
end latency and mobile energy improvements over the sta-
tus quo cloud-only approach (Sections 6.1 and 6.2). We then
compare Neurosurgeon against MAUI [34], a well-known

// Latency of mobile execution
// Latency of cloud execution

// Power of mobile execution
// Transfer latency

28Image taken from [1]

Device calculation
Cloud Calculation

Power consumed for local calculations
Uplink power consumption

Benchmark Results -  
Latency Optimisation

Table 4: Neurosurgeon’s partition point selections for best end-to-end latency. Green block indicates Neurosurgeon makes the optimal partition
choice and white block means a suboptimal partition point is picked. On average, Neurosurgeon achieves within 98.5% of the optimal performance.

Mobile Wireless
network

Benchmarks
IMC VGG FACE DIG ASR POS NER CHK

CPU
Wi-Fi input input input input input fc3
LTE input input input argmax input fc3
3G argmax input input argmax input fc3

GPU
Wi-Fi pool5 input input argmax input fc3
LTE argmax argmax input argmax input fc3
3G argmax argmax argmax argmax input fc3

Figure 11: Latency speedup achieved by Neurosurgeon normalized to status quo approach (executing entire DNN in the cloud). Results
for three wireless networks (Wi-Fi, LTE and 3G) and mobile CPU and GPU are shown here. Neurosurgeon improves the end-to-end DNN
inference latency by 3.1⇥ on average (geometric mean) and up to 40.7⇥.

mobile (TMi) and cloud (TCi), while taking into consid-
eration of current datacenter load level (K). Line 13 esti-
mates the power of executing layer Li on the mobile device
(PMi) and line 14 calculates the wireless data transfer la-
tency (TUi) based on the latest wireless network bandwidth.
Partition Point Selection – Neurosurgeon then selects the
best partition point. The candidate points are after each layer.
Lines 16 and 18 evaluate the performance when partitioning
at each candidate point and select the point for either best
end-to-end latency or best mobile energy consumption. Be-
cause of the simplicity of the regression models, this evalu-
ation is lightweight and efficient.
Algorithm 1 Neurosurgeon DNN partitioning algorithm
1: Input:
2: N : number of layers in the DNN
3: {L

i

|i = 1 · · ·N}: layers in the DNN
4: {D

i

|i = 1 · · ·N}: data size at each layer
5: f, g(L

i

): regression models predicting the latency and power of exe-
cuting L

i

6: K: current datacenter load level
7: B: current wireless network uplink bandwidth
8: PU : wireless network uplink power consumption
9: procedure PARTITIONDECISION

10: for each i in 1 · · ·N do
11: TM

i

 f
mobile

(L
i

)
12: TC

i

 f
cloud

(L
i

,K)
13: PM

i

 g
mobile

(L
i

)
14: TU

i

 D
i

/B

15: if OptTarget == latency then

16: return argmin
j=1···N

(
jP

i=1
TM

i

+
NP

k=j+1
TC

k

+ TU
j

)

17: else if OptTarget == energy then

18: return argmin
j=1···N

(
jP

i=1
TM

i

⇥ PM
i

+ TU
j

⇥ PU)

5.3 Partitioned Execution
We prototype Neurosurgeon by creating modified in-
stances of Caffe [18] to serve as our mobile-side (NSmobile)
and server-side (NSserver) infrastructures. Through these
two variations of Caffe, we implement our client-server in-
terface using Thrift [33], an open source flexible RPC inter-
face for inter-process communication. To allow for flexibil-
ity in the dynamic selection of partition points, both NSmo-

bile and NSserver host complete DNN models, and par-
tition points are enforced by NSmobile and NSserver run-
time. Given a partition decision by NSmobile, execution
begins on the mobile device and cascades through the lay-
ers of the DNN leading up to that partition point. Upon
completion of that layer, NSmobile sends the output of that
layer from the mobile device to NSserver residing on the
server side. NSserver then executes the remaining DNN
layers. Upon the completion of the DNN execution, the fi-
nal result is sent back to NSmobile on the mobile device
from NSserver. Note that there is exactly one partition
point within the DNN for which information is sent from
the mobile device to the cloud.

6. Evaluation
We evaluate Neurosurgeon using 8 DNNs (Table 3) as
our benchmarks across Wi-Fi, LTE and 3G wireless con-
nections with both CPU-only and GPU mobile platforms.
We demonstrate Neurosurgeon achieves significant end-to-
end latency and mobile energy improvements over the sta-
tus quo cloud-only approach (Sections 6.1 and 6.2). We then
compare Neurosurgeon against MAUI [34], a well-known

Table 4: Neurosurgeon’s partition point selections for best end-to-end latency. Green block indicates Neurosurgeon makes the optimal partition
choice and white block means a suboptimal partition point is picked. On average, Neurosurgeon achieves within 98.5% of the optimal performance.

Mobile Wireless
network

Benchmarks
IMC VGG FACE DIG ASR POS NER CHK

CPU
Wi-Fi input input input input input fc3
LTE input input input argmax input fc3
3G argmax input input argmax input fc3

GPU
Wi-Fi pool5 input input argmax input fc3
LTE argmax argmax input argmax input fc3
3G argmax argmax argmax argmax input fc3

IMC VGG FACE DIG ASR POS NER CHK
(a) Neurosurgeon using the mobile CPU

1X

5X

10X

15X

20X

La
te

nc
y

sp
ee

du
p

20.4X

IMC VGG FACE DIG ASR POS NER CHK
(b) Neurosurgeon using the mobile GPU

1X

5X

10X

15X

20X

La
te

nc
y

sp
ee

du
p

40.7X 20.6X

Status quo Neurosurgeon
Wi-Fi

Neurosurgeon
LTE

Neurosurgeon
3G

Neurosurgeon
avg.

Figure 11: Latency speedup achieved by Neurosurgeon normalized to status quo approach (executing entire DNN in the cloud). Results
for three wireless networks (Wi-Fi, LTE and 3G) and mobile CPU and GPU are shown here. Neurosurgeon improves the end-to-end DNN
inference latency by 3.1⇥ on average (geometric mean) and up to 40.7⇥.

mobile (TMi) and cloud (TCi), while taking into consid-
eration of current datacenter load level (K). Line 13 esti-
mates the power of executing layer Li on the mobile device
(PMi) and line 14 calculates the wireless data transfer la-
tency (TUi) based on the latest wireless network bandwidth.
Partition Point Selection – Neurosurgeon then selects the
best partition point. The candidate points are after each layer.
Lines 16 and 18 evaluate the performance when partitioning
at each candidate point and select the point for either best
end-to-end latency or best mobile energy consumption. Be-
cause of the simplicity of the regression models, this evalu-
ation is lightweight and efficient.
Algorithm 1 Neurosurgeon DNN partitioning algorithm
1: Input:
2: N : number of layers in the DNN
3: {L

i

|i = 1 · · ·N}: layers in the DNN
4: {D

i

|i = 1 · · ·N}: data size at each layer
5: f, g(L

i

): regression models predicting the latency and power of exe-
cuting L

i

6: K: current datacenter load level
7: B: current wireless network uplink bandwidth
8: PU : wireless network uplink power consumption
9: procedure PARTITIONDECISION

