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ABSTRACT
Tensors are higher order generalizations of matrices to model
multi-aspect data, e.g., a set of purchase records with the
schema (user id, product id, timestamp, feedback). Ten-
sor factorization is a powerful technique for generating a
model from a tensor, just like matrix factorization generates
a model from a matrix, but with higher accuracy and richer
information as more attributes are available in a higher-
order tensor than a matrix. The data model obtained by
tensor factorization can be used for classification, recom-
mendation, anomaly detection, and so on. Though having
a broad range of applications, tensor factorization has not
been popularly applied compared with matrix factorization
that has been widely used in recommender systems, mainly
due to the high computational cost and poor scalability of
existing tensor factorization methods. Efficient and scal-
able tensor factorization is particularly challenging because
real world tensor data are mostly sparse and massive. In
this paper, we propose a novel distributed algorithm, called
Lock-Free Tensor Factorization (LFTF), which significantly
improves the efficiency and scalability of distributed ten-
sor factorization by exploiting asynchronous execution in a
re-formulated problem. Our experiments show that LFTF
achieves much higher CPU and network throughput than ex-
isting methods, converges at least 17 times faster and scales
to much larger datasets.

1. INTRODUCTION
Matrix factorization, also called matrix decomposition, is

a traditional technique for data analysis. One of the rep-
resentative applications of matrix factorization is recom-
mender systems. For example, matrix factorization has been
shown to be the superior collaborative filtering approach
than neighborhood methods according to the Netflix Prize
competition [5]. However, matrix factorization only models
the relation between two aspects (or columns) of the data
(typically between users and items), while there are other
columns of the data that may provide richer information.
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Tensor factorization, also called tensor decomposition, gen-
eralizes the problem of matrix factorization to factorize a
K-th order tensor instead of a matrix.

As more information is taken into account, tensor factor-
ization is able to picture the relations in a more accurate
way than matrix factorization [16]. The richer information
possessed by a tensor also leads to a broader range of ap-
plications than matrix factorization. Below we list some
common use cases of tensor factorization.

Application I: Recommender Systems. Tensor fac-
torization is a typical technique for context-aware collabora-
tive filtering [7, 16], as an improvement to the factorization
of a matrix that does not integrate other aspects (i.e., the
context) into the model. For example, a product retailer
may want to model users’ ratings on products over a third
aspect, e.g., time. He may select three columns (user id,
product id, timestamp) from a database table, and perform
a third order tensor factorization. If the location of the pur-
chase is also of interest, he may choose to construct a fourth
order tensor (user id, product id, location, timestamp) [7].
The resulting latent model obtained by tensor factorization
can be used for product recommendation, customer classi-
fication, product categorization, etc., in a way similar to
the matrix-based collaborative filtering but in a much more
accurate and contextually informative way.

Application II: Anomaly Detection. A network se-
curity analyst may want to extract (source-ip, target-ip,
port, timestamp) information from massive network intru-
sion logs, and construct a model using tensor factorization [15,
30]. The resulting model is useful in understanding network
usage patterns and in identifying network anomalies.

Application III: Social Network Analysis. Tensor
factorization is very useful in studying social networks. For
example, factorizing a (user id, user id, timestamp) tensor
can be used to analyze the change of community structures
over time, where the first two attributes form a who-friends-
whom network. A social network can also be interpreted
using a tensor (user id, user id, relation type), in which the
type of relations can be employer-employee, friends, fam-
ily and so on. Tensor factorization in this case facilitates
relation mining in social networks [25].

Tensor factorization can also be employed to attack differ-
ent data mining problems, e.g., Latent Dirichlet Allocation
(a commonly used topic model), with greatly improved effi-
ciency [2,3]. Real-world tensors can be enormous in size and
often very sparse. For example, the Amazon Movie reviews
corpora (used in our experiments) can be mapped to a third
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order tensor with size (889, 167× 253, 059× 1, 762, 532) and
having 720 million non-zeros entries. Therefore, it is impor-
tant to develop efficient and scalable tools for processing the
massive sparse tensors of today and of the future.

Existing Methods. Existing tools such as the Matlab
Tensor Toolbox and the Matlab N -way Toolbox solve tensor
factorization in Matlab with reasonable efficiency. However,
they operate strictly on data that can fit in main memory of
a single machine, and are thus not scalable solutions. Dis-
tributed solutions have been proposed [6, 10, 14, 15, 29] in
order to perform tensor factorization over large-scale data,
but existing distributed solutions are not efficient and are
thus not practical, especially for interactive data analytics
which are widely preferred by data scientists today. The
low efficiency and poor scalability of existing tensor factor-
ization methods have severely restricted the use of tensor
factorization in real-world applications.

