
Pregel: A System for
Large-Scale Graph Processing

Grzegorz Malewicz,
Matthew	H.	Austern,

Aart J.	C.	Bik,
James	C.	Dehnert,

Ilan Horn,
Naty Leiser,

and	Grzegorz Czajkowski

Google,	 Inc.
2010



What is Pregel?

• A	System	for	Large-Scale	Graph	Processing.

• An	iterative	and	graph	specific	version	of	MapReduce.

• A	distributed	implementation	of	the	Bulk	Synchronous	Parallel	
model	(BSP).	

• Efficient,	scalable	and	fault-tolerant.



Graph Examples

•Web	Graphs.

• Social	networks.

• Transport	networks.

• Similarity	of	newspaper	articles.

• Paths	of	disease	outbreaks	(epidemiology)

• Citation	relationships.



Algorithms

•Maximum	Value.

• Shortest	Path.

• Clustering.

• Variations	of	Page	Rank.

•Minimum	Cut.

• Connected	Components.



Graph processing challenges

• Poor	locality	of	memory	access.

• Low	compute	to	communication	ratio.

• Changing	degree	of	parallelism	over	the	course	of	execution.



Previous Options

• Craft	a	custom	distributed	infrastructure.
• Lots	of	effort.
• Have	to	re-implement	for	each	new	algorithm	or	graph	representation.

• Use	existing	distributed	computing	platform	such	as	MapReduce.
• Can	lead	to	sub-optimal	performance	and	usability	issues.
• Better	fit	would	be	a	message	passing	model.

• Use	graph	algorithm	libraries	for	use	on	a	single	machine.
• Severely	limits	scale.

• Use	existing	parallel	graph	system.
• No	fault	tolerance	or	support	for	other	distributed	system	problems.



Pregel’s solution

• Implement	a	scalable	and	fault-tolerant	platform	with	an	API	that	is	
sufficiently	flexible	to	express	arbitrary	graph	algorithms.

• Just	like	MapReduce,	take	care	of	all	distributed	problems	behind	
the	scenes.

• Present	simple	functions	to	be	filled	in	by	the	programmer.

• Designed	to	be	optimal	for	graphs.



Pregel Computation

• One	Master	<->	Many	workers.

•Master	synchronizes	workers,	each	worker	
performing	a	computation	in	each	
Superstep.

•Worker’s	send	messages	between	
themselves.

• Iterates	until	all	vertices	vote	to	halt	a						
and	there	are	no	messages	in	transit.



Vertices

• Has	a	modifiable	value	and	a	list	of	its	
outgoing	edges	and	their	values.
• Only	computes	when	active.
• All	perform	the	same	function.

• Receives	all	messages	sent	to	it	in	the	previous	
superstep.

• Performs	computation.
• Sends	messages	(most	likely	along	outgoing	
edges).

• Optionally	vote	to	halt.

• Can	request	to	add/remove	vertices/edges.



Example: PageRank



Other Aspects

• Message	Passing
• Delivered	in	asynchronous	batches	using	buffer	.
• No	order	guarantees.

• Combiners
• Combines	messages	headed	for	destination.
• No	guarantee	it	will	happen.

• Aggregators
• Master	can	aggregate	data	passed	to	it	by	workers.
• Statistics,	coordination,	leader	assignment.

• Status	Page



Other Aspects

• Graph	Partitioning
• Uses	default	hash	on	ID.
• Can	be	replaced	to	get	better	locality.

• Fault	tolerance
• Check-pointing	to	persistent	storage.
• Failures	detected	using	pings.
• Frequency	automatically	calculated	by	mean	time	to	failure	model.

• Confined	recovery	being	looked	into.



Performance

• Tested	using	Single	Source	Shortest	Path	Algorithm	and	default	partitioning	hash.
• Using	binary	tree	and	log-normal	random	graphs.

• Gives	linear	runtime	increase	for	increasing	graph	size	for	both.
• Gives	poorer	performance	for	denser	graphs.



Performance

• For	binary	tree	on	fixed	
number	of	machines.



Criticism

• Master	is	a	single	point	of	failure.

• A	lot	of	network	communication,	especially	for	dense	graphs.

• Still	more	limited	(less	expressive)	than	systems	created	later.

• Hard	to	partition	the	graph	in	a	way	that	takes	advantage	of	locality.

• Synchronicity	slows	all	workers	to	the	slowest	worker.

• No	way	to	redistribute	load	between	workers.

• Performance	not	tested	against	any	other	systems	or	implementations.



Questions?