10: for each i in 1 · · ·N do
11: TM

i

 f
mobile

(L
i

)
12: TC

i

 f
cloud

(L
i

,K)
13: PM

i

 g
mobile

(L
i

)
14: TU

i

 D
i

/B

15: if OptTarget == latency then

16: return argmin
j=1···N

(
jP

i=1
TM

i

+
NP

k=j+1
TC

k

+ TU
j

)

17: else if OptTarget == energy then

18: return argmin
j=1···N

(
jP

i=1
TM

i

⇥ PM
i

+ TU
j

⇥ PU)

5.3 Partitioned Execution
We prototype Neurosurgeon by creating modified in-
stances of Caffe [18] to serve as our mobile-side (NSmobile)
and server-side (NSserver) infrastructures. Through these
two variations of Caffe, we implement our client-server in-
terface using Thrift [33], an open source flexible RPC inter-
face for inter-process communication. To allow for flexibil-
ity in the dynamic selection of partition points, both NSmo-

bile and NSserver host complete DNN models, and par-
tition points are enforced by NSmobile and NSserver run-
time. Given a partition decision by NSmobile, execution
begins on the mobile device and cascades through the lay-
ers of the DNN leading up to that partition point. Upon
completion of that layer, NSmobile sends the output of that
layer from the mobile device to NSserver residing on the
server side. NSserver then executes the remaining DNN
layers. Upon the completion of the DNN execution, the fi-
nal result is sent back to NSmobile on the mobile device
from NSserver. Note that there is exactly one partition
point within the DNN for which information is sent from
the mobile device to the cloud.

6. Evaluation
We evaluate Neurosurgeon using 8 DNNs (Table 3) as
our benchmarks across Wi-Fi, LTE and 3G wireless con-
nections with both CPU-only and GPU mobile platforms.
We demonstrate Neurosurgeon achieves significant end-to-
end latency and mobile energy improvements over the sta-
tus quo cloud-only approach (Sections 6.1 and 6.2). We then
compare Neurosurgeon against MAUI [34], a well-known

29Images taken from [1]

Mispredicts when
performance is close to

one another.

Benchmark Results -  
Power Optimisation

Table 5: Neurosurgeon partition point selections for best mobile energy consumption. Green block indicates Neurosurgeon makes the optimal
partition choice and white block means a suboptimal partition point is picked. On average, Neurosurgeon achieves a mobile energy reduction within
98.8% of the optimal reduction.

Mobile Wireless
network

Benchmarks
IMC VGG FACE DIG ASR POS NER CHK

CPU
Wi-Fi input input input input input fc3
LTE input input input input input fc3
3G input input input argmax input fc3

GPU
Wi-Fi input input input argmax input fc3
LTE pool5 input input argmax input fc3
3G argmax argmax input argmax input fc3

Figure 12: Mobile energy consumption achieved by Neurosurgeon normalized to status quo approach (executing entire DNN in the cloud).
Results for three wireless networks (Wi-Fi, LTE and 3G) and mobile CPU and GPU are shown here. Neurosurgeon reduces the mobile energy
consumption by 59.5% on average (geometric mean) and up to 94.7%.

computation offloading framework (Section 6.3). We also
evaluate Neurosurgeon’s robustness to variations in wire-
less network connections (Section 6.4) and server load (Sec-
tion 6.5), demonstrating the need for such a dynamic run-
time system. Finally, we evaluate the datacenter throughput
improvement Neurosurgeon achieves by pushing compute
out of the cloud to the mobile device (Section 6.6).

6.1 Latency Improvement

Partition Point Selection – Table 4 summarizes the parti-
tion points selected by Neurosurgeon optimizing for la-
tency across the 48 configurations (i.e., 8 benchmarks, 3
wireless network types, mobile CPU and GPU). The green
cells indicate when Neurosurgeon selects the optimal par-
tition point and achieves the best speedup while the white
cells indicate Neurosurgeon selects a suboptimal point.
Neurosurgeon selects the best partition point for 44 out
of the 48 configurations. The mispredictions occur because
the partition points and its associated performance are very
close to one another and thus a small difference in Neuro-

surgeon’s latency prediction shifts the selection. Across all
benchmarks and configurations, Neurosurgeon achieves la-
tency speedup within 98.5% of optimal speedup.
Latency Improvement – Figure 11 shows Neurosurgeon’s
latency improvement over the status quo approach, across
the 8 benchmarks on Wi-Fi, LTE, and 3G. Figure 11a shows
the latency improvement when applying Neurosurgeon to
a mobile platform equipped with a CPU, and Figure 11b
shows that of a mobile platform with a GPU. For CV appli-
cations, Neurosurgeon identifies the best partition points
for 20 out of 24 cases and achieves significant latency

speedups, especially when the mobile GPU is available.
For the NLP applications, Neurosurgeon achieves signif-
icant latency speedups even when Wi-Fi is available. For
ASR, Neurosurgeon successfully identifies that it is best to
execute the DNN entirely on the server and, therefore Neu-

rosurgeon performs similar to the status quo for that par-
ticular benchmark. Across all benchmarks and configura-
tions, Neurosurgeon achieves a latency speedup of 3.1⇥
on average and up to 40.7⇥ over the status quo approach.

6.2 Energy Improvement

Partition Point Selection – Table 5 summarizes the par-
tition points identified by Neurosurgeon for best mo-
bile energy. Neurosurgeon selects the best partition point
for 44 out of the 48 configurations. For the suboptimal
choices, Neurosurgeon consumes 24.2% less energy on
average than the status quo approach.
Energy Improvement – Figure 12 shows the mobile en-
ergy consumption achieved by Neurosurgeon, normalized
to the status quo approach. Figure 12a and 12b present re-
sults for CPU-only mobile platform and GPU-equipped mo-
bile platform, respectively. When optimizing for best energy
consumption, Neurosurgeon achieves on average a 59.5%
reduction in mobile energy and up to 94.7% reduction over
the status quo. Similar to the improvement for latency, the
energy reduction is also higher for most benchmarks when
the mobile platform is equipped with a GPU.

6.3 Comparing Neurosurgeon to MAUI
In this section, we compare Neurosurgeon to MAUI [34], a
general offloading framework. Note that MAUI is control-

Table 5: Neurosurgeon partition point selections for best mobile energy consumption. Green block indicates Neurosurgeon makes the optimal
partition choice and white block means a suboptimal partition point is picked. On average, Neurosurgeon achieves a mobile energy reduction within
98.8% of the optimal reduction.

Mobile Wireless
network

Benchmarks
IMC VGG FACE DIG ASR POS NER CHK

CPU
Wi-Fi input input input input input fc3
LTE input input input input input fc3
3G input input input argmax input fc3

GPU
Wi-Fi input input input argmax input fc3
LTE pool5 input input argmax input fc3
3G argmax argmax input argmax input fc3

IMC VGG FACE DIG ASR POS NER CHK
(a) Neurosurgeon using the mobile CPU

0%

20%

40%

60%

80%

100%

N
or

m
al

iz
ed

m
ob

ile
en

er
gy

IMC VGG FACE DIG ASR POS NER CHK
(b) Neurosurgeon using the mobile GPU

0%

20%

40%

60%

80%

100%

N
or

m
al

iz
ed

m
ob

ile
en

er
gy

Status quo Neurosurgeon
Wi-Fi

Neurosurgeon
LTE

Neurosurgeon
3G

Neurosurgeon
avg.

