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Problems with 
database 
management 
systems (DBMS)
configuration 
tuning

● Standard approach: employ a 
database administrator (DBA) 
to tweak knobs through 
“trial-and-error”

● Main problems:

○ Dependencies

○ Continuous Setting

○ Non-reusable 
configurations

○ Tuning complexity



OtterTune

● Reduces the required input from the DBA.

● Works for any DBMS. 

● Uses machine learning models through different stages of the system.

● Continuously uses new data and reuses previous training data to incrementally improve 

the models used for predicting good configurations.



System architecture



System architecture

At the beginning of the tuning session:

● DBA specifies which metric 
OtterTune needs to improve. 

● Controller connects to target DBMS 
and starts observation period. 

DBMS API



Observation period

Main steps performed by the controller:

1. Reset statistics for target DBMS.

2. Execute some workload trace or a set of queries specified by the DBA.  

3. Observe DBMS and measures metrics specified by DBA.

4. At the end, collect additional DBMS-specific internal metrics.

5. Store metrics with the same name as a single sum scalar value.

Aim: Collect current knob configuration and runtime statistics for both 
DBMS-independent external metric and DBMS-specific internal metric. 



System architecture

After the observation period:

● Controller sends results to the 
tuning manager.  

● Tuning manager stores all of the 
information in the data repository.

● OtterTune identifies the next 
configuration that should be 
installed on the DBMS.



Machine Learning Pipeline



Workload identification

● Make use of the runtime statistics recorded while executing workload. 

● OtterTune is DBMS independent since metrics collected do not need to be labelled.

Aim: identify characteristic aspects of target workload. 



Prune redundant metrics

Factor Analysis

● Pre-processing step.
● Dimensionality reduction.
● Reduce the noise in the data.

k-means clustering

● Find groups of metrics similar 
to each other.

● Select one metric from each 
group.



Factor analysis

Metrics

Knob Configurations

X = 
ij

value of metric i under 
configuration j
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coefficient of metric i 
in factor  j
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k-means clustering

scatter-plot

k-means 
clustering

clusters of metrics



Select one metric from each cluster

non-redundant metrics
clusters of metrics

select one metric 
from each cluster



Identify important knobs

● Find knobs that affect system’s performance.

● Identify dependencies between knobs by adding polynomial features.

● Dynamically increase the number of knobs used in the tuning session.



Lasso regression

● Variant of linear regression.

● Adds an L1 penalty to the loss function. 
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Knobs
(or functions of knobs)

● Remove irrelevant knobs by shrinking their 

weights to zero.

● Orde knobs by order of appearance in 

regression. 

Aim: find relationship between knob (or functions 
of knobs) and metrics. 



Automatic tuning

Workload mapping

● Find workload in the data 
repository similar to the 
target workload.

Configuration Recommendation

● Use Gaussian Process (GP) 
regression to find knob 
configuration that would 
target metric.



Workload mapping
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value of metric m when executing 
workload i for configuration j

● For each metric m:
○ Compute Euclidean distance between target workload and each other 

workloads i.
● Compute score for workload i by averaging distance over all possible metrics.
● Select workload with lowest score.

  



Gaussian Process (GP) regression

● Use data from mapped workload to 

train a GP model.

● Update model by adding observed 

metrics from target workload.

http://mlg.eng.cam.ac.uk/teaching/4f13/1718/



ExploitationExploration

● Search unknown areas of the 
GP.

● Useful for getting more data.

● Helps identify configurations 
with knob values beyond limits 
tried in the past.

● Select configuration similar to 
best configuration found in the 
GP.

● Makes slight modifications to 
previously known good 
configurations. 



● Exploration/Exploitation strategy depends on variance of data points. 

● Always select configuration with greatest expected improvement. 

● Use gradient descent to find the configuration that maximizes potential improvement.

○ Initialization set: top-performing configurations + configurations for which knob values 
are selected randomly.

○ Finds local optimum on surface predicted by GP.

Configuration recommendation



System architecture



Evaluation



DBMS evaluated

Vector

OLTP DBMS OLTP DBMS OLAP DBMS



Proposed deliverablesYCSB
● Yahoo! Cloud Serving Benchmark (OLTP)

● Simple workload with high scalability requirement. (18m tuples)

TPC-C
● OLTP benchmark 

● Simulates an order processing application. (200 workhouses)

Wikipedia

● OLTP benchmark

● Transactions -> most common operations in Wikipedia for 

article and “watchlist” management. (100k articles)

TPC-H
● Simulates OLAP environment 

● Little prior knowledge of queries.

Workloads



Elements evaluated

● Influence of the number of knobs used in the performance.

○ The incremental approach works best for all DBMSs. 

○ OtterTune identifies the optimal number of knobs that should be tuned.  

● Comparison with iTuned [2].

○ Demonstrates that continuously integrating new training data helps with performance.

○ OtterTune works much better on OLTP workloads, but it has similar performance with 
ITuned on OLAP workloads.

Note: Before starting the evaluation, training data was obtained to bootstrap OtterTune’s 
repository. 



Execution time breakdown



Efficacy Evaluation



Assumptions and limitations of 
OtterTune



● Assume that the OtterTune controller has administrative privileges on the DBMS.
○ If not, DBA needs to deploy a second copy for trials.

● Assume that the DBA is aware of dangerous knobs which they can add to a blacklist of 
knobs that OtterTune does not change.

● Assume that physical design of database is reasonable. (e.g. proper indices already 
installed)

Assumptions



● OtterTune only considers global knobs.

● It also ignores the cost of restarting the DBMS when suggesting configurations. 

Limitations



● Automatically identify knobs that require DBMS restarting.

● Taking into consideration the cost of restarting when recommending configurations.

● Automatically determining if certain knobs can cause application to lose data.

● Consider tuning table or component-specific knobs.

Problems deferred as future work….



Summary



OtterTune: 

● Can find good configurations for a much larger number of knobs than previous automatic 
database tuning system.

● Can also identify dependencies between knobs.

● Generates configurations much faster than previous systems. 

● Leverages machine learning techniques and data from past configurations. 

Contributions of the paper



● Details are not very well explained. 

● OtterTune still needs significant input from the DBA. 

● Approach is overly complicated and has a lot of limitations.

● Not being able to determine which knobs can cause data loss is dangerous.  

Criticism (my opinion)
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