Pregel: A System for
Large-Scale Graph Processing

Grzegorz Malewicz,
Matthew H. Austern,
Aart J. C. Bik,
James C. Dehnert,
llan Horn,

Naty Leiser,
and Grzegorz Czajkowski

Google, Inc.
2010

What is Pregel?

* A System for Large-Scale Graph Processing.
* An iterative and graph specific version of MapReduce.

e A distributed implementation of the Bulk Synchronous Parallel
model (BSP).

 Efficient, scalable and fault-tolerant.

Graph Examples

* Web Graphs.

* Social networks.

* Transport networks.

 Similarity of newspaper articles.

* Paths of disease outbreaks (epidemiology)

* Citation relationships.

Algorithms

* Maximum Value.

* Shortest Path.

* Clustering.

e Variations of Page Rank.
* Minimum Cut.

* Connected Components.

Graph processing challenges

* Poor locality of memory access.

* Low compute to communication ratio.

* Changing degree of parallelism over the course of execution.

Previous Options

e Craft a custom distributed infrastructure.

* Lots of effort.
* Havetore-implementforeach new algorithm or graph representation.

e Use existing distributed computing platform such as MapReduce.
e Can lead to sub-optimal performance and usability issues.

* Better fit would be a message passing model.

* Use graph algorithm libraries for use on a single machine.

* Severely limits scale.

* Use existing parallel graph system.

* No faulttoleranceor supportforother distributed system problems.

Pregel’s solution

* Implement a scalable and fault-tolerant platform with an API that s

sufficiently flexible to express arbitrary graph algorithms.

* Just like MapReduce, take care of all distributed problems behind

the scenes.

* Present simple functions to be filled in by the programmer.

* Designed to be optimal for graphs.

Pregel Computation

* One Master <-> Many workers.

* Master synchronizes workers, each worker
performing a computationin each

Computation + Superstep

Su pe rStep Communication

* Worker’s send messages between

SJ0SSa00.1d

themselves.

 |terates until all vertices vote to halt a

Time Barrier

and there are no messages in transit.

Vote to halt

Vertices (__[Active |

_/

Message received

Inactive :>

e Has a modifiable value and a list of its
outgoing edges and their values.

* Only computes when active.

e All perform the same function.

Receives all messagessentto it in the previous
superstep.

Performs computation.

Sends messages (most likely along outgoing
edges).

Optionally vote to halt.

* Can request to add/remove vertices/edges.

Superstep 0

Superstep 1

Superstep 2

Superstep &

Example: PageRank

class PageRankVertex

template <typename VertexValue, : public Vertex<double, void, double> {
typename EdgeValue, public:
typename MessageValue> virtual void Compute(Messagelterator* msgs) {
class.Vertex { if (superstep() >= 1) {
pu?llc. ‘ double sum = O;
virtual void Compute(MessageIterator* msgs) = 0; for (; !'msgs->Done(); msgs->Next())
‘ . sum += msgs—->Value();
const string& vertex_id() const; *MutableValue() =
int64 superstep() const; 0.15 / NumVertices() + 0.85 * sum;
}
const VertexValue& GetValue();
VertexValue* MutableValue(); if (superstep() < 30) {
OutEdgeIterator GetOutEdgeIterator(); const int64 n = GetOutEdgeIterator().size();
. . SendMessageToAllNeighbors (GetValue() / n);
void SendMessageTo(const string& dest_vertex, } else {
const MessageValue& message); VoteToHalt () ;
void VoteToHalt(); } ,
}; }

};

Other Aspects

* Message Passing
* Deliveredin asynchronous batches using buffer .
* No order guarantees.

 Combiners
 Combines messages headed for destination.
* No guarantee it will happen.

* Aggregators
* Master can aggregate data passed to it by workers.
e Statistics, coordination, leader assignment.

* Status Page

Other Aspects

* Graph Partitioning
* Uses default hash on ID.

* Can be replaced to get better locality.

* Fault tolerance
* Check-pointingto persistent storage.
* Failures detected using pings.
* Frequency automatically calculated by mean time to failure model.

* Confined recovery being looked into.

Performance

Tested using Single Source Shortest Path Algorithm and default partitioning hash.

Using binary tree and log-normal random graphs.

Gives linear runtime increase for increasing graph size for both.

Gives poorer performance for denser graphs.

800 800
700 700
) 3
T 600 s 600
o o]
S 500 S 500
wn wn
(] Q
£ 300 £ 300
= =
= 200 = 200
100 & ool
5G 10G 15G 20G 25G 30G 35G 40G 45G 50G 100M 200M 300M 400M 500M 600M 700M 800M 900M 1G

Number of vertices Number of vertices

Performance

* For binary tree on fixed

number of machines.

Runtime (seconds)

180
160
140
120
100

80 -

60
40

20

100

+

200 300 400 500 600 700

Number of worker tasks

—e

800

Criticism

* Master is a single point of failure.

* A lot of network communication, especially for dense graphs.

* Still more limited (less expressive) than systems created later.

* Hard to partition the graph in a way that takes advantage of locality.
* Synchronicity slows all workers to the slowest worker.

* No way to redistribute load between workers.

* Performance not tested against any other systems or implementations.

Questions?