Figure 12: Mobile energy consumption achieved by Neurosurgeon normalized to status quo approach (executing entire DNN in the cloud).
Results for three wireless networks (Wi-Fi, LTE and 3G) and mobile CPU and GPU are shown here. Neurosurgeon reduces the mobile energy
consumption by 59.5% on average (geometric mean) and up to 94.7%.

computation offloading framework (Section 6.3). We also
evaluate Neurosurgeon’s robustness to variations in wire-
less network connections (Section 6.4) and server load (Sec-
tion 6.5), demonstrating the need for such a dynamic run-
time system. Finally, we evaluate the datacenter throughput
improvement Neurosurgeon achieves by pushing compute
out of the cloud to the mobile device (Section 6.6).

6.1 Latency Improvement

Partition Point Selection – Table 4 summarizes the parti-
tion points selected by Neurosurgeon optimizing for la-
tency across the 48 configurations (i.e., 8 benchmarks, 3
wireless network types, mobile CPU and GPU). The green
cells indicate when Neurosurgeon selects the optimal par-
tition point and achieves the best speedup while the white
cells indicate Neurosurgeon selects a suboptimal point.
Neurosurgeon selects the best partition point for 44 out
of the 48 configurations. The mispredictions occur because
the partition points and its associated performance are very
close to one another and thus a small difference in Neuro-

surgeon’s latency prediction shifts the selection. Across all
benchmarks and configurations, Neurosurgeon achieves la-
tency speedup within 98.5% of optimal speedup.
Latency Improvement – Figure 11 shows Neurosurgeon’s
latency improvement over the status quo approach, across
the 8 benchmarks on Wi-Fi, LTE, and 3G. Figure 11a shows
the latency improvement when applying Neurosurgeon to
a mobile platform equipped with a CPU, and Figure 11b
shows that of a mobile platform with a GPU. For CV appli-
cations, Neurosurgeon identifies the best partition points
for 20 out of 24 cases and achieves significant latency

speedups, especially when the mobile GPU is available.
For the NLP applications, Neurosurgeon achieves signif-
icant latency speedups even when Wi-Fi is available. For
ASR, Neurosurgeon successfully identifies that it is best to
execute the DNN entirely on the server and, therefore Neu-

rosurgeon performs similar to the status quo for that par-
ticular benchmark. Across all benchmarks and configura-
tions, Neurosurgeon achieves a latency speedup of 3.1⇥
on average and up to 40.7⇥ over the status quo approach.

6.2 Energy Improvement

Partition Point Selection – Table 5 summarizes the par-
tition points identified by Neurosurgeon for best mo-
bile energy. Neurosurgeon selects the best partition point
for 44 out of the 48 configurations. For the suboptimal
choices, Neurosurgeon consumes 24.2% less energy on
average than the status quo approach.
Energy Improvement – Figure 12 shows the mobile en-
ergy consumption achieved by Neurosurgeon, normalized
to the status quo approach. Figure 12a and 12b present re-
sults for CPU-only mobile platform and GPU-equipped mo-
bile platform, respectively. When optimizing for best energy
consumption, Neurosurgeon achieves on average a 59.5%
reduction in mobile energy and up to 94.7% reduction over
the status quo. Similar to the improvement for latency, the
energy reduction is also higher for most benchmarks when
the mobile platform is equipped with a GPU.

6.3 Comparing Neurosurgeon to MAUI
In this section, we compare Neurosurgeon to MAUI [34], a
general offloading framework. Note that MAUI is control-

30Images taken from [1]

Even in
suboptimal cases,

24.2% less energy than
status quo

Testing under 
 Network Variation

Figure 13: Latency speedup achieved by Neurosurgeon vs. MAUI [34].
For MAUI, we assume the optimal programmer annotation that
achieves minimal program state transfer. Neurosurgeon outperforms
MAUI by up to 32⇥ and 1.9⇥ on average.

centric, reasoning and making decisions about regions of
code (functions), whereas Neurosurgeon is data-centric,
making partition decisions based on the structure of the
data topology that can differ even if the same code region
(function) is called.

Figure 13 presents the latency speedup achieved by Neu-

rosurgeon normalized to MAUI when executing the 8
DNN benchmarks, averaged across three wireless network
types. Figure 13a presents the result when applying MAUI
and Neurosurgeon on a CPU-only mobile platform and
Figure 13b presents the result on a mobile platform equipped
with a GPU. In this experiment, we assume that for MAUI,
programmers have optimally annotated the minimal program
states that need to be transferred.

Figure 13 shows that Neurosurgeon significantly out-
performs MAUI on the computer vision applications. For the
NLP applications, both Neurosurgeon and MAUI correctly
decide that local computation on the mobile device is op-
timal. However, MAUI makes incorrect offloading choices
for more complicated scenarios (e.g., VGG, FACE, DIG and
ASR). This is because MAUI relies on past invocation of a
certain DNN layer type to predict the latency and data size of
the future invocations of that layer type, leading to mispre-
dictions. This control-centric prediction mechanism is not
suitable for DNN layers because the latency and data size
of layers of the same type can be drastically different within
one DNN, and Neurosurgeon’s DNN analysis step and pre-
diction model correctly captures this variation. For instance,
in VGG, the input data size for the first and second convolu-
tion layers are significantly different: 0.57MB for conv1.1,
and 12.25MB for conv1.2. For the mobile CPU and LTE,
MAUI decides to offload the DNN before conv1.2 due to
its misprediction, uploading large amount of data and re-
sulting in a 20.5⇥ slowdown over the status quo approach.
Meanwhile, Neurosurgeon successfully identifies that for
this case it is best to execute the DNN entirely in the cloud,
and thus achieves similar performance as the status quo and
a 20.5⇥ speedup over MAUI.

0
1
2
3
4
5

M
bp

s

LTE bandwidth

Time
0.0

0.5

1.0

1.5

2.0

La
te

nc
y

(s
) partitioned local partitioned remote

Status quo Neurosurgeon

Figure 14: The top graph shows bandwidth variance using a LTE net-
work. The bottom graph shows the latency of AlexNet (IMC) of the sta-
tus quo and Neurosurgeon. Neurosurgeon’s decisions are annotated
on the bottom graph. Neurosurgeon provides consistent latency by ad-
justing its partitioned execution based on the available bandwidth.

Figure 15: Neurosurgeon adjusts its partitioned execution as the result
of varying datacenter load.

6.4 Network Variation
In this section, we evaluate Neurosurgeon’s resilience to
real-world measured wireless network variations. In Fig-
ure 14, the top graph shows measured wireless bandwidth
of T-Mobile LTE network over a period of time. The bot-
tom graph shows the end-to-end latency of the status quo
approach and Neurosurgeon executing AlexNet (IMC) on
the mobile CPU platform. Annotated on the bottom graph
is Neurosurgeon’s dynamic execution choice, categorized
as either local, remote or partitioned. The status quo ap-
proach is highly susceptible to network variations and conse-
quently the application suffers significant latency increases
during the low bandwidth phase. Conversely, Neurosur-

geon successfully mitigates the effects of large variations
and provides consistent low latency by shifting partition
choice to adjust the amount of data transfer based on the
available bandwidth.

