
CIEL
A universal execution engine for distributed data-flow computing

Murray, Derek G., et al. [1]

LSDPO (2017/2018) Paper Presentation
Ioana Bica (ib354)

Overview

1. Motivation and related work

2. CIEL’s contributions

3. Dynamic task graph and system architecture

4. Skywriting

5. Fault tolerance

6. Evaluation

7. Final remarks

2

Motivation

● Existing distributed execution engines (MapReduce and Dryad) were inefficient
for iterative algorithms.

Dryad job [3]MapReduce job [2]
3

Related work

Adding iteration capabilities to
MapReduce:

● CGL-MapReduce

● HaLoop

● Apache Mahout

Do not provide transparent fault tolerance.

Do not support task dependency graphs.
Job latency is increased by consecutive iterations.

4

Related Work

Providing data-dependent control flow:

● Pregel

(Google’s execution engine)

● Piccolo

(data-centric programming model)

Composition of multiple computations not possible.

Only operates on a single dataset.

Does not provide transparent scaling.

Fault tolerance involves checkpointing.

5

CIEL

● dynamic control flow
● dynamic task dependencies
● transparent fault tolerance
● transparent scaling
● data locality

Can execute iterative and recursive algorithms as a single job.

6

Contributions

CIEL:

● dynamically builds a data-flow DAG as tasks execute
● increases the algorithmic expressibility in execution engines, by allowing

iterative or recursive algorithms to be executed as a single job
● implements memoization of task results
● makes improvements to the fault tolerance mechanism

7

Dynamic task graph

Consists of the following CIEL primitives:

● objects

○ unstructured sequence of bytes
○ with unique name

● references

● tasks

object name loc_1, loc_2, …., loc_n

future reference

concrete reference

8

Tasks

Non-blocking atomic computations.

publish objects

spawn new tasks

Tasks
TASK

object_1 object_2

object_3

input dependencies

expected output

Cycles cannot be formed in the dependency graph.

9

Dynamic task graph example

10

Lazy evaluation of objects

Start from the resulting
object and recursively
evaluate tasks as their
dependencies become
concrete.

11

System architecture

maintain current state of
the dynamic task graph

keeps track of
references
published by tasks
and the new
spawned tasks

12

Tasks are dispatched to the worker nearest to the data.

Skywriting

● Turing complete programming language

● used to write parallelised jobs that can run on CIEL

● dynamically typed

● allows data mapping mechanisms through static file referencing

Skywriting can express arbitrary data-dependent control flow.

13

Key features

● ref(url)

● spawn(f, [args, …])

● exec(executor, args, n)

● spawn_exec(executor, args, n)

● * - dereference unary operator

14

Using Skywriting to create tasks

Explicitly:

● using spawn()or spawn_exec()

Implicitly:

● using the *-operator

15

Memoisation

● memoise task results
● enabled by using deterministic naming for the objects:

executor H(args||n) i

● and by using lazy evaluation (only execute tasks if there outputs can resolve
dependencies)

16

Fault tolerance

● Worker failures are handled similarly to Dryad
○ re-execute task performed by failed worker
○ re-execute tasks using data from the failed worker

● Master failure: does not force the entire job to fail
○ derive master state from set of active jobs
○ use persistent logging and secondary masters

17

Evaluation

● grep benchmark
● k-means clustering
● dynamic programming

○ shows that CIEL has increased algorithmic expressivity compared to
MapReduce

● impact of master failures on performance

● No recursive algorithm?

18

Grep

19

k-mean clustering

● CIEL achieves higher cluster utilization and less constant overhead
● CIEL is not any more scalable than Hadoop

20

When to use (or not) CIEL?

● CIEL enables clients to run iterative and recursive algorithms in a highly
parallelized manner with transparent fault tolerance and transparent scaling

● CIEL was designed for coarse-grained parallelism across large data sets
○ For fine-grained parallelism, work-stealing schemes are better.
○ If data fits into RAM, Piccolo is more efficient.
○ If jobs share a lot of data, OpenMP is more appropriate.
○ For better scalability and performance use MPI.

21

Drawbacks and ideas for improvement

● CIEL does not control the number of tasks it spawns.

● Modifications to the data flow graph during execution are centralized.

● When a worker fails, all of the tasks that depend on the task executed by that
worker need to be re-executed.

22

References

[1] Murray, Derek G., et al. "CIEL: a universal execution engine for distributed data-flow computing."
Proc. 8th ACM/USENIX Symposium on Networked Systems Design and Implementation. 2011.

[2] www.cdmh.co.uk

[3] www.microsoft.com

[4] Dean, J., and S. Ghemawat. "MapReduce: simplified data processing on large clusters. OSDI’04
Proceedings of the 6th conference on Symposium on Opearting Systems Design and Implementation”,
dalam: International Journal of Enggineering Science Invention." URL: http://static. googleusercontent.
com/media/resear ch. google. com (diunduh pada 2015-05-10)(2004): 10-100.

[5] Isard, Michael, et al. "Dryad: distributed data-parallel programs from sequential building blocks."
ACM SIGOPS operating systems review. Vol. 41. No. 3. ACM, 2007.

23

http://www.cdmh.co.uk
http://www.microsoft.com

Thank you!

24

Questions?

25