Technical Challenges. While modeling data in a more
informative way using tensor is attractive, it is challeng-
ing to design an efficient and scalable method for solving
tensor factorization, especially in terms of distributed exe-
cution. Since tensor factorization involves more aspects of
data than matrix factorization, it is inherently a more dif-
ficult problem. Two commonly used methods are Alternat-
ing Least Squares (ALS) and Gradient Descent (GD). How-
ever, they introduce the intermediate data explosion prob-
lem because of the unnecessary materialization of Khatri-
Rao products [10, 15]. Stochastic Gradient Descent (SGD)
has been used as an alternative to avoid this drawback.
However, due to the use of BSP (Bulk Synchronous Par-
allel) style distributed computation, SGD-based tensor fac-
torization suffers from another problem, i.e., frequent global
synchronization barriers to avoid conflicting SGD updates,
resulting in poor scalability.

Proposed Solution. We found that by carefully re-
formulating the original tensor factorization problem, we
obtain a new form that allows us to plug in distributed
asynchronous execution, which has the potential to com-
pletely remove the synchronization overhead of BSP exe-
cution. In this way, we obtain a new solution that enjoys
the benefits of the state-of-the-art ALS-based and SGD-based
solutions (i.e., massive parallelism/light computation), yet
without their performance limitations (i.e., time-consuming
network transmission). We name the new solution as LFTF
(Lock Free Tensor Factorization).

The LFTF algorithm decomposes the original K-th or-
der tensor factorization problem into (K− 1) matrix fac-
torization subproblems, and solves them in stages. Each
subproblem is solved in one stage. Inside a stage, we de-
sign an asynchronous algorithm (called AsyncPSGD) to carry
out distributed SGD in order to solve the corresponding ma-
trix factorization subproblem. Across the stages, LFTF al-
ternates the updates among different modes of the tensor.
The design of the asynchronous algorithm unleashes the full
power of distributed SGD. Our algorithm only requires light
synchronization (with negligible overhead) between consecu-
tive stages, where the algorithm switches to update different
modes of the tensor. The asynchronous SGD inside a stage
ensures that updates are performed efficiently. Processing
in stages and synchronization between consecutive stages
guarantee the eventual convergence of the model.

Thanks to the lock-free design, LFTF suits well with the

hybrid characteristics of modern computing clusters, where
computing nodes are connected in a shared nothing architec-
ture, while inside each computing node multiple CPU cores
share the same main memory. In Section 5, we will show
that in contrast to existing solutions [6, 10, 14, 15, 29], the
design of LFTF is able to exploit much more benefits from
such a computing architecture to achieve much higher per-
formance, while producing high-quality factorizations com-
parable with existing methods [6, 10,14,15,29].

Contributions. In summary, our main contributions are
as follows.

1. Efficiency: The high performance provided by the
LFTF framework makes tensor analytics fast and prac-
tical. Extensive experiments show that our new ap-
proach is 17 times to orders of magnitude faster than
existing solutions [6, 10,14,15,29].

2. Generality and Usability: Ensured by high perfor-
mance, the proposed framework is able to carry out
large-scale tensor analytics at interactive speeds. The
framework is also handy for model parameter tuning
(e.g., regularization terms).

3. Scalability: The LFTF algorithm is highly scalable.
Our experiments show that LFTF is able to linearly
scale to 10 billion rows of data, which is significantly
larger than the size of data used in prior works [6, 10,
14,15,29].

Paper Organization. We first introduce some back-
ground in Section 2. In Sections 3 and 4, we present the
LFTF algorithm and its theoretical analysis. We evaluate
LFTF in Section 5, followed by related work in Section 6
and conclusions in Section 7.

2. BACKGROUND
In this section, we introduce the basic notations and back-

ground related to tensor factorization. We also introduce
some standard techniques and highlight the challenges of
applying them for factorizing large-scale tensors. We refer
readers to [17] for a detailed review of tensor factorization.

Table 1 lists some commonly used notations. Scalars are
denoted by lower-case letters such as x, y, z, and vectors by
bold lower-case letters such as x, y, z. Matrices are denoted
by upper-case letters, e.g., X, and their entries by lower-case
letters, e.g., xij , which is the entry corresponds to the i-th
row and j-th column of X. A K-th order tensor is denoted
by a calligraphic letter, e.g., X ∈ RI1×I2×...×IK , where Ii is
the size of the i-th mode of the tensor. An entry in a K-th
order tensor X is denoted by xi1,...,iK .

2.1 Tensor Rank and CP Factorization
With an exact analogue to the definition of the matrix

rank, the rank of a tensor X , denoted by rank(X ), is defined
as follows.

