Automatic Database Management System Tuning Through Large-scale Machine Learning

Van Aken Dana et al. [1]

LSDPO (2017/2018) Paper Presentation: Ioana Bica (ib354) Problems with database management systems (DBMS) configuration tuning

- Standard approach: employ a database administrator (DBA) to tweak knobs through "trial-and-error"
- Main problems:
 - Dependencies
 - Continuous Setting
 - Non-reusable configurations
 - Tuning complexity

OtterTune

- Reduces the required input from the DBA.
- Works for any DBMS.
- Uses machine learning models through different stages of the system.
- Continuously uses new data and reuses previous training data to incrementally improve the models used for predicting good configurations.

System architecture

System architecture

At the beginning of the tuning session:

- DBA specifies which metric OtterTune needs to improve.
- Controller connects to target DBMS and starts observation period.

Observation period

Aim: Collect current knob configuration and runtime statistics for both DBMS-independent external metric and DBMS-specific internal metric.

Main steps performed by the controller:

- 1. Reset statistics for target DBMS.
- 2. Execute some workload trace or a set of queries specified by the DBA.
- 3. Observe DBMS and measures metrics specified by DBA.
- 4. At the end, collect additional DBMS-specific internal metrics.
- 5. Store metrics with the same name as a single sum scalar value.

System architecture

After the observation period:

- Controller sends results to the tuning manager.
- Tuning manager stores all of the information in the data repository.
- OtterTune identifies the next configuration that should be installed on the DBMS.

Machine Learning Pipeline

Workload identification

Aim: identify characteristic aspects of target workload.

- Make use of the runtime statistics recorded while executing workload.
- OtterTune is DBMS independent since metrics collected do not need to be labelled.

Prune redundant metrics

Factor Analysis

k-means clustering

- Pre-processing step.
- Dimensionality reduction.
- Reduce the noise in the data.

- Find groups of metrics similar to each other.
- Select one metric from each group.

Factor analysis

 Knob Configurations

 Metrics
 X_{ij} =
 value of metric i under configuration j

Factor analysis

Knob Configurations

Metrics

Factors

Scatter-plot

k-means clustering

Select one metric from each cluster

non-redundant metrics

clusters of metrics

Identify important knobs

• Find knobs that affect system's performance.

• Identify dependencies between knobs by adding polynomial features.

• Dynamically increase the number of knobs used in the tuning session.

Lasso regression

Knobs (or functions of knobs)

Aim: find relationship between knob (or functions of knobs) and metrics.

- Variant of linear regression.
- Adds an L1 penalty to the loss function.

- Remove irrelevant knobs by shrinking their weights to zero.
- Orde knobs by order of appearance in regression.

Automatic tuning

Workload mapping

Configuration Recommendation

• Find workload in the data repository similar to the target workload.

 Use Gaussian Process (GP) regression to find knob configuration that would target metric.

Workload mapping

X = value of metric m when executing workload i for configuration j

- For each metric m:
 - Compute Euclidean distance between target workload and each other workloads i.
- Compute score for workload i by averaging distance over all possible metrics.
- Select workload with lowest score.

Gaussian Process (GP) regression

• Use data from mapped workload to train a GP model.

• Update model by adding observed metrics from target workload.

http://mlg.eng.cam.ac.uk/teaching/4f13/1718/

Exploration

- Search unknown areas of the GP.
- Useful for getting more data.
- Helps identify configurations with knob values beyond limits tried in the past.

Exploitation

- Select configuration similar to best configuration found in the GP.
- Makes slight modifications to previously known good configurations.

Configuration recommendation

- Exploration/Exploitation strategy depends on variance of data points.
- Always select configuration with greatest expected improvement.
- Use gradient descent to find the configuration that maximizes potential improvement.
 - Initialization set: top-performing configurations + configurations for which knob values are selected randomly.
 - Finds local optimum on surface predicted by GP.

System architecture

DBMS evaluated

OLTP DBMS

OLTP DBMS

OLAP DBMS

Workloads

YCSB	 Yahoo! Cloud Serving Benchmark (OLTP) Simple workload with high scalability requirement. (18m tuples)
TPC-C	 OLTP benchmark Simulates an order processing application. (200 workhouses)
Wikipedia	 OLTP benchmark Transactions -> most common operations in Wikipedia for article and "watchlist" management. (100k articles)
ТРС-Н	 Simulates OLAP environment Little prior knowledge of queries.

Elements evaluated

- Influence of the number of knobs used in the performance.
 - The incremental approach works best for all DBMSs.
 - OtterTune identifies the optimal number of knobs that should be tuned.
- Comparison with iTuned [2].
 - Demonstrates that continuously integrating new training data helps with performance.
 - OtterTune works much better on OLTP workloads, but it has similar performance with ITuned on OLAP workloads.

Note: Before starting the evaluation, training data was obtained to bootstrap OtterTune's repository.

Execution time breakdown

Workload execution

Prep & reload config

Workload mapping

Config generation

Efficacy Evaluation

DBA configuration, and (5) Amazon RDS configuration.

Lithuanian DBA configuration, and (5) Amazon RDS configuration.

Assumptions and limitations of OtterTune

Assumptions

- Assume that the OtterTune controller has administrative privileges on the DBMS.
 - If not, DBA needs to deploy a second copy for trials.
- Assume that the DBA is aware of dangerous knobs which they can add to a blacklist of knobs that OtterTune does not change.
- Assume that physical design of database is reasonable. (e.g. proper indices already installed)

Limitations

- OtterTune only considers global knobs.
- It also ignores the cost of restarting the DBMS when suggesting configurations.

Problems deferred as future work....

- Automatically identify knobs that require DBMS restarting.
- Taking into consideration the cost of restarting when recommending configurations.
- Automatically determining if certain knobs can cause application to lose data.
- Consider tuning table or component-specific knobs.

Contributions of the paper

OtterTune:

- Can find good configurations for a much larger number of knobs than previous automatic database tuning system.
- Can also identify dependencies between knobs.
- Generates configurations much faster than previous systems.
- Leverages machine learning techniques and data from past configurations.

Criticism (my opinion)

- Details are not very well explained.
- OtterTune still needs significant input from the DBA.
- Approach is overly complicated and has a lot of limitations.
- Not being able to determine which knobs can cause data loss is dangerous.

References

[1] Van Aken, Dana, et al. "Automatic Database Management System Tuning Through Large-scale Machine Learning." *Proceedings of the 2017 ACM International Conference on Management of Data*. ACM, 2017.

[2] Duan, Songyun, Vamsidhar Thummala, and Shivnath Babu. "Tuning database configuration parameters with iTuned." *Proceedings of the VLDB Endowment* 2.1 (2009): 1246-1257.

Thank you! Questions?