6.5 Server Load Variation
In this section, we evaluate how Neurosurgeon makes dy-
namic decision as the server load varies. Datacenters typi-
cally experience diurnal load patterns and high server utiliza-
tion leads to increased service time for DNN queries. Neu-

rosurgeon determines the best partition point based on the
current server load level obtained by periodically pinging

In real world scenarios, network
quality may vary.

Cloud-only will suffer the
consequences.

Neurosurgeon dynamically adapts
offloading to mitigate the problem.

Offloading makes sense now
Bad network to offload

computation.

31

Testing under 
Server Load Variation

Figure 13: Latency speedup achieved by Neurosurgeon vs. MAUI [34].
For MAUI, we assume the optimal programmer annotation that
achieves minimal program state transfer. Neurosurgeon outperforms
MAUI by up to 32⇥ and 1.9⇥ on average.

centric, reasoning and making decisions about regions of
code (functions), whereas Neurosurgeon is data-centric,
making partition decisions based on the structure of the
data topology that can differ even if the same code region
(function) is called.

Figure 13 presents the latency speedup achieved by Neu-

rosurgeon normalized to MAUI when executing the 8
DNN benchmarks, averaged across three wireless network
types. Figure 13a presents the result when applying MAUI
and Neurosurgeon on a CPU-only mobile platform and
Figure 13b presents the result on a mobile platform equipped
with a GPU. In this experiment, we assume that for MAUI,
programmers have optimally annotated the minimal program
states that need to be transferred.

Figure 13 shows that Neurosurgeon significantly out-
performs MAUI on the computer vision applications. For the
NLP applications, both Neurosurgeon and MAUI correctly
decide that local computation on the mobile device is op-
timal. However, MAUI makes incorrect offloading choices
for more complicated scenarios (e.g., VGG, FACE, DIG and
ASR). This is because MAUI relies on past invocation of a
certain DNN layer type to predict the latency and data size of
the future invocations of that layer type, leading to mispre-
dictions. This control-centric prediction mechanism is not
suitable for DNN layers because the latency and data size
of layers of the same type can be drastically different within
one DNN, and Neurosurgeon’s DNN analysis step and pre-
diction model correctly captures this variation. For instance,
in VGG, the input data size for the first and second convolu-
tion layers are significantly different: 0.57MB for conv1.1,
and 12.25MB for conv1.2. For the mobile CPU and LTE,
MAUI decides to offload the DNN before conv1.2 due to
its misprediction, uploading large amount of data and re-
sulting in a 20.5⇥ slowdown over the status quo approach.
Meanwhile, Neurosurgeon successfully identifies that for
this case it is best to execute the DNN entirely in the cloud,
and thus achieves similar performance as the status quo and
a 20.5⇥ speedup over MAUI.

Figure 14: The top graph shows bandwidth variance using a LTE net-
work. The bottom graph shows the latency of AlexNet (IMC) of the sta-
tus quo and Neurosurgeon. Neurosurgeon’s decisions are annotated
on the bottom graph. Neurosurgeon provides consistent latency by ad-
justing its partitioned execution based on the available bandwidth.

10% 20% 30% 40% 50% 60% 70% 80% 90%
Server load level

0

0.2

0.4

0.6

0.8

La
te

nc
y

(s
)

remote
partitioned

local

Status quo Neurosurgeon

Figure 15: Neurosurgeon adjusts its partitioned execution as the result
of varying datacenter load.

6.4 Network Variation
In this section, we evaluate Neurosurgeon’s resilience to
real-world measured wireless network variations. In Fig-
ure 14, the top graph shows measured wireless bandwidth
of T-Mobile LTE network over a period of time. The bot-
tom graph shows the end-to-end latency of the status quo
approach and Neurosurgeon executing AlexNet (IMC) on
the mobile CPU platform. Annotated on the bottom graph
is Neurosurgeon’s dynamic execution choice, categorized
as either local, remote or partitioned. The status quo ap-
proach is highly susceptible to network variations and conse-
quently the application suffers significant latency increases
during the low bandwidth phase. Conversely, Neurosur-

geon successfully mitigates the effects of large variations
and provides consistent low latency by shifting partition
choice to adjust the amount of data transfer based on the
available bandwidth.

6.5 Server Load Variation
In this section, we evaluate how Neurosurgeon makes dy-
namic decision as the server load varies. Datacenters typi-
cally experience diurnal load patterns and high server utiliza-
tion leads to increased service time for DNN queries. Neu-

rosurgeon determines the best partition point based on the
current server load level obtained by periodically pinging

Current server load is determined by
pinging.

Avoid latency, by taking server load into
consideration.

This strategy is further dropping server
load, allowing for more user queries to
be served.

End-to-end latency of AlexNet 
Mobile CPU-only, transfers via Wi-Fi

Wi-Fi LTE 3G

1X

2X

3X

4X

5X

6X

7X

N
or

m
al

ie
d

th
ro

ug
hp

ut

Baseline (Status quo)
Neurosurgeon (0% mobile GPU users)
Neurosurgeon (30% mobile GPU users)
Neurosurgeon (70% mobile GPU users)
Neurosurgeon (100% mobile GPU users)

Figure 16: Datacenter throughput improvement achieved by Neuro-

surgeon over the status quo approach. Higher throughput improve-
ment is achieved by Neurosurgeon for cellular networks (LTE and 3G)
and as more mobile devices are equipped with GPUs.

the server during idle period, and thus avoids long latency
caused by high user demand and the resulting high load.

Figure 15 presents the end-to-end latency of AlexNet
(IMC) achieved by the status quo approach and Neuro-

surgeon as the server load increases. The mobile device
is equipped with a CPU and transfers data via Wi-Fi. As
shown in the figure, the status quo approach does not dy-
namically adapt to varying server load and thus suffers from
significant performance degradation when the server load is
high. The end-to-end latency of the status quo approach in-
creases from 105ms to 753ms as the server approaches its
peak load level. On the other hand, by taking server load
into consideration, Neurosurgeon dynamically adapts the
partition point. In Figure 15, two vertical dashed lines repre-
sent the points where Neurosurgeon changes its selection:
from complete cloud execution at low load, to partitioning
the DNN between mobile and cloud at medium load, and
eventually completely onloading to mobile at peak load. Re-
gardless of the server load, Neurosurgeon keeps the end-to-
end latency of executing image classification below 380ms.
By considering server load and its impact on the server per-
formance, Neurosurgeon consistently delivers the best la-
tency regardless of the variation in server load.

6.6 Datacenter Throughput Improvement
Neurosurgeon onloads part or all of the computation from
the cloud to mobile devices to improve end-to-end latency
and reduce mobile energy consumption. This new compute
paradigm reduces the computation required on the datacen-
ter, leading to shorter query service time and higher query
throughput. In this section, we evaluate Neurosurgeon’s ef-
fectiveness in this aspect. We use BigHouse [38] to com-
pare the achieved datacenter throughput between status quo
and Neurosurgeon. The incoming DNN queries are com-
posed evenly of the 8 DNNs in the benchmark suite. We use
the measured mean service time of DNN queries combined
with Google web search query distribution for the query
inter-arrival rate.