Definition 1. The rank of a tensor is the smallest num-
ber of rank-one tensors that generate the tensor as their sum,
i.e., the smallest R such that

X ≈
R∑
i=1

a1
i ◦ a2

i ◦ · · · ◦ aKi = JA1, A2, . . . , AKK, (1)
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Table 1: Commonly used notations

Symbol Description
X , X, x, x Tensor, matrix, vector, scalar
ai,bj , ck The i-th, j-th or k-th row of A, B, C
X(k) Mode-k unfolding of tensor X
X×k

A Mode-k product
C,Ak, k=1,. . .,K Core tensor and factor matrices
JA1, . . .,AKK Full outer product, A1 ◦ . . . ◦ AK

JC;A1, . . .,AKK Full multilinear product, C×1A1· · ·×KAK

⊗, �, ◦ Kronecker, Hadamard, and outer products
Ω, |Ω| Index set of observed entries, cardinality of Ω
‖·‖F , ‖·‖2 Frobenius norm, spectral norm

≈ + + + … 

a1 

c1 

b1 

a2 

c2 

b2 

aR 

cR 

bR 

Figure 1: Illustration of an R-component CP model for a
third order tensor

where ◦ denotes the outer product of vectors, i.e., (a1
i ◦

a2
i ◦ · · · ◦ aKi )i1,i2··· ,iK = [a1

i ]i1 [a2
i ]i2 · · · [a

K
i ]iK , and Ai =

[ai1,a
i
2 . . .aiR].

The tensor factorization form in Equation (1) is called
the CANDECOMP/PARAFAC (CP) factorization for K-th
order tensors. For example, the CP factorization for third
order tensors is expressed as

X ≈ JA,B,CK =

R∑
i=1

ai ◦ bi ◦ ci, (2)

where A,B and C are referred to as the factor matrix which
is the combination of the vectors from the rank-one compo-
nents, e.g., A=[a1 a2 . . .aR] ∈ RI1×R, as shown in Figure 1.
In the following discussion, we will also use the term latent
vector to refer to a row of a factor matrix.

In this sense, the approximation generally requires signif-
icantly less storage (i.e., O(R(I1 + I2 + · · ·+ IK)) than the
original tensor (i.e., O(I1× I2×· · ·× IK)). Thus, in this pa-
per, we focus on the CP factorization for large-scale sparse
tensor completion and decomposition problems as follows:

min
A,B,C

1

2

∑
(i,j,k)∈Ω

(Xijk−
R∑
r=1

airbjrckr)
2, (3)

where X is the partially observed tensor (usually very sparse)
and Ω denotes the set of indices observed.

2.2 Alternating Least Squares
The principled way to decompose large-scale sparse ten-

sors is the CP factorization, as stated in Equation (3). In [1],
Acar et al. presented a weighted batch least squares algo-
rithm for sparse tensor factorization. However, this algo-
rithm suffers from high computational complexity and is not
applicable for large-scale datasets.

To factorize a large tensor, the Alternating Least Squares
(ALS) strategy is used (e.g., in SALS [29], DFacTo [10] and
HaTen2 [14]) to update alternately various factor matrices,
e.g., A, B and C, as follows:

A+ ←− X(1)(B � C)(BTBCTC)†,

B+ ←− X(2)(C �A)(CTCATA)†,

C+ ←− X(3)(A�B)(ATABTB)†,

(4)

where A† denotes the Moore-Penrose pseudo-inverse of A.
Note that both DFacTo and HaTen2 utilize all entries of
tensor data to address the tensor factorization problem and
thus have poor performance as illustrated in Section 5, while
SALS (and also our method) considers only the observed
entries.

The ALS strategy is also used in the weighted batch Tucker
decomposition method, which also suffers from high com-
putational complexity and is not scalable. We present its
model as follows, which is used in our analysis in Section 4:

min
C,Ak

‖W ∗ (X − C ×1 A1 ×2 · · · ×K AK)‖2F , (5)

where Ak ∈ RIn×Rk , C ∈ RR1×···×RK is a core tensor with
the given Tucker rank (R1, . . . , RK), and ×k denotes the
mode-k product, ∗ denotes the Hadamard (elementwise)
product, and W is a nonnegative weight tensor with the
same size as X ,

wi1,i2··· ,iK =

{
1 if xi1,i2··· ,iK is known,
0 otherwise.

Another alternative is the stochastic gradient descent strat-
egy [6], which we discuss in details in the following subsec-
tion.

2.3 Stochastic Gradient Descent
Stochastic Gradient Descent (SGD) is a core building block

in solving matrix/tensor factorization used by many algo-
rithms [6,11,34,35]. Consider a third order tensor. Accord-
ing to Equation (3), using the Frobenius Norm Regulariza-
tion as an example, we can formulate the model as follows:

min
A,B,C

∑
(i,j,k)∈Ω

[(xijk−
K∑
r=1

airbjrckr)
2+λ(‖ai‖2+‖bj‖2+‖ck‖2)],

(6)
where λ > 0 is a regularization parameter. The update steps
are given as follows:

ai ← ai − ηt[(ai(bj . ∗ ck)T − xijk)(bj . ∗ ck) + λai],

bj ← bj − ηt[(ai(bj . ∗ ck)T − xijk)(ai. ∗ ck) + λbj ],

ck ← ck − ηt[(ai(bj . ∗ ck)T − xijk)(ai. ∗ bj) + λck],

(7)

where ηt denotes the learning rate at time t (readers may
refer to [10, 34] for some strategies of setting ηt), and .∗
represents the element-wise product.

