Automatic Database Management System Tuning Through Large-scale Machine Learning

Van Aken Dana et al. [1]
Problems with database management systems (DBMS) configuration tuning

- Standard approach: employ a database administrator (DBA) to tweak knobs through “trial-and-error”
- Main problems:
 - Dependencies
 - Continuous Setting
 - Non-reusable configurations
 - Tuning complexity
OtterTune

- Reduces the required input from the DBA.
- Works for any DBMS.
- Uses machine learning models through different stages of the system.
- Continuously uses new data and reuses previous training data to incrementally improve the models used for predicting good configurations.
System architecture
System architecture

At the beginning of the tuning session:

- DBA specifies which metric OtterTune needs to improve.
- Controller connects to target DBMS and starts observation period.
Aim: Collect current knob configuration and runtime statistics for both DBMS-independent external metric and DBMS-specific internal metric.

Main steps performed by the controller:

1. Reset statistics for target DBMS.
2. Execute some workload trace or a set of queries specified by the DBA.
3. Observe DBMS and measures metrics specified by DBA.
4. At the end, collect additional DBMS-specific internal metrics.
5. Store metrics with the same name as a single sum scalar value.
System architecture

After the observation period:

- Controller sends results to the tuning manager.
- Tuning manager stores all of the information in the data repository.
- OtterTune identifies the next configuration that should be installed on the DBMS.
Machine Learning Pipeline
Workload identification

Aim: identify characteristic aspects of target workload.

- Make use of the runtime statistics recorded while executing workload.
- OtterTune is DBMS independent since metrics collected do not need to be labelled.
Prune redundant metrics

- Pre-processing step.
- Dimensionality reduction.
- Reduce the noise in the data.

- Find groups of metrics similar to each other.
- Select one metric from each group.
Factor analysis

Knob Configurations

Metrics

\(X_{ij} \) = value of metric i under configuration j
Factor analysis

Knob Configurations

Factors

Metrics

\[U_{ij} = \text{coefficient of metric } i \text{ in factor } j \]
Scatter-plot

Factors

Metrics

Coordinates for i-th metric

Factors

i-th row

scatter-plot
k-means clustering

scatter-plot

k-means clustering

clusters of metrics
Select one metric from each cluster

clusters of metrics

select one metric from each cluster

non-redundant metrics
Identify important knobs

- Find knobs that affect system’s performance.
- Identify dependencies between knobs by adding polynomial features.
- Dynamically increase the number of knobs used in the tuning session.
Lasso regression

Aim: find relationship between knob (or functions of knobs) and metrics.

- Variant of linear regression.
- Adds an L1 penalty to the loss function.

- Remove irrelevant knobs by shrinking their weights to zero.
- Order knobs by order of appearance in regression.
Automatic tuning

Workload mapping

- Find workload in the data repository similar to the target workload.

Configuration Recommendation

- Use Gaussian Process (GP) regression to find knob configuration that would target metric.
Workload mapping

For each metric m:
 - Compute Euclidean distance between target workload and each other workloads i.

- Compute score for workload i by averaging distance over all possible metrics.
- Select workload with lowest score.

X_{mij} = value of metric m when executing workload i for configuration j
Gaussian Process (GP) regression

- Use data from mapped workload to train a GP model.
- Update model by adding observed metrics from target workload.

http://mlg.eng.cam.ac.uk/teaching/4f13/1718/
Exploration

- Search unknown areas of the GP.
- Useful for getting more data.
- Helps identify configurations with knob values beyond limits tried in the past.

Exploitation

- Select configuration similar to best configuration found in the GP.
- Makes slight modifications to previously known good configurations.
Configuration recommendation

- Exploration/Exploitation strategy depends on variance of data points.

- Always select configuration with greatest expected improvement.

- Use gradient descent to find the configuration that maximizes potential improvement.
 - Initialization set: top-performing configurations + configurations for which knob values are selected randomly.
 - Finds local optimum on surface predicted by GP.
System architecture
Evaluation
DBMS evaluated

OLTP DBMS
MySQL

OLTP DBMS
PostgreSQL

OLAP DBMS
Vector
Workloads

<table>
<thead>
<tr>
<th>Workload</th>
<th>Details</th>
</tr>
</thead>
</table>
| YCSB | Yahoo! Cloud Serving Benchmark (OLTP)
Simple workload with high scalability requirement. (18m tuples) |
| TPC-C | OLTP benchmark
Simulates an order processing application. (200 workhouses) |
| Wikipedia | OLTP benchmark
Transactions -> most common operations in Wikipedia for article and “watchlist” management. (100k articles) |
| TPC-H | Simulates OLAP environment
Little prior knowledge of queries. |
Elements evaluated

- Influence of the number of knobs used in the performance.
 - The incremental approach works best for all DBMSs.
 - OtterTune identifies the optimal number of knobs that should be tuned.
- Comparison with iTuned [2].
 - Demonstrates that continuously integrating new training data helps with performance.
 - OtterTune works much better on OLTP workloads, but it has similar performance with iTuned on OLAP workloads.

Note: Before starting the evaluation, training data was obtained to bootstrap OtterTune’s repository.
Execution time breakdown

- MySQL
- Postgres
- Vector

Workload execution
Prep & reload config
Workload mapping
Config generation
Efficacy Evaluation

Figure 10: Efficacy Comparison (MySQL) – Throughput and latency measurements for the TPC-C benchmark using the (1) default configuration, (2) OtterTune configuration, (3) tuning script configuration, (4) Lithuanian DBA configuration, and (5) Amazon RDS configuration.

Figure 11: Efficacy Comparison (Postgres) – Throughput and latency measurements for the TPC-C benchmark using the (1) default configuration, (2) OtterTune configuration, (3) tuning script configuration, (4) expert DBA configuration, and (5) Amazon RDS configuration.
Assumptions and limitations of OtterTune
Assumptions

- Assume that the OtterTune controller has administrative privileges on the DBMS.
 - If not, DBA needs to deploy a second copy for trials.

- Assume that the DBA is aware of dangerous knobs which they can add to a blacklist of knobs that OtterTune does not change.

- Assume that physical design of database is reasonable. (e.g. proper indices already installed)
Limitations

- OtterTune only considers global knobs.

- It also ignores the cost of restarting the DBMS when suggesting configurations.
Problems deferred as future work....

- Automatically identify knobs that require DBMS restarting.
- Taking into consideration the cost of restarting when recommending configurations.
- Automatically determining if certain knobs can cause application to lose data.
- Consider tuning table or component-specific knobs.
Summary
Contributions of the paper

OtterTune:

- Can find good configurations for a much larger number of knobs than previous automatic database tuning system.
- Can also identify dependencies between knobs.
- Generates configurations much faster than previous systems.
- Leverages machine learning techniques and data from past configurations.
Criticism (my opinion)

- Details are not very well explained.
- OtterTune still needs significant input from the DBA.
- Approach is overly complicated and has a lot of limitations.
- Not being able to determine which knobs can cause data loss is dangerous.
References

Thank you! Questions?