Figure 16 presents the datacenter throughput improve-
ment achieved by Neurosurgeon, normalized to the base-
line status quo approach of executing the entire computa-
tion on the server. Each cluster presents results for a given
wireless network type. Within each cluster, the first bar rep-
resents the status quo cloud-only approach, while the other
four bars represent Neurosurgeon with different composi-
tions of the mobile hardware. For example, “30% Mobile
GPU users” indicates 30% of the incoming requests are from
mobile devices equipped with a GPU while the remaining
70% are from devices equipped only with a CPU.

When the mobile clients are connected to the server via
fast Wi-Fi network, Neurosurgeon achieves on average
1.04⇥ throughput improvement. As the wireless connec-
tion changes to LTE and 3G, the throughput improvement
becomes more significant: 1.43⇥ for LTE and 2.36⇥ for
3G. Neurosurgeon adapts its partition choice and pushes
larger portions of the DNN computation to the mobile de-
vices as the wireless connection quality becomes less ideal.
Therefore the average request query service time is reduced
and a higher throughput is achieved in the datacenter. We
also observe that as the percentage of mobile devices with
GPU increases, Neurosurgeon increases the computation
onloading from the cloud to mobile, leading to higher data-
center throughput improvement.

7. Related Work
Previous research efforts focus on offloading computation
from the mobile to cloud. In Table 6, we compare Neuro-

surgeon with the most relevant techniques on properties in-
cluding whether there is heavy data transfer overhead, data-
centric or control-centric partitioning, low run-time over-
head, whether application-specific profiling is required, and
whether programmer’s annotation is needed.

In addition to these key differences, computation parti-
tion frameworks have to make predictions as to when to of-
fload computation and the correctness of the prediction dic-
tates the final performance improvements for the applica-
tion. COMET [35] offloads a thread when its execution time
exceeds a pre-defined threshold, ignoring any other infor-
mation (amount of data to transfer, wireless network avail-
able, etc.). Odessa [36] makes computation partition deci-
sions only considering the execution time and data require-
ments of part of the function, without taking the entire appli-
cation into consideration. CloneCloud [37] makes the same
offloading decisions for all invocations of the same function.
MAUI’s [34] offloading decision mechanism is better in that
it makes predictions for each function invocation separately
and considers the entire application when choosing which
function to offload. However, MAUI is not applicable for
the computation partition performed by Neurosurgeon for
a number of reasons: 1) MAUI requires a profiling step for
each individual application, whereas predictions are required
to perform DNN partitioning. Neurosurgeon makes deci-

32

Server is too loaded
now. 

Compute locally.
Offload to server.

Results
• End-to-end latency improvement:

• average: 3.1x

• up to: 40.7x

• Energy consumption improvement:

• average: 59.5%

• up to: 94.7%

• Datacenter throughput improvement:

• average: 1.5x

• up to: 6.7x

33

Relevant work

34

Popular computation
offloading solutions

Table 6: Comparing Neurosurgeon to popular computation offloading/partition frameworks

MAUI [34] Comet [35] Odessa [36] CloneCloud [37] Neurosurgeon

No need to transfer program state 3 3
Data-centric compute partitioning 3
Low/no runtime overhead 3 3 3 3
Requires no application-specific profiling 3 3
No programmer annotation needed 3 3 3 3
Server load sensitive 3 3

sions based on the DNN topology without any runtime pro-
filing. 2) MAUI is control-centric, making decisions about
regions of code (functions), whereas Neurosurgeon makes
partition decisions based on the structure of the data topol-
ogy that can differ even if the same code region (function) is
executed. Layers of a given type (even if mapped to the same
function) within one DNN can have significantly different
compute and data characteristics. 3) Neurosurgeon trans-
fers only the data that is being processed in contrast to trans-
ferring all program state. 4) MAUI requires the programmer
to annotate their programs to identify which methods are
“offload-able”.

In addition to prior work investigating the utilization and
efficiency of datacenter systems [39–52], there has been
growing interest in building large scale datacenter systems
for Deep Neural Network workloads. Various accelerators,
such as GPUs, ASICs, and FPGAs, have been proposed for
datacenters to better handle DNN computation [9, 53–55].
There has also been effort in designing compact DNNs suit-
able for the mobile edge. Microsoft and Google explore
small-scale DNNs for speech recognition on mobile plat-
forms [56, 57]. MCDNN [58] proposes generating alterna-
tive DNN models to trade-off accuracy for performance/en-
ergy and choosing to execute either in the cloud or on the
mobile. This work investigates intelligent collaboration be-
tween the mobile device and cloud for executing tradition-
ally cloud-only large-scale DNNs for reduced latency and
energy consumption without sacrificing the DNNs’ high pre-
diction accuracy.

8. Conclusion
As an essential component of today’s intelligent applica-
tions, Deep Neural Networks have been traditionally exe-
cuted in the cloud. In this work, we examine the efficacy
of this status quo approach of cloud-only processing and
show that it is not always optimal to transfer the input data
to the server and remotely execute the DNN. We inves-
tigate the compute and data characteristics of 8 DNN ar-
chitectures spanning computer vision, speech, and natural
language processing applications and show the trade-off of
partitioning computation at different points within the neu-
ral network. With these insights, we develop Neurosur-

geon, a system that can automatically partition DNN be-
tween the mobile device and cloud at the granularity of neu-
ral network layers. Neurosurgeon adapts to various DNN
architectures, hardware platforms, wireless connections, and
server load levels, and chooses the partition point for best la-

tency and best mobile energy consumption. Across 8 bench-
marks, when compared to cloud-only processing, Neuro-

surgeon achieves on average 3.1⇥ and up to 40.7⇥ la-
tency speedup, reduces mobile energy consumption by on
average 59.5% and up to 94.7%, and improves datacenter
throughput by on average 1.5⇥ and up to 6.7⇥.

9. Acknowledgment
We thank our anonymous reviewers for their feedback and
suggestions. This work was sponsored by ARM, Intel, and
the National Science Foundation under grants IIS-VEC-
1539011, CCF-SHF-1302682, CNS-CSR-1321047 and NSF
CAREER SHF-1553485.

References
[1] Wearables market to be worth $25 billion by 2019.

http://www.ccsinsight.com/press/company-

news/2332-wearables-market-to-be-worth-25-

billion-by-2019-reveals-ccs-insight. Accessed:
2017-01.

[2] Rapid Expansion Projected for Smart Home Devices, IHS
Markit Says. http://news.ihsmarkit.com/press-

release/technology/rapid-expansion-projected-

smart-home-devices-ihs-markit-says. Accessed:
2017-01.

[3] Intelligent Virtual Assistant Market Worth $3.07Bn By
2020. https://globenewswire.com/news-release/

2015/12/17/796353/0/en/Intelligent-Virtual-

Assistant-Market-Worth-3-07Bn-By-2020.html.
Accessed: 2016-08.

[4] Intelligent Virtual Assistant Market Analysis And Segment
Forecasts 2015 To 2022. https://www.hexaresearch.

com/research-report/intelligent-virtual-

assistant-industry/. Accessed: 2016-08.

[5] Growing Focus on Strengthening Customer Relations
Spurs Adoption of Intelligent Virtual Assistant Technol-
ogy. http://www.transparencymarketresearch.com/

pressrelease/intelligent-virtual-assistant-

industry.html/. Accessed: 2016-08.