Challenges of Applying SGD. As ALS and Gradient
Descent methods suffer from intermediate data explosion
problem [10, 15], SGD has been considered as a better al-
ternative. However, parallelizing SGD is tricky primarily
due to the conflicting update problem, i.e., threads across
the cluster may need to update the same sets of parameters,
but these updates are conflicting and the model may con-
verge slowly or even diverge. As a result, parallelization of
SGD needs to involve fine-grained or coarse-grained locking
across the network in order to avoid such conflicting up-
dates. The locking and waiting severely affect the efficiency
and degrade the overall performance.

In addition to the conflicting update problem, the layout
of the factor matrices also needs to be carefully designed,
since each machine in the cluster may need to update po-
tentially all the entries of the factor matrices based on its
partition of the training data. Thus, a bad layout of the fac-
tor matrices can lead to very high communication overheads
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due to updating the entries of the factor matrices through
the network.

One straightforward solution is to implement SGD upon
the Parameter Server framework [20, 32], which is a gen-
eral framework for distributed machine learning. Parameter
Server keeps the factor matrices in a distributed key-value
store. However, before each update, a worker needs to fetch
the latent vectors from the key-value store; and after the
update, it has to commit the update through the network
to the key-value store, resulting in significant overhead. The
state-of-the-art SGD-based solution is FlexiFaCT [6], which
addresses the conflicting update problem by training disjoint
sets of training data points. Two sets of points, P1 and P2,
are disjoint if for any point xijk ∈ P1 and ylmn ∈ P2, we
have i 6= l, j 6= m and k 6= n. FlexiFaCT trains disjoint sets
of points in parallel in each iteration, then invokes a global
barrier, and switches to next set in the next iteration. The
problem of such a partitioning scheme is that these disjoint
sets are usually small, resulting in shortlived iterations and
frequent global barriers. In each iteration, all threads have
to wait for the slowest one (usually the one getting most
training points), resulting in poor scalability.

In the following sections, we introduce the LFTF algo-
rithm, which is a novel lock-free solution to address the con-
flicting update problem with the following key advantages:
(1) it does not have the network transmission bottleneck
as in Parameter Server, (2) it does not suffer from the poor
scalability problem due to disjoint sets as in FlexiFaCT, and
(3) it removes the global barrier in SGD parallelization by
asynchronous processing.

3. THE LFTF ALGORITHM
In this section, we present the LFTF algorithm. We first

give an overview of the algorithm, and then we discuss the
detailed aspects of the algorithm including the data layout,
the non-blocking training process in each stage, and the im-
plementation details.

Following existing works on tensor factorization [6,10,14,
15, 29], in this paper we also focus on factorizing 3-order
tensors, while briefly describing the extension of the LFTF
algorithm to handle higher order tensors as well as streaming
data.

3.1 Overview
In LFTF, each mode of a K-th order tensor X may have

one of the three different roles, namely, ρm, ρp and ρr,
where the subscripts refer to “migrating”, “partitioned”,
and “replicated”, respectively, the function of each role will
be discussed shortly. For simplicity, our discussion assumes
that X is a third order tensor, and we will discuss how to
extend to higher order later.

LFTF proceeds in stages. Among the three roles, ρm is
fixed in all stages and we assign a mode in M to ρm before
the first stage, where M= {1, 2, 3}. Assume w.l.o.g. that
we assign ρm = 1 (which means the first mode is assigned
the “migrating” role), then ρm is fixed to 1 throughout the
whole training process. After fixing ρm, the algorithm cycles
ρp among the remaining modes, while ρr is the next mode of
ρp in the cycle. In our example ofM={1, 2, 3} and ρm=1,
we cycle ρp among M\{ρm}={2, 3}, that is: ρp= 2 in the
first stage (which indicates ρr = 3), and ρp = 3 (and ρr = 2)
in the next stage, and then the cycle repeats in subsequent

Algorithm 1: Overall Process of LFTF

Input : Tensor XΩ ∈ RI×J×K , maximum number of
stages T , and regularization parameter λ

Output: A, B, and C
1 begin
2 Let P = [A,B,C]; Randomize A, B and C
3 Choose a ρm ∈M
4 Choose a ρp ∈M \ {ρm}

/* Compute stage by stage */

5 for t = 1, . . . , T do
6 AsyncPSGD (X , P , ρm, ρp)
7 Cycle ρp to the next mode in M\ {ρm}
8 Synchronize the updated entries in P ρp

stages. Thus, to be more precisely, LFTF proceeds in cycles
of stages.

