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Structure

• MapReduce motives


• Programming Model & Architecture


• Comparison with relevant work


• Results


• Critique
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Disclaimer

• We will not refer to:


• GFS/HDFS [2,4]


• Hadoop [4]
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MapReduce Motives
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A use case
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Data Mining Wars 

A Long Long Time ago (2004), in a galaxy not so far away, 
there were programmers who wanted to run distributed 

jobs. 

A big company, named Google, was running many of those. 

imagine running a query of how many google searches a 
user in Cambridge does during Michaelmas term. 

What would you do?
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Approach

• Write a job that would 
scan through the data 
and calculate the 
average.


• You would probably 
want it to be distributed.

1. Find an interface to the distributed 
filesystem or distribute the data.


2. Write a parallel program that splits 
the work in many threads/
processes.


3. Make sure that you handle 
hardware or other failures with 
minimal data losses.


4. Get intermediate results (may not 
fit in one machine memory)


5. Write and execute your query
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Problem

• Too much focus on preparing the workflow rather that the 
actual computation.


• Complex code that obscures the actual implementation.


• Generally harder to understand


• and maintain

8



MapReduce Era
~ 2003 - 2014
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MapReduce (MR)

• A programming model


• Based on 2 functions of functional programming


• map(): (k,v) => list(k1,v1)  
execute a function for every element in a collection


• reduce(): (k1,v1) => list(v2)  
aggregate results by key based on a function
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MR Model
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MR Architecture
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Notable Refinements
• Partitioning function


• Ordering guarantee


• Skipping bad records


• Backup tasks


• Distributed counters


• Status information infrastructure (HTTP server)
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Failure Semantics

• Master pings workers


• Map worker failure => re-execute map


• Failed map execution


• Error after map execution (data still on local disk)


• Reduce worker failure => re-execute reduce
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Relevant Work
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Relevant Work

Active disks 
Locality optimisation

Charlotte 
Backup task 
mechanism

Condor 
Cluster manager 

NOW-Sort 
Sorting facility

BAD-FS 
Redundant execution 

Network traffic 
minimisation

TACC 
Re-execution for fault-

tolerance

MapReduce

“Simplification and distillation of some […] models” [1]
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Relevant Work

BSP/MPI 
Higher level of 

abstraction 
No transparent fault-

tolerance

River 
Non-skewed 

completion times 
through careful 

scheduling*

vs MapReduce
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Results
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Experiment Setup
Grep experiment 

• 1010 100-byte records (1TB of data)


• Text occurence: 0,00092336%


• M=15,000 (64MB)


• R=1

Sorting experiment 

• 1010 100-byte records (1TB of data)


• 10-byte sort key


• M=15,000 (64MB)


• R=4,000

Equipment 

• 2GHz Intel® Xeon® Processors with 
HyperThreading


• 160GB IDE disks


• 4GB of memory (2-2.5GB available)


• Gigabit Ethernet link


• 100-200Gbps aggregate bandwidth
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Results
• Grep task 

Average throughput: ~66GHz


• Sort task  
Average throughput: ~11GHz


• Very scalable*


• Backup tasks and fault 
tolerance do work


• ~81% code reduction for 
Google’s Web Search service 
production indexing system

* s.t. Amdahl's law

• Usage 

• Machine Learning algorithms


• Clustering for Google News


• Reports for popular queries 
for Google Zeitgeist


• Properties extraction from 
crawled webpages


• Graph computations
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Why MapReduce?

• Abstraction for programmer


• Automatic parallelisation


• Almost linear scalability


• Load-balancing


• Fault-tolerance

• Locality optimisation


• Runs on commodity 
hardware


• Easy large-scale 
prototyping
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Critique
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Restrictive Model
• The model of execution is too restrictive.


• The same map() and reduce() function on all data. 
Only allows for data parallelisation.


• Inefficient for iterative update algorithms. Need of job 
pipelining. [6] 
(e.g. many Machine learning algorithms)

Map Reduce …Map Reduce Map Reduce
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Optimisations

• No distributed data query plan


• No context awareness between different jobs


• Large startup time for job propagation


• No caching or indexing [5,6]
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Considerations on the 
MR Master

• Single point of failure


• At scale, point of congestion for communications

Master
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• Pull-mode remote reads from reducers


• Multiple reduce workers reading different files from the 
same map worker, leads to high disk seek times [5].

Disk seeks

Requests =
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–Urs Hölzle [3] 
SVP Technical 

Infrastructure Google

“We don’t really use MapReduce anymore”
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Thank you
Q&A

Stefanos Laskaridis 
sl829@cam.ac.uk
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