Reviewing the Ligra single-node graph
processing framework

Thomas Parks
October 24, 2017

U. of Cam

Introduction

The paper

Ligra: A Lightweight Graph Processing Framework for Shared
Memory
Authors: Julian Shun and Guy E. Blelloch, CMU

A reaction to the availability of large single nodes.

The shift of computing

erver (GB) (Log scale)

Maximum RAM for DELL s¢

1997.5 2000.0 2002.5 2005.0 2007.5 2010.0 2012.5 2015.0
year

The RAM capacity for a single
server has grown exponentially,
with a knee approximately
where the use of clusters drops
off

Interest in processing graph
data has been relatively
constant over time, whereas
cluster computing fluctuates in
the published literature.

Ligra single node graph computations

APl inspired by Hybrid BFS".
Aims for every high efficiency by using CAS?
Outperforms Pregel on a per core and a absolute basis®.

Also claims superior performance per dollar and Joule®.

"Beamer, Asanovic, et al., Searching for a parent instead of fighting over
children: A fast breadth-first search implementation for graph500.
2Schweizer, Besta, and Hoefler, “Evaluating the Cost of Atomic Operations
on Modern Architectures”.

3This was not throughly explored in the paper.

“This was not mentioned again after claiming improvements in the abstract.

API

Ligra APl and motivating example

parents = [-1, .., -1]; // The parent of every node
UPDATE s, d
\ return CAS(parents[d], -1, s);
COND i
‘ return parents[i] == -1;
BFS G, r
parents[r] :=r;
frontier = r;
while size(frontier) I= 0 do
// For every vertex in the frontier,
UPDATE all neighbouring j if COND. Add
to returned set if UPDATE(i, j).
frontier ;= EDGEMAP(G, frontier, UPDATE, COND);

end

EDGEMAP working outwards

Semantics allow for multiple implementations with different
performance.

EDGEMAP_SPARSE G, U, F, C
result = {};
/* both loops fully parallel */
foreach vin U do
foreach v2 in out_neighbours(v) do
if C(v2) and F(v,v2) // not in the BFS tree
then
‘ add v2 to result;
end
end
end
return result; 5

EDGEMAP working outwards

Semantics allow for multiple implementations with different
performance.

Claimed Child
Failed Child

Peer
Valid Parent

Neighbors

Step 5

>Beamer, Asanovic¢, and Patterson, “Direction-optimizing Breadth-first
Search”. 6

EDGEMAP working over all elements

EDGEMAP_DENSE G, U, F, C
result = {};
/* first loop parallel */
foreach iin [0, .., [V(G)|] do
if C(i) // not in the BFS tree
then
foreach v in in_neighbours(i) do
if ve Uand F(v, i) then add i to result;
if not c(i) then break;
end

end
end
return result;

VERTEXMAP

VERTEXMAP U, F

result = {};

/* parallel loop */
foreach u € U do

‘ if F(u) then add u to result;

end

return result;

Performance measurements

12 Ligra scaling Pregel scaling
4 []
1.0 L °
081 @ [}
2
& ¢ .
2564 °
E] 0.61® °
(7
[
Q
Y 0.4
0.21
0.0 T T v v v v v
108 10° 10 100 200 300 400
Num. Edges (Log scale) Number of workers

Table 1: 1B vertex binary tree shortest path

Pregel 20 seconds 300 Nodes
Ligra 2 seconds 1 Node 9

Navigating the maze of Graphs

[Native Combblas & Graphlab
[Socialite EGiraph # Galois

100

10

(<)
1
f
|
|
|
|
2

Overall time (seconds)

Facebook |
Wikipedia |
Synthetic |

Livejournal

(b) Breadth-First Search

Figure 1: The real performance of algorithms can be hard to find.®

®Satish et al,, “Navigating the Maze of Graph Analytics Frameworks Using
Massive Graph Datasets”. i

Navigating the maze of Graphs

Ligra runtime

Galois runtime

twitter50
<)
o
1

104 + +

-1 L I B B
bfs cc dia pr sssp

Figure 2: Galois can implement Ligra simply.’

’Nguyen, Lenharth, and Pingali, “A Lightweight Infrastructure for Graph
Analytics”.

"

Questions?

Nice algo bits.

Graph diameter estimation.

Algorithm 7 Radii Estimation

1: Visited = {0, ..., 0} ©> initialized to all 0
2: NextVisited = {0, ..., 0} ©> initialized to all 0
3: Radii = {o0,...,00} > initialized to all co
4: round =0

5

6: procedure RADIIUPDATE(S, d)

7 if (Visited[d] # Visited[s]) then

8: ATOMICOR (&NextVisited[d], Visited(d] | Visited[s])

9: oldRadii = Radiid]

10: if (Radii[d] # round) then

11: return CAS(&Radii[d], oldRadii, round)

12: return 0

13

14: procedure ORCOPY()
15: NextVisited[i] = NextVisited[d] | Visited[s]

16: return |

17:

18: procedure RADING)

19: Sample K vertices and for each one set a unique bit in Visited to 1
20: Initialize Frontier to contain the K sampled vertices

21: Set the Radii entries of the sampled vertices to 0

22: while (s1zE(Frontier) # 0) do

23: round = round + 1

24: Frontier = EDGEMAP(G, Frontier, RADIIUPDATE, Cirye)
25: Frontier = VERTEXMAP(Frontier, ORCOPY)

26: SWAP(Visited, NextVisited) > switch roles of bit-vectors
27: return Radii

Associate a bit vector with each
vertex for all BFS searches, and
bitwise OR the current vertex
vector with neighbours.
Vertices that change are on the
new multiBFS frontier. Store
the iteration number of the
last time a vertex changed it's
vector. This is a lower bound
on centrality of that vertex, and
max(centrality) is the diameter.

12

	Introduction
	API
	Performance measurements
	Questions?