[6] Google Brain. https://backchannel.com/google-

search-will-be-your-next-brain-5207c26e4523#

.x9n2ajota. Accessed: 2017-01.

[7] Microsoft Deep Learning Outperforms Humans in Im-
age Recognition. http://www.forbes.com/sites/

michaelthomsen/2015/02/19/microsofts-deep-

learning-project-outperforms-humans-in-image-

recognition/. Accessed: 2016-08.

35Image taken from [1]

Benchmark Result -  
MAUI

IM
C

V
G

G

FA
C

E

D
IG

A
SR

PO
S

N
ER

C
H

K

(a) using the mobile CPU

1X

3X

5X

7X

La
te

nc
y

sp
ee

du
p

IM
C

V
G

G

FA
C

E

D
IG

A
SR

PO
S

N
ER

C
H

K

(b) using the mobile GPU

1X

3X

5X

7X

32x
MAUI Neurosurgeon

Figure 13: Latency speedup achieved by Neurosurgeon vs. MAUI [34].
For MAUI, we assume the optimal programmer annotation that
achieves minimal program state transfer. Neurosurgeon outperforms
MAUI by up to 32⇥ and 1.9⇥ on average.

centric, reasoning and making decisions about regions of
code (functions), whereas Neurosurgeon is data-centric,
making partition decisions based on the structure of the
data topology that can differ even if the same code region
(function) is called.

Figure 13 presents the latency speedup achieved by Neu-

rosurgeon normalized to MAUI when executing the 8
DNN benchmarks, averaged across three wireless network
types. Figure 13a presents the result when applying MAUI
and Neurosurgeon on a CPU-only mobile platform and
Figure 13b presents the result on a mobile platform equipped
with a GPU. In this experiment, we assume that for MAUI,
programmers have optimally annotated the minimal program
states that need to be transferred.

Figure 13 shows that Neurosurgeon significantly out-
performs MAUI on the computer vision applications. For the
NLP applications, both Neurosurgeon and MAUI correctly
decide that local computation on the mobile device is op-
timal. However, MAUI makes incorrect offloading choices
for more complicated scenarios (e.g., VGG, FACE, DIG and
ASR). This is because MAUI relies on past invocation of a
certain DNN layer type to predict the latency and data size of
the future invocations of that layer type, leading to mispre-
dictions. This control-centric prediction mechanism is not
suitable for DNN layers because the latency and data size
of layers of the same type can be drastically different within
one DNN, and Neurosurgeon’s DNN analysis step and pre-
diction model correctly captures this variation. For instance,
in VGG, the input data size for the first and second convolu-
tion layers are significantly different: 0.57MB for conv1.1,
and 12.25MB for conv1.2. For the mobile CPU and LTE,
MAUI decides to offload the DNN before conv1.2 due to
its misprediction, uploading large amount of data and re-
sulting in a 20.5⇥ slowdown over the status quo approach.
Meanwhile, Neurosurgeon successfully identifies that for
this case it is best to execute the DNN entirely in the cloud,
and thus achieves similar performance as the status quo and
a 20.5⇥ speedup over MAUI.

Figure 14: The top graph shows bandwidth variance using a LTE net-
work. The bottom graph shows the latency of AlexNet (IMC) of the sta-
tus quo and Neurosurgeon. Neurosurgeon’s decisions are annotated
on the bottom graph. Neurosurgeon provides consistent latency by ad-
justing its partitioned execution based on the available bandwidth.

Figure 15: Neurosurgeon adjusts its partitioned execution as the result
of varying datacenter load.

6.4 Network Variation
In this section, we evaluate Neurosurgeon’s resilience to
real-world measured wireless network variations. In Fig-
ure 14, the top graph shows measured wireless bandwidth
of T-Mobile LTE network over a period of time. The bot-
tom graph shows the end-to-end latency of the status quo
approach and Neurosurgeon executing AlexNet (IMC) on
the mobile CPU platform. Annotated on the bottom graph
is Neurosurgeon’s dynamic execution choice, categorized
as either local, remote or partitioned. The status quo ap-
proach is highly susceptible to network variations and conse-
quently the application suffers significant latency increases
during the low bandwidth phase. Conversely, Neurosur-

geon successfully mitigates the effects of large variations
and provides consistent low latency by shifting partition
choice to adjust the amount of data transfer based on the
available bandwidth.

6.5 Server Load Variation
In this section, we evaluate how Neurosurgeon makes dy-
namic decision as the server load varies. Datacenters typi-
cally experience diurnal load patterns and high server utiliza-
tion leads to increased service time for DNN queries. Neu-

rosurgeon determines the best partition point based on the
current server load level obtained by periodically pinging

MAUI Neurosurgeon

Partitioning Control-based Data-centric

Profiling Dynamic Static

Partitioning
Granularity

Per annotated
function Per layer

Optimises for Power efficiency Latency XOR 
Power Efficiency

Specificity General DNN Specific

MAUI scheduling for a layer
depends on previous
invocations.

36

MAUI: Making Smartphones Last Longer with Code Offload

Eduardo Cuervo

†

, Aruna Balasubramanian

‡

, Dae-ki Cho

⇤

,

Alec Wolman

§

, Stefan Saroiu

§

, Ranveer Chandra

§

, Paramvir Bahl

§

†

Duke University,

‡

University of Massachusetts Amherst,

⇤

UCLA,

§

Microsoft Research

ABSTRACT
This paper presents MAUI, a system that enables fine-grained
energy-aware offload of mobile code to the infrastructure. Previous
approaches to these problems either relied heavily on programmer
support to partition an application, or they were coarse-grained re-
quiring full process (or full VM) migration. MAUI uses the benefits
of a managed code environment to offer the best of both worlds:
it supports fine-grained code offload to maximize energy savings
with minimal burden on the programmer. MAUI decides at run-
time which methods should be remotely executed, driven by an op-
timization engine that achieves the best energy savings possible un-
der the mobile device’s current connectivity constrains. In our eval-
uation, we show that MAUI enables: 1) a resource-intensive face
recognition application that consumes an order of magnitude less
energy, 2) a latency-sensitive arcade game application that doubles
its refresh rate, and 3) a voice-based language translation applica-
tion that bypasses the limitations of the smartphone environment
by executing unsupported components remotely.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Client/Server

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
code offload, partitioning, smartphones, energy management

1. INTRODUCTION
One of the biggest obstacles for future growth of smartphones

is battery technology. As processors are getting faster, screens
are getting sharper, and devices are equipped with more sensors,
a smartphone’s ability to consume energy far outpaces the battery’s
ability to provide it. Unfortunately, technology trends for batteries
indicate that these limitations are here to stay and that energy will
remain the primary bottleneck for handheld mobile devices [34].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’10, June 15–18, 2010, San Francisco, California, USA.
Copyright 2010 ACM 978-1-60558-985-5/10/06 ...$10.00.

Given the tremendous size of the mobile handset market, solving
the energy impediment has quickly become the mobile industry’s
foremost challenge [14].

