
MapReduce
Simplified Data Processing on Large Clusters

Stefanos Laskaridis 
sl829@cam.ac.uk

by J. Dean and S. Ghemawat

R244: Large-Scale Data Processing and Optimisation
1

mailto:sl829@cam.ac.uk


Structure

• MapReduce motives


• Programming Model & Architecture


• Comparison with relevant work


• Results


• Critique

2



Disclaimer

• We will not refer to:


• GFS/HDFS [2,4]


• Hadoop [4]

3



MapReduce Motives

4



A use case

5



Data Mining Wars 

A Long Long Time ago (2004), in a galaxy not so far away, 
there were programmers who wanted to run distributed 

jobs. 

A big company, named Google, was running many of those. 

imagine running a query of how many google searches a 
user in Cambridge does during Michaelmas term. 

What would you do?

6



Approach

• Write a job that would 
scan through the data 
and calculate the 
average.


• You would probably 
want it to be distributed.

1. Find an interface to the distributed 
filesystem or distribute the data.


2. Write a parallel program that splits 
the work in many threads/
processes.


3. Make sure that you handle 
hardware or other failures with 
minimal data losses.


4. Get intermediate results (may not 
fit in one machine memory)


5. Write and execute your query

7



Problem

• Too much focus on preparing the workflow rather that the 
actual computation.


• Complex code that obscures the actual implementation.


• Generally harder to understand


• and maintain

8



MapReduce Era
~ 2003 - 2014

9



MapReduce (MR)

• A programming model


• Based on 2 functions of functional programming


• map(): (k,v) => list(k1,v1)  
execute a function for every element in a collection


• reduce(): (k1,v1) => list(v2)  
aggregate results by key based on a function

10



MR Model

11

i 
n 
p 
u 
t

o 
u 
t 
p 
u 
t

Map

Map

Map

Map

Reduce

Reduce
S 
h 
u 
f 
f 
l 
e

Map Phase Reduce Phase



MR Architecture

12



Notable Refinements
• Partitioning function


• Ordering guarantee


• Skipping bad records


• Backup tasks


• Distributed counters


• Status information infrastructure (HTTP server)

13



Failure Semantics

• Master pings workers


• Map worker failure => re-execute map


• Failed map execution


• Error after map execution (data still on local disk)


• Reduce worker failure => re-execute reduce

14



Relevant Work

15



Relevant Work

Active disks 
Locality optimisation

Charlotte 
Backup task 
mechanism

Condor 
Cluster manager 

NOW-Sort 
Sorting facility

BAD-FS 
Redundant execution 

Network traffic 
minimisation

TACC 
Re-execution for fault-

tolerance

MapReduce

“Simplification and distillation of some […] models” [1]

16



Relevant Work

BSP/MPI 
Higher level of 

abstraction 
No transparent fault-

tolerance

River 
Non-skewed 

completion times 
through careful 

scheduling*

vs MapReduce

17
* vs fine-grained task partitioning



Results

18



Experiment Setup
Grep experiment 

• 1010 100-byte records (1TB of data)


• Text occurence: 0,00092336%


• M=15,000 (64MB)


• R=1

Sorting experiment 

• 1010 100-byte records (1TB of data)


• 10-byte sort key


• M=15,000 (64MB)


• R=4,000

Equipment 

• 2GHz Intel® Xeon® Processors with 
HyperThreading


• 160GB IDE disks


• 4GB of memory (2-2.5GB available)


• Gigabit Ethernet link


• 100-200Gbps aggregate bandwidth

X



Results
• Grep task 

Average throughput: ~66GHz


• Sort task  
Average throughput: ~11GHz


• Very scalable*


• Backup tasks and fault 
tolerance do work


• ~81% code reduction for 
Google’s Web Search service 
production indexing system

* s.t. Amdahl's law

• Usage 

• Machine Learning algorithms


• Clustering for Google News


• Reports for popular queries 
for Google Zeitgeist


• Properties extraction from 
crawled webpages


• Graph computations

19



Why MapReduce?

• Abstraction for programmer


• Automatic parallelisation


• Almost linear scalability


• Load-balancing


• Fault-tolerance

• Locality optimisation


• Runs on commodity 
hardware


• Easy large-scale 
prototyping

20



Critique

21



Restrictive Model
• The model of execution is too restrictive.


• The same map() and reduce() function on all data. 
Only allows for data parallelisation.


• Inefficient for iterative update algorithms. Need of job 
pipelining. [6] 
(e.g. many Machine learning algorithms)

Map Reduce …Map Reduce Map Reduce

22



Optimisations

• No distributed data query plan


• No context awareness between different jobs


• Large startup time for job propagation


• No caching or indexing [5,6]

23



Considerations on the 
MR Master

• Single point of failure


• At scale, point of congestion for communications

Master

24



• Pull-mode remote reads from reducers


• Multiple reduce workers reading different files from the 
same map worker, leads to high disk seek times [5].

Disk seeks

Requests =

25



–Urs Hölzle [3] 
SVP Technical 

Infrastructure Google

“We don’t really use MapReduce anymore”

26



Thank you
Q&A

Stefanos Laskaridis 
sl829@cam.ac.uk

27

mailto:sl829@cam.ac.uk


References
1. Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified Data Processing on Large Clusters. Commun. 

ACM, 51(1), 107–113. https://doi.org/10.1145/1327452.1327492


2. Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The Google File System. SIGOPS Oper. Syst. Rev., 
37(5), 29–43. https://doi.org/10.1145/1165389.945450


3. Hölzle U., Google I/O (2014)


4. Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010). The Hadoop Distributed File System. In 
Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST) 
(pp. 1–10). Washington, DC, USA: IEEE Computer Society. https://doi.org/10.1109/MSST.2010.5496972


5. Stonebraker, M., Abadi, D., DeWitt, D. J., Madden, S., Paulson, E., Pavlo, A., & Rasin, A. (2010). 
MapReduce and Parallel DBMSs: Friends or Foes? Commun. ACM, 53(1), 64–71. https://doi.org/
10.1145/1629175.1629197


6. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., … Stoica, I. (2012). Resilient 
Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In Presented as 
part of the 9th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 12) 
(pp. 15–28). San Jose, CA: USENIX. Retrieved from https://www.usenix.org/conference/nsdi12/
technical-sessions/presentation/zaharia

28

https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1165389.945450
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1145/1629175.1629197
https://doi.org/10.1145/1629175.1629197

