N. Lane et al. DeepX: A Software Accelerator for Low Power Deep Learning Inference on Mobile Devices

Alex Gubbay

The Problem

- Deep Learning Models are too resource intensive
- They often provide the best known solutions to problems
- Production mobile software using worse alternatives
- Supported in the cloud for high value use cases
- Handcrafted support

Solution: DeepX

- Software accelerator designed to reduce resource overhead
- Leverages Heterogeneity of SoC hardware
- Designed to be run as a black-box
- Two key Algorithms:
 - Runtime Layer Compression (RLC)
 - Deep Architecture Decomposition (DAD)

Runtime Layer Compression

- Provides runtime control of memory + compute
- Dimensionality reduction of individual layers
- Estimator accuracy at a given level of reduction
- Error protection:
 - Conservative redundancy sought out
- Input: (L and L + 1), Error Limit

Deep Architecture Decomposition

- Input: deep model, and performance goals
- Creates unit blocks, in decomposition plan
- Considers dependencies:
 - Seriality
 - Hardware resources
 - Levels of compression
- Allocates unit blocks
- Recomposes and outputs model result

Testing

- Proof of Concept
 - Model interpreter
 - Inference APIs
 - OS Interface
 - Execution planner
 - Inference host
- Run on two SoCs:
 - Snapdragon 800 CPU, DSP
 - Nivida Tegra K1 CPU, GPU, LPC

	Туре	Size	Architecture
AlexNet	CNN	60.9M	$c:5^{i}; p:3^{\ddagger}; h:2^{\star}; n:\{\text{all } 4096\}^{\dagger}$
SVHN	CNN	313K	$c:2^i; p:2^{\ddagger}; h:2^{\star}; n:\{1600,128\}^{\dagger}$
SpeakerID	DNN	1.8M	$h:2^*; n: \{all \ 1000\}^\dagger$
AudioScene	DNN	1.7M	$h:2^*; n:\{all \ 1000\}^\dagger$

^{*i*} convolution layers; [‡]pooling layers; ^{*}hidden layers; [†]hidden nodes

Results

	CPU	DSP	Cloud
	(only) (mJ)	(only) (mJ)	(only) (mJ)
AlexNet	933.5 (2.1×)	_	4978.4 (11.2×)
SVHN	$230.9(2.6 \times)$	$142.1 (1.6 \times)$	$1101.1 (12.4 \times)$
SpeakerID	$113.4~(8.1\times)$	$103.6~(7.4 \times)$	$124.2 (8.9 \times)$
AudioScene	$110.3 (8.0 \times)$	$99.3(7.2 \times)$	$122.7 (8.9 \times)$

	CPU	LPU	GPU	Cloud
	(only) (mJ)	(only) (mJ)	(only) (mJ)	(only) (mJ)
AlexNet	$1681.3 (13.2 \times)$	_	234.1 (1.8×)	2820 (22.1×)
SVHN	$479.6~(4.3 \times)$	_	$167.3 (1.5 \times)$	$1382.9~(12.4 \times)$
SpeakerID	$7.1~(7.8\times)$	$109.1~(120.4 \times)$	$1.3 (1.4 \times)$	$26.9(29.7 \times)$
AudioScene	$6.7 (7.6 \times)$	$106.1~(120.3 \times)$	$1.2 (1.4 \times)$	$26.1~(29.4 \times)$

	Relative Accuracy	Memory	
	Loss (%)	Reduction (%)	
AlexNet	4.9 (77.5 to 72.6)	75.5 (233 MB to 57 MB)	
SVHN	0.2 (83.9 to 83.7)	58.8 (16 MB to 7 MB)	
SpeakerID	3.2 (93.7 to 90.5)	92.8 (28 MB to 2 MB)	
AudioScene	4.3 (79.2 to 74.9)	77.8 (27 MB to 6 MB)	

Conclusions

- It is possible to run full size Deep Learning models on mobile hardware
- Thorough experimentation
- Paper is candid about its limitations:
 - Changes in resource availability
 - Resource estimation
 - Architecture optimisation
 - Deep learning hardware