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Motivation

● Existing distributed execution engines (MapReduce and Dryad) were inefficient 
for iterative algorithms. 

Dryad job [3]MapReduce job [2]
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Related work

Adding iteration capabilities to 
MapReduce:

● CGL-MapReduce 

● HaLoop

● Apache Mahout

Do not provide transparent fault tolerance.

Do not support task dependency graphs.
Job latency is increased by consecutive iterations.
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Related Work

Providing data-dependent control flow: 

● Pregel

(Google’s execution engine)

● Piccolo 

(data-centric programming model)

Composition of multiple computations not possible. 

Only operates on a single dataset. 

Does not provide transparent scaling.

Fault tolerance involves checkpointing. 
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CIEL

● dynamic control flow
● dynamic task dependencies 
● transparent fault tolerance
● transparent scaling 
● data locality

Can execute iterative and recursive algorithms as a single job. 
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Contributions

CIEL:

● dynamically builds  a data-flow DAG as tasks execute
● increases the algorithmic expressibility in execution engines, by allowing 

iterative or recursive algorithms to be executed as a single job
● implements memoization of task results 
● makes improvements to the fault tolerance mechanism
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Dynamic task graph

Consists of the following CIEL primitives:

● objects

○ unstructured sequence of bytes
○ with unique name

● references

● tasks

object name loc_1, loc_2, …., loc_n

future reference

concrete reference
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Tasks

Non-blocking atomic computations.

publish objects

spawn new tasks

Tasks
TASK

object_1 object_2

object_3

input dependencies

expected output

Cycles cannot be formed in the dependency graph. 
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Dynamic task graph example
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Lazy evaluation of objects

Start from the resulting 
object and recursively 
evaluate tasks as their 
dependencies become 
concrete. 
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System architecture

maintain current state of 
the dynamic task graph

keeps track of 
references 
published by tasks 
and the new 
spawned tasks
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Skywriting

● Turing complete programming language 

● used to write parallelised jobs that can run on CIEL

● dynamically typed

● allows data mapping mechanisms through static file referencing

Skywriting can express arbitrary data-dependent control flow. 
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Key features

● ref(url)

● spawn(f, [args, …]) 

● exec(executor, args, n)

● spawn_exec(executor, args, n)

● * - dereference unary operator 
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Using Skywriting to create tasks

Explicitly:

● using spawn()or spawn_exec()

Implicitly:

● using the *-operator 
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Memoisation

● memoise task results 
● enabled by using deterministic naming for the objects: 

executor H(args||n) i 

● and by using lazy evaluation (only execute tasks if there outputs can resolve 
dependencies) 
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Fault tolerance

● Worker failures are handled similarly to Dryad
○ re-execute task performed by failed worker  
○ re-execute tasks using data from the failed worker 

● Master failure: does not force the entire job to fail 
○ derive master state from set of active jobs 
○ use persistent logging and secondary masters
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Evaluation

● grep benchmark
● k-means clustering
● dynamic programming 

○ shows that CIEL has increased algorithmic expressivity compared to 
MapReduce

● impact of master failures on performance

● No recursive algorithm? 
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Grep
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k-mean clustering

● CIEL achieves higher cluster utilization and less constant overhead 
● CIEL is not any more scalable than Hadoop
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When to use (or not) CIEL? 

● CIEL enables clients to run iterative and recursive algorithms in a highly 
parallelized manner with transparent fault tolerance and transparent scaling

● CIEL was designed for coarse-grained parallelism across large data sets
○ For fine-grained parallelism, work-stealing schemes are better.
○ If data fits into RAM, Piccolo is more efficient.
○ If jobs share a lot of data, OpenMP is more appropriate.
○ For better scalability and performance use MPI.
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Drawbacks and ideas for improvement

● CIEL does not control the number of tasks it spawns.

● Modifications to the data flow graph during execution are centralized.

● When a worker fails, all of the tasks that depend on the task executed by that 
worker need to be re-executed. 
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Thank you!
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Questions?
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