A high-level view of LFTF is shown in Algorithm 1. Be-
fore the training actually starts, the three factor matrices
A, B and C of a 3D tensor are randomly initialized. Here,
we use P to represent a set of all the three factor matrices,
P i represents the factor matrix corresponding to the i-th
mode, and P ir refers to the r-th row of the factor matrix
P i. In each stage, LFTF first picks ρp, and then feeds the
factor matrices corresponding to the ρm-th mode and ρp-th
mode to an asynchronous SGD algorithm, AsyncPSGD (to be
described in later subsections). After that, updates to the
factor matrix P ρp are synchronized among the machines,
and then ρp cycles to another mode.

3.2 Data Layout
Now we explain how the three different roles relate to the

data layout. Suppose that A corresponds to the ρm-th mode,
B corresponds to the ρp-th mode, and C corresponds to the
ρr-th mode, then during the training in a particular stage:

1. B is evenly and horizontally partitioned across the
machines.

2. All rows of C are replicated among all machines.

3. All rows of A are migrating asynchronously among
the machines.

The above data layout shows that in each stage, a row of
A or B can be found in exactly only one of the M machines,
while all rows of C are available in any machine. When the
role of a mode is switching from ρp to ρr, the partition of the
factor matrix B in each machine needs to be broadcast and
synchronized among all the machines (i.e., B will correspond
to the replicated mode in the next stage).

While the layout of the factor matrices are changing dur-
ing the LFTF computation, the training data are partitioned
once only before the computation starts. First, one copy of
the training data is partitioned by the ρp-th mode (i.e., the
ρp-th attribute) among the machines in the cluster, and we
denote this partitioning by Ω1. Then, a second copy of the
training data is partitioned by the ρr-th mode (i.e., the ρr-th
attribute) among the machines, denoted by Ω2. Note that
the ρp-th and ρr-th mode here are the modes chosen for ρp
and ρr before the computation by stages starts.

Each training point pt of the training data in a 3D tensor
X is indexed by (i, j, k), such that xijk is the entry of pt in
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Algorithm 2: AsyncPSGD

Input : A tensor XΩ ∈ RI×J×K , P , ρm, and ρp
Output: Factor matrices A, B, and C

1 begin
/* Nlt concurrent threads being executed */

2 ParallelFor t ∈ {1, . . . , Nlt}
3 while switch signal is not received do
4 if queue[t] not empty then
5 P ρmr = queue[t].pop()

/* let µ be the id of this machine

*/

6 for (ai,bj , ck) ∈ Ωµρp ./ P
ρm
r do

7 Perform PartialGD

/* migrate among the machines */

8 migrate P ρmr to the next machine

X . We say a training point pt corresponds to a row P dr if
ptd = r, where d ∈ {1, 2, 3}, and ptd is the d-th index of pt.
We use Ωµi to denote the partition of Ωi (where i ∈ {1, 2})
stored in machine µ, and Ωµd ./ P ρmr to represent all the
training points in Ωµd that correspond to P ρmr .

3.3 Training
The AsyncPSGD (short for Asynchronous Partial Stochastic

Gradient Descent), an important component of LFTF, is
given in Algorithm 2. During the AsyncPSGD process inside
a stage, the rows of P ρm keep migrating among machines
(Line 8). Upon arrival at a machine, a latent vector P ρmr
will perform gradient descent over the training data in that
machine (Lines 2-7).

There are Nlt simultaneous training loops, where Nlt is
the number of local threads in use, each is called a trainer.
Each trainer is associated with a queue to receive incom-
ing latent vectors. At the beginning of a training loop, the
trainer will pop latent vectors from its queue. Upon the
availability of a new latent vector P ρmr , the trainer fetches
all the training points corresponding to P ρmr from the ma-
chine, iterates through the points, and updates P ρmr and the
latent vector of P ρp that the current point corresponds to.
Assume that ai, bj and ck are the i-th, j-th and k-th row
of A, B and C, respectively, involved in the update, where
C is replicated, then we perform the update, denoted by
PartialGD, as follows:

ai ← ai − ηt[(ai(bj . ∗ ck)T − xijk)(bj . ∗ ck) + λai],

bj ← bj − ηt[(ai(bj . ∗ ck)T − xijk)(ai. ∗ ck) + λbj ].
(8)

The name PartialGD is shorthand for partial gradient de-
scent, since the latent vectors of only two modes are up-
dated (compared with Equation (7)) and hence we refer to
the update process as a partial gradient descent process.

After iterating through all the training points correspond-
ing to P ρmr , P ρmr migrates to the next machine in a round-
robin manner, and is pushed into the queue of a trainer in
that machine. The trainer to process P ρmr is also chosen in
a round-robin manner. The training process ends when a
switch signal is received, which is issued by a global master
process. Upon receiving the switch signal, the AsyncPSGD

process ends, and ρp will cycle to the next mode.
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Figure 2: Converge speed vs. training duration

3.3.1 Faster LFTF Convergence
The AsyncPSGD process in Algorithm 2 terminates when

the switch signal is received. If the switch signal is not used
and the while-loop condition in Line 3 is always true, then
AsyncPSGD terminates when the asynchronous SGD process
in the current stage converges (let t be the time taken), after
sampling enough training points. However, we found that
if we terminate AsyncPSGD earlier before the asynchronous
SGD process converges in a stage (i.e., sampling less training
points), it leads to faster convergence to the overall LFTF
computation with similar error. As a micro benchmark, Fig-
ure 2 shows the overall LFTF convergence speedup when
running AsyncPSGD for a training duration of c · t, by vary-
ing c from 0.1 to 1. We observe a speedup of 3 times when we
terminate AsyncPSGD at 0.2t, though terminating AsyncPSGD

earlier leads to slower convergence likely because the over-
head of stage switching starts to nullify the benefit.

We explain the above finding as follows. Let err be the
error (e.g., root-mean-square error) obtained by running the
asynchronous SGD process in a stage until it converges. Of-
ten, AsyncPSGD achieves (err + δ) for a small constant δ at
time c · t for a small c < 1.0. In other words, the majority of
the training time in each stage is used in improving (err+δ)
to err, while (err+ δ) is in fact already a satisfactory error
that will lead to much faster overall LFTF convergence and
still achieve a comparable final error. Based on this observa-
tion, we design an optimization to bring faster convergence
to the overall LFTF computation as follows.

We can use a parameter c to set the training duration at
each stage, i.e., a master process issues a switch signal to
terminate AsyncPSGD after a duration of c · t. Similar to the
setting of the learning rate in SGD, it is difficult to come
up with a strong theoretical result for the choice of c, but a
value between 0.1 and 0.4 always gives a good overall LFTF
convergence speedup with comparable final error in all the
cases we tested. We set c = 0.2 as default. However, t
changes from stage to stage, in particular t is much smaller
in later stages. Thus, we cannot determine t. Instead, we
use the number of updates performed in each stage.

Recall that we cycle ρp among M\ {ρm}, and thus each
cycle consists of (|M| − 1) stages. Let N [i][j] be the num-
ber of updates performed in the j-th stage in the i-th cycle.
Although t changes, N [i][j] does not change much for dif-
ferent i. Thus, we can measure N [1][j] for 1 ≤ j < |M|
in the 1st cycle of the LFTF computation. Then, starting
from the 2nd cycle, we terminate AsyncPSGD after c ·N [1][j]
updates have been performed in the j-th stage of each cycle,
for 1 ≤ j < |M|.
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Figure 3: Incremental learning test

3.3.2 Choice of ρm
LFTF picks a mode for ρm that satisfies the following

conditions:

1. The size of this mode should be as small as possible.

2. The size of this mode should be at least larger than
the total number of cores in use in the cluster.

The first condition is intended to reduce network traf-
fic, by migrating a smaller amount of latent vectors in P ρm

during AsyncPSGD computation. The second condition is to
ensure that during the training, each core is busy processing
a migrating latent vector.

3.3.3 Handling of Skew Data Distribution
It is possible that the training data are highly skewed, in

which case the training data should no longer be partition
evenly. A simple and effective way is to sample the training
data and then partition the data in different ranges so that
each contains roughly the same amount of rows. In this
case, each migrating parameter will have roughly the same
amount of computation in each machine, and thus we can
mitigate the problem of stragglers.

3.4 Extending to Higher Order Tensor
Although our discussion so far focuses on a 3-mode ten-

sor, the LFTF algorithm can be extended to factorize a
higher order tensor. For factorizing a K-th order tensor
with K > 3, we still have 3 roles but make the following
change only: only one mode acts as ρm, another mode acts
as ρp, and the remaining (K−2) mode are ρr. There are
(K−1) copies of training data, corresponding to all the mode
inM\{ρm}, partitioned in a way similar to the third order
setting described in Section 3.2. The training process is also
similar to the process discussed in Section 3.3, and in each
stage only the latent vectors of ρm and ρp are updated.

3.5 Extending to Streaming Data
Another merit of LFTF is that it can be naturally ex-

tended to process streaming data, unlike most existing solu-
tions [6, 10,14,15,29]. Suppose there is a new training data
point coming in, we simply merge it into the corresponding
K − 1 sets of partitions. This process will not interrupt the
training, and the trainers just keep working until reaching
the new convergence.

Figure 3 shows a microbenchmarks on the Netflix (user id,
movie id, time) tensor data. We use only 70% of the original
data in the training, and each red dot represents streaming
10% of the original data to join the training. In fact, such
process is formally called Incremental Learning.