One popular technique to reduce the energy needs of mobile de-
vices is remote execution: applications can take advantage of the
resource-rich infrastructure by delegating code execution to remote
servers. For the last two decades, there have been many attempts
to make mobile devices use remote execution to improve perfor-
mance and energy consumption. Most of these attempts took one
of the following two approaches to remote execution. The first ap-
proach is to rely on programmers – to specify how to partition a
program, what state needs to be remoted, and how to adapt the pro-
gram partitioning scheme to the changing network conditions [9,
10, 1, 3]. This approach leads to large energy savings because it is
fine-grained – applications can remote only the sub-parts that bene-
fit from remote execution. For example, an application that both de-
codes and plays video would remote only the decoder, which is the
CPU-intensive part, without remoting any of the screen-intensive
parts. The second approach is to use full process [31] or full VM
migration [6, 37] in which individual applications (or entire OS’s
in the case of VMs) can migrate to the infrastructure. This ap-
proach reduces the burden on programmers because applications
do not need to be modified to take advantage of remote execution;
instead, all their code and program state is automatically sent to the
remote infrastructure.

We present MAUI, an architecture that combines the benefits
of these two approaches: it maximizes the potential for energy
savings through fine-grained code offload while minimizing the
changes required to applications. MAUI achieves these benefits by
using several properties of today’s managed code environments (we
use the Microsoft .NET Common Language Runtime (CLR) [36]
for MAUI, although Java would offer the same properties). First,
MAUI uses code portability to create two versions of a smartphone
application, one of which runs locally on the smartphone and the
other runs remotely in the infrastructure. Managed code enables
MAUI to ignore the differences in the instruction set architecture
between today’s mobile devices (which typically have ARM-based
CPUs) and servers (which typically have x86 CPUs). Second,
MAUI uses programming reflection combined with type safety to
automatically identify the remoteable methods and extract only the
program state needed by those methods. Third, MAUI profiles each
method of an application and uses serialization to determine its net-
work shipping costs (i.e., the size of its state). MAUI combines the
network and CPU costs with measurements of the wireless con-
nectivity, such as its bandwidth and latency to construct a linear
programming formulation of the code offload problem. The so-
lution to this problem dictates how to partition the application at
runtime to maximize energy savings under the current networking

Images taken from [1] and [4]

Privacy Preserving Shared
Models

• Based on the edge
computing paradigm.

• Models where a general
model is trained in the
cloud and online learning
is supplementing this
model on the device [8].

37

ply avoiding it being collected at scale in the first place: at-
tack incentives are reduced as the attacker must gain access
to millions of devices to capture data for millions of users,
rather than accessing a single cloud service. However, it
presents challenges for the sorts of model learning processes
required: how can such models be learnt without access to
the users’ personal data?

In this paper we address these challenges using the Edge
Computing paradigm. Specifically, our contributions include:
(i) we develop our personal training method for implement-
ing machine learning in an environment where personal data
largely remains on constrained devices under the control of
the data subject (§2); (ii) we apply this method to two well-
known learning tasks, one supervised (activity recognition
from accelerometer traces, §3), and one unsupervised (mod-
elling topics in text documents, §4) and report the results;
and (iii) we explore the robustness of our method against
adversarial attacks, as well as the feasibility of implement-
ing such techniques on a representative resource-constrained
personal device: a Raspberry Pi 3 Model B [6] (§5).

The essence of our approach is a two-step process: (i) we
first train a shared model using a small set of voluntarily
shared users’ data and distribute this model to all users; and
(ii) we then retrain this model locally using personal data
held by each user, drawing inferences from the resulting per-
sonal model. We evaluate this approach using (i) a neural
network to recognise users’ activity on the WISDM dataset [36]
and (ii) the Latent Dirichlet Algorithm (LDA) [17] to iden-
tify topics in the Wikipedia and NIPS datasets [4, 9]. In both
cases we show that the model resulting from local re-training
of an initial model learnt from a small set of users performs
with higher accuracy than either the initial model alone or a
model trained using only data from the specific user of inter-
est.

We also demonstrate the feasibility of training and testing
a small classifier in a resource-constraint, light-weight per-
sonal device: a Raspberry Pi 3 Model B [6]. We find that
such a device is certainly capable of supporting these algo-
rithms, with negligible time to obtain inferences (on the or-
der of milliseconds), and reasonable training times as well
(on the order of tens of seconds).

2. METHODOLOGY
The current approach, which we wish to avoid, of send-

ing all users’ personal data to the cloud for processing, is
one extreme of a spectrum whose other extreme would be to
train a model for a specific user using only that user’s data.
For some applications, e.g., activity recognition, it has been
shown that a model trained solely using data from the indi-
vidual concerned provides more accurate predictions for that
individual than a model trained using data from other indi-
viduals [50]. At the same time, this solution offers more
privacy to the user as all computation, for both training and
inference, can be done locally on the device [20]. However,
this approach leads to substantial interactional overheads as

!"#$%$%&'
(#)# *+

,#)-.'/0#"%$%&

*12$32(2

($32

4%50"0%-0*12$32*6
$32

7%/$%0'/0#"%$%&

8

4%50"0%-0

Figure 1: Our privacy-preserving methodology for activ-
ity recognition.

training the model will likely require each user to label a
significant amount of data by hand before they can obtain
accurate inferences.

We propose and evaluate an alternative, hybrid approach
that splits computation between the cloud and the users’ per-
sonal devices. We start by first training a model in the cloud
using data from a small (relative to the population) set of
users. We then distribute this shared model to users’ personal
devices, where it can be used locally to generate inferences.
In addition, it can be retrained using locally-stored personal
data to become a personal model, specialised for the user in
question.

We now describe this approach following the overview de-
picted in Figure 1. For clarity of exposition, we first describe
our approach in the case of supervised learning, taking the
activity recognition task we later use in our evaluation as
a running example. We then generalise this description to
other applications, including our second evaluation example
of identifying topics in documents which uses an unsuper-
vised algorithm. This suggests that any learning task, super-
vised or unsupervised, is amenable to our approach allowing
features extracted from users’ personal data that they do not
wish to disclose to be used to further personalise the initial
shared model.

We start by training a shared model, M
S

, to recognise the
activity that the user is performing using data sensed with his
smartphone’s built-in sensors. This batch learning is done on
a remote server in the cloud using available public data, d

p

.
In the event of not having sufficient public data available for
this task, data can be previously gathered from a set of users
that have agreed to share their personal data perhaps by pro-
viding them with suitable incentives. To assure the confiden-
tiality of their data as well as their presence in the dataset, the
shared model might be obtained using differentially private
training [46, 39, 28, 44].

Image taken from [8]

Review & Critique

38

Review: The good parts
• The name! :)

• Brand new paper published in ASPLOS ’17 (1 citation
from Cambridge [5])

• Rational extension of current model of execution based
on SoC developments.

• All around benchmarks, substantial speedups.

• Inclusive of GPU computation and different network
setups.

39

Critique
• DNN specific (in contrast with MAUI)

• Profiling has hardcoded the regression models for each type of layer
(difficult to expand, does not learn how to assess)

• How would an rNN get split with Neurosurgeon?

• Profiler assumes one type of hardware server-side.

• Different sized containers based on load.

• Different datacenter forwarding behind load balancer.

• Adoption: NVIDIA Tegra K1 is a high-end SoC

• Lower-end processors may shift offloading to the cloud.

40

Critique
• Distinct optimisation for latency, energy efficiency.

