
Automatic Database Management System Tuning
Through Large-scale Machine Learning

Van Aken Dana et al. [1]

LSDPO (2017/2018)
Paper Presentation: Ioana Bica (ib354)

Problems with
database
management
systems (DBMS)
configuration
tuning

● Standard approach: employ a
database administrator (DBA)
to tweak knobs through
“trial-and-error”

● Main problems:

○ Dependencies

○ Continuous Setting

○ Non-reusable
configurations

○ Tuning complexity

OtterTune

● Reduces the required input from the DBA.

● Works for any DBMS.

● Uses machine learning models through different stages of the system.

● Continuously uses new data and reuses previous training data to incrementally improve

the models used for predicting good configurations.

System architecture

System architecture

At the beginning of the tuning session:

● DBA specifies which metric
OtterTune needs to improve.

● Controller connects to target DBMS
and starts observation period.

DBMS API

Observation period

Main steps performed by the controller:

1. Reset statistics for target DBMS.

2. Execute some workload trace or a set of queries specified by the DBA.

3. Observe DBMS and measures metrics specified by DBA.

4. At the end, collect additional DBMS-specific internal metrics.

5. Store metrics with the same name as a single sum scalar value.

Aim: Collect current knob configuration and runtime statistics for both
DBMS-independent external metric and DBMS-specific internal metric.

System architecture

After the observation period:

● Controller sends results to the
tuning manager.

● Tuning manager stores all of the
information in the data repository.

● OtterTune identifies the next
configuration that should be
installed on the DBMS.

Machine Learning Pipeline

Workload identification

● Make use of the runtime statistics recorded while executing workload.

● OtterTune is DBMS independent since metrics collected do not need to be labelled.

Aim: identify characteristic aspects of target workload.

Prune redundant metrics

Factor Analysis

● Pre-processing step.
● Dimensionality reduction.
● Reduce the noise in the data.

k-means clustering

● Find groups of metrics similar
to each other.

● Select one metric from each
group.

Factor analysis

Metrics

Knob Configurations

X =
ij

value of metric i under
configuration j

Factor analysis
M

et
ric

s

Knob Configurations

M
et

ric
s

Factors

 U =
ij

coefficient of metric i
in factor j

factor
analysis

Scatter-plot
M

et
ric

s

Factors

scatter-plot

Coordinates for i-th metric

Factors

i-th row

k-means clustering

scatter-plot

k-means
clustering

clusters of metrics

Select one metric from each cluster

non-redundant metrics
clusters of metrics

select one metric
from each cluster

Identify important knobs

● Find knobs that affect system’s performance.

● Identify dependencies between knobs by adding polynomial features.

● Dynamically increase the number of knobs used in the tuning session.

Lasso regression

● Variant of linear regression.

● Adds an L1 penalty to the loss function.

Im
po

rta
nc

e

Knobs
(or functions of knobs)

● Remove irrelevant knobs by shrinking their

weights to zero.

● Orde knobs by order of appearance in

regression.

Aim: find relationship between knob (or functions
of knobs) and metrics.

Automatic tuning

Workload mapping

● Find workload in the data
repository similar to the
target workload.

Configuration Recommendation

● Use Gaussian Process (GP)
regression to find knob
configuration that would
target metric.

Workload mapping

w
or

kl
oa

d X =
mij

value of metric m when executing
workload i for configuration j

● For each metric m:
○ Compute Euclidean distance between target workload and each other

workloads i.
● Compute score for workload i by averaging distance over all possible metrics.
● Select workload with lowest score.

Gaussian Process (GP) regression

● Use data from mapped workload to

train a GP model.

● Update model by adding observed

metrics from target workload.

http://mlg.eng.cam.ac.uk/teaching/4f13/1718/

ExploitationExploration

● Search unknown areas of the
GP.

● Useful for getting more data.

● Helps identify configurations
with knob values beyond limits
tried in the past.

● Select configuration similar to
best configuration found in the
GP.

● Makes slight modifications to
previously known good
configurations.

● Exploration/Exploitation strategy depends on variance of data points.

● Always select configuration with greatest expected improvement.

● Use gradient descent to find the configuration that maximizes potential improvement.

○ Initialization set: top-performing configurations + configurations for which knob values
are selected randomly.

○ Finds local optimum on surface predicted by GP.

Configuration recommendation

System architecture

Evaluation

DBMS evaluated

Vector

OLTP DBMS OLTP DBMS OLAP DBMS

Proposed deliverablesYCSB
● Yahoo! Cloud Serving Benchmark (OLTP)

● Simple workload with high scalability requirement. (18m tuples)

TPC-C
● OLTP benchmark

● Simulates an order processing application. (200 workhouses)

Wikipedia

● OLTP benchmark

● Transactions -> most common operations in Wikipedia for

article and “watchlist” management. (100k articles)

TPC-H
● Simulates OLAP environment

● Little prior knowledge of queries.

Workloads

Elements evaluated

● Influence of the number of knobs used in the performance.

○ The incremental approach works best for all DBMSs.

○ OtterTune identifies the optimal number of knobs that should be tuned.

● Comparison with iTuned [2].

○ Demonstrates that continuously integrating new training data helps with performance.

○ OtterTune works much better on OLTP workloads, but it has similar performance with
ITuned on OLAP workloads.

Note: Before starting the evaluation, training data was obtained to bootstrap OtterTune’s
repository.

Execution time breakdown

Efficacy Evaluation

Assumptions and limitations of
OtterTune

● Assume that the OtterTune controller has administrative privileges on the DBMS.
○ If not, DBA needs to deploy a second copy for trials.

● Assume that the DBA is aware of dangerous knobs which they can add to a blacklist of
knobs that OtterTune does not change.

● Assume that physical design of database is reasonable. (e.g. proper indices already
installed)

Assumptions

● OtterTune only considers global knobs.

● It also ignores the cost of restarting the DBMS when suggesting configurations.

Limitations

● Automatically identify knobs that require DBMS restarting.

● Taking into consideration the cost of restarting when recommending configurations.

● Automatically determining if certain knobs can cause application to lose data.

● Consider tuning table or component-specific knobs.

Problems deferred as future work….

Summary

OtterTune:

● Can find good configurations for a much larger number of knobs than previous automatic
database tuning system.

● Can also identify dependencies between knobs.

● Generates configurations much faster than previous systems.

● Leverages machine learning techniques and data from past configurations.

Contributions of the paper

● Details are not very well explained.

● OtterTune still needs significant input from the DBA.

● Approach is overly complicated and has a lot of limitations.

● Not being able to determine which knobs can cause data loss is dangerous.

Criticism (my opinion)

[1] Van Aken, Dana, et al. "Automatic Database Management System Tuning Through Large-scale Machine Learning." Proceedings of
the 2017 ACM International Conference on Management of Data. ACM, 2017.

[2] Duan, Songyun, Vamsidhar Thummala, and Shivnath Babu. "Tuning database configuration parameters with iTuned." Proceedings of
the VLDB Endowment 2.1 (2009): 1246-1257.

References

Thank you!
Questions?