3.6 Implementation Details
LFTF is implemented based on a master-worker archi-

tecture, and runs one process on each worker. The master
issues commands to workers, e.g., cycling ρp to a different
mode (i.e., issuing a switch signal) or ending the training
process. Each worker process keeps one communicator thr-
ead, which is responsible for receiving commands from the
master and migrating rows (i.e., latent vectors) from other
workers.

After receiving the migrating rows, the communicator thr-
ead assigns them to the local trainers in a round-robin man-
ner. In this sense, the communicator also generates tasks (as
an incoming latent vector means a pending round of train-
ing), and distributes them evenly to the local trainers. A
process spawns Nlt local trainer threads, which keep polling
incoming latent vectors from their queues during the train-
ing process. Queues are implemented using a circular array
and are lock-free in the setting of single consumer and single
producer (as each trainer is associated with its own queue).
Our empirical experience shows that setting Nlt to 1.5Nc
results in good performance as it keeps all the CPU cores
busy, where Nc is the total number of physical cores in a
computing node.

During the training process in a stage, all the executions
are asynchronous. The communicator threads keep receiv-
ing parameters and the trainer threads keep sending out
parameters, while the trainer threads perform the training
and update the parameters after receiving them. In this
case, the CPU computation and the network communication
are both kept busy at the same time, unlike many existing
synchronous solutions [6, 10, 14, 15, 29] where the CPUs are
idle during massive network transmission.

3.7 Integration with General Systems
To show the value of the LFTF framework in practice,

we build an LFTF algorithm package on Husky (http://
www.husky-project.com/) [33], which is a general-purpose
distributed computing platform. The non-blocking asyn-
chronous execution of Husky greatly facilitates the imple-
mentation of LFTF (as LFTF requires some parameters to
be continuously migrated across the cluster), and its Python
binding makes access to the core functionality of LFTF
much easier. For example, the following statement trains
a model based on several columns of a relational table.

model = LFTF.train(

cols=(my_table[’user’],

my_table[’product’],

my_table[’location’]),

measure=my_table[’rating’])

A data scientist may explicitly require a specific type of
constraint (e.g., Non-Negative Constraint), and use the fol-
lowing command,

model = LFTF.train(

cols=(my_table[’user’],

my_table[’product’],

my_table[’location’]),

measure=my_table[’rating’],

constraint=LFTF.constraints.NonNeg())

When this model is prepared, LFTF provides two useful
methods, topk sim and topk rec, for mining useful infor-
mation from the model. The topk sim method identifies
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the top k similar entities, and topk rec provides the top k
recommendations with potentially high measurement given
other columns. These are two basic but commonly used
functions. Other methods can also be easily added to do
more advanced analytics based on the model. The following
code shows how to use topk sim and topk rec.

# return a list of 5 similar users

LFTF.topk_sim(key=’Alice’, dim=0, num=5)

# return a list of top 10 recommended products

# for Alice in London

LFTF.topk_rec((’Alice’, ’*’, ’London’), num=10)

4. THEORETICAL ANALYSIS OF LFTF
In this section, we analyze the complexity and completion

guarantee of the LFTF algorithm.

4.1 Complexity Analysis
Let Ω be the set of training data points and K be the order

of the input tensor (i.e., a K-th order tensor). Storing the
training data according to the layout in Section 3.2 requires
O((K−1)|Ω|) space. While the space requirement may be
high for a single machine, it is quite affordable in distributed
computing. For example, suppose M machines are used,
then each machine uses O(|Ω|(K − 1)/M) space. Let R be
the rank, then the space taken to store a latent vector is
O(R). Thus, the overall space complexity per machine is
O(|Ω|(K−1)/M +(I1 +I2 + · · ·+IK)R/M), where Ii is size
of the i-th mode of the K-th order tensor.

We follow a similar way to the time complexity analysis
in [34]. Let Im be the size of the “migrating” mode, and
Imax be the maximum size of any mode of the tensor. As-
sume that transmitting a latent vector requires d · R time
and performing an SGD update needs c·R time, where d and
c represent constants related to network latency and CPU
computation, respectively. Consider a single latent vector
that travels through all machines b times. The complexity

related to CPU computation is c · O(bR |Ω|
Im

), and the com-
plexity related to network transmission is d · O(bRM). An
upper bound of the time for broadcasting at the end of each

stage is d · O(RImax). In this case, when c · O(bR |Ω|
Im

) is
much larger than d · O(bRM) (which is usually true when
the conditions in Section 3.3.2 are satisfied), a stage of LFTF
computation is essentially CPU-bound. When the training
time inside a stage is much larger than d · O(RImax), the
whole LFTF computation is CPU-bound and scales linearly.
We verify our analysis by the following experimental results.