• Why not offer a Pareto’s optimality curve and pick point
based on user profile?
Latency

Energy Efficiency

High-performance profile

Energy-efficiency profile

41

Critique

Table 4: Neurosurgeon’s partition point selections for best end-to-end latency. Green block indicates Neurosurgeon makes the optimal partition
choice and white block means a suboptimal partition point is picked. On average, Neurosurgeon achieves within 98.5% of the optimal performance.

Mobile Wireless
network

Benchmarks
IMC VGG FACE DIG ASR POS NER CHK

CPU
Wi-Fi input input input input input fc3
LTE input input input argmax input fc3
3G argmax input input argmax input fc3

GPU
Wi-Fi pool5 input input argmax input fc3
LTE argmax argmax input argmax input fc3
3G argmax argmax argmax argmax input fc3

Figure 11: Latency speedup achieved by Neurosurgeon normalized to status quo approach (executing entire DNN in the cloud). Results
for three wireless networks (Wi-Fi, LTE and 3G) and mobile CPU and GPU are shown here. Neurosurgeon improves the end-to-end DNN
inference latency by 3.1⇥ on average (geometric mean) and up to 40.7⇥.

mobile (TMi) and cloud (TCi), while taking into consid-
eration of current datacenter load level (K). Line 13 esti-
mates the power of executing layer Li on the mobile device
(PMi) and line 14 calculates the wireless data transfer la-
tency (TUi) based on the latest wireless network bandwidth.
Partition Point Selection – Neurosurgeon then selects the
best partition point. The candidate points are after each layer.
Lines 16 and 18 evaluate the performance when partitioning
at each candidate point and select the point for either best
end-to-end latency or best mobile energy consumption. Be-
cause of the simplicity of the regression models, this evalu-
ation is lightweight and efficient.
Algorithm 1 Neurosurgeon DNN partitioning algorithm
1: Input:
2: N : number of layers in the DNN
3: {L

i

|i = 1 · · ·N}: layers in the DNN
4: {D

i

|i = 1 · · ·N}: data size at each layer
5: f, g(L

i

): regression models predicting the latency and power of exe-
cuting L

i

6: K: current datacenter load level
7: B: current wireless network uplink bandwidth
8: PU : wireless network uplink power consumption
9: procedure PARTITIONDECISION

10: for each i in 1 · · ·N do
11: TM

i

 f
mobile

(L
i

)
12: TC

i

 f
cloud

(L
i

,K)
13: PM

i

 g
mobile

(L
i

)
14: TU

i

 D
i

/B

15: if OptTarget == latency then

16: return argmin
j=1···N

(
jP

i=1
TM

i

+
NP

k=j+1
TC

k

+ TU
j

)

17: else if OptTarget == energy then

18: return argmin
j=1···N

(
jP

i=1
TM

i

⇥ PM
i

+ TU
j

⇥ PU)

5.3 Partitioned Execution
We prototype Neurosurgeon by creating modified in-
stances of Caffe [18] to serve as our mobile-side (NSmobile)
and server-side (NSserver) infrastructures. Through these
two variations of Caffe, we implement our client-server in-
terface using Thrift [33], an open source flexible RPC inter-
face for inter-process communication. To allow for flexibil-
ity in the dynamic selection of partition points, both NSmo-

bile and NSserver host complete DNN models, and par-
tition points are enforced by NSmobile and NSserver run-
time. Given a partition decision by NSmobile, execution
begins on the mobile device and cascades through the lay-
ers of the DNN leading up to that partition point. Upon
completion of that layer, NSmobile sends the output of that
layer from the mobile device to NSserver residing on the
server side. NSserver then executes the remaining DNN
layers. Upon the completion of the DNN execution, the fi-
nal result is sent back to NSmobile on the mobile device
from NSserver. Note that there is exactly one partition
point within the DNN for which information is sent from
the mobile device to the cloud.

6. Evaluation
We evaluate Neurosurgeon using 8 DNNs (Table 3) as
our benchmarks across Wi-Fi, LTE and 3G wireless con-
nections with both CPU-only and GPU mobile platforms.
We demonstrate Neurosurgeon achieves significant end-to-
end latency and mobile energy improvements over the sta-
tus quo cloud-only approach (Sections 6.1 and 6.2). We then
compare Neurosurgeon against MAUI [34], a well-known

Smartphones support multitasking. 
Why not include K_mobile?

42

Suggestions
• Work with model decomposition and compression

algorithms to push more computation locally (such as
DeepX [6])

• Other hardware could be taken into consideration (e.g.
DSP) for further efficiency (such as DeepEar [7])

• Could Reinforcement Learning be of any help in learning
how to partition instead of static profiler?

• Offloading to devices in local network. (MAUI [4])

43

Thank you
Q&A

Stefanos Laskaridis 
sl829@cam.ac.uk

44

mailto:sl829@cam.ac.uk

References
1. Kang, Y., Hauswald, J., Gao, C., Rovinski, A., Mudge, T., Mars, J., & Tang, L. (2017).

Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge. Proceedings
of the Twenty-Second International Conference on Architectural Support for Programming
Languages and Operating Systems, 615–629. https://doi.org/10.1145/3037697.3037698

2. Stanford CS231n - Andrej Karpathy 
http://cs231n.github.io/convolutional-networks/

3. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep
Convolutional Neural Networks. Advances In Neural Information Processing Systems, 1–9.
https://doi.org/http://dx.doi.org/10.1016/j.protcy.2014.09.007

4. Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A., Saroiu, S., Chandra, R., & Bahl, P.
(2010). Maui. Proceedings of the 8th International Conference on Mobile Systems,
Applications, and Services - MobiSys ’10, 49. https://doi.org/10.1145/1814433.1814441

5. Zhao, J., Mortier, R., Crowcroft, J., & Wang, L. (n.d.). User-centric Composable Services : A
New Generation of Personal Data Analytics Normalised Inference Time (%). Retrieved from
https://arxiv.org/pdf/1710.09027.pdf

45

http://cs231n.github.io/convolutional-networks/
https://doi.org/http://dx.doi.org/10.1016/j.protcy.2014.09.007
https://doi.org/10.1145/1814433.1814441
https://arxiv.org/pdf/1710.09027.pdf

References
6. Lane, N. D., Bhattacharya, S., Georgiev, P., Forlivesi, C., Jiao, L.,

Qendro, L., & Kawsar, F. (2016). DeepX: A Software Accelerator for
Low-Power Deep Learning Inference on Mobile Devices. 2016 15th
ACM/IEEE International Conference on Information Processing in
Sensor Networks, IPSN 2016 - Proceedings, (1). https://doi.org/
10.1109/IPSN.2016.7460664

7. Lane, N. D., Georgiev, P., & Qendro, L. (2015). DeepEar: Robust
Smartphone Audio Sensing in Unconstrained Acoustic Environments
using Deep Learning. Ubicomp, 283–294. https://doi.org/
10.1145/2750858.2804262

8. Servia-Rodriguez, S., Wang, L., Zhao, J. R., Mortier, R., & Haddadi,
H. (2017). Personal Model Training under Privacy Constraints.
Retrieved from http://arxiv.org/abs/1703.00380

46

https://doi.org/10.1109/IPSN.2016.7460664
https://doi.org/10.1109/IPSN.2016.7460664
https://doi.org/10.1145/2750858.2804262
https://doi.org/10.1145/2750858.2804262
http://arxiv.org/abs/1703.00380