Figure 4 plots the network usage in factorizing the Netflix
tensor data obtained in our experiment. We can see that
most of the time the network usage is low, meaning that
the LFTF computation is CPU-bound. Also, the synchro-
nization of only one mode is observable (i.e., the spikes) in
the figure, since the cardinality of its associated attribute is
much larger than that of the other modes. During the short
periods when the spikes happen, AsyncPSGD is also working
on the updated values along with the synchronization with-
out being idle. The same observation also applies to other
datasets used in our experiments.

Next, we give an analysis to justify our design of fixing
one mode as the “migrating” mode in LFTF. An interesting
phenomenon we observed is that even if we cycle the “mi-
grating” status among the other modes, the result is still no

0

50

100

150

200

250

0 10 20 30 40 50

N
et

w
o

rk
 R

at
e

 (
M

B
/s

) 

Time (seconds) 

Figure 4: Network usage plot for factorizing the Netflix
tensor

better than fixing a “migrating” mode. The following is an
analysis to explain this phenomenon.

Consider a third-order tensor, X ∈ RI×J×K , assume with-
out loss of generality that I ≤ J ≤ K. According to Sec-
tion 3.3.2, we choose the 1-st mode as the “migrating” mode.
To simplify the analysis, we assume that the 3-rd mode is
selected as the “replicated” mode, and the entries of the in-
put tensor are all observed. Let A, B and C be the three
factor matrices of the tensor, corresponding to the 1-st, 2-nd
and 3-rd mode, respectively. Then, the update steps for A
and B are formulated as follows:

A+ ← A+ ηt
{[
A(C�B)T −X(1)

]
(C�B) + λA

}
,

B+ ← B + ηt
{[
B(C�A)T −X(2)

]
(C�A) + λB

}
.

(9)

Lemma 1. [9] Let M be an n1×n2 incoherent matrix of
rank r, and n = max{n1, n2}. Suppose that we observe m
entries of M with locations sampled uniformly at random.
Then, there exist constants C and c such that if

m ≥ Cn6/5r(β logn),

for some β > 2, then the minimizer to the nuclear norm
model is equal to M with probability at least 1− cn−β.

According to Lemma 1, the sampling complexity of the
three mode-k unfoldings completion problems is O((JK)1.2r
log(JK)), O((IJ)1.2r log(IJ)) and O((IK)1.2r log(IK)).
Thus, since I ≤ J ≤ K, completing the 2nd and 3rd mode
unfoldings requires lower measurements than completing the
1st mode unfolding.

4.2 Completion Guarantee
To provide the completion guarantee for factorizing higher-

order tensors, we extend the partial observation estimation
theorem for matrices as in [8, 31] to the higher-order tensor
case, which mainly involves a tensor covering number argu-
ment and Hoeffding inequality for sampling without replace-
ment [28]. In addition, we also analyze the decomposition
and completion performance of our sparse tensor completion
and decomposition model (6). For simplicity of discussion,
we assume that the 3rd-order tensor X is of size I × I × I,
and has tensor rank R, though our analysis can be easily
extended to the more general case, i.e., X ∈ RI1×I2×...×IK .

4.2.1 Tensor Covering Number Argument
We first extend the covering number argument for low-

rank matrices in [8,31] to third-order tensors [23], as stated
in the following theorem and lemma.
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Theorem 1. Let SR = {X ∈ RI×I×I |Tucker-rank(X )
�(R,R,R), ‖X‖F ≤ν}. Then there exists an ε-net SR with
the covering number |SR| for the Frobenius norm obeying

|SR| ≤ (12ν/ε)R
3+3RI . (10)

To prove Theorem 1, we first give the following lemma,
which uses the triangle inequality to characterize the com-
bined effects of perturbations in the factors of the higher-
order singular value decomposition (HOSVD) [18] form for
the true tensor T :

T = JA,B,CK = JC;U1, U2, U3K. (11)

Lemma 2. Let C, C′ ∈ RR1×R2×R3 and Uk, U
′
k ∈ RIk×Rk

with UTk Uk = IRk , U ′Tk U ′k = IRk , ‖C‖F ≤ ν and ‖C′‖F ≤ ν.
Then

‖JC;U1, U2, U3K− JC′;U ′1, U ′2, U ′3K‖F

≤‖C − C′‖F + ν

3∑
k=1

‖Uk − U ′k‖2.
(12)

The lemma is in essence the same as Lemma 2 in [24],
where the main difference is the ranges of ‖C‖F and ‖C′‖F :
instead of having ‖C‖F = 1 and ‖C′‖F = 1, we have ‖C‖F ≤
ν and ‖C′‖F ≤ ν, where ν>0 is any positive number. Using
Lemma 2, we construct an ε-net for SR by building ε/4-nets
for each of the 4 factors {Uk} and C.

4.2.2 Error Bound
We give the partial observation theorem for higher-order

tensor completion, which involves the covering number ar-
gument in Theorem 1 and the Hoeffding inequality for sam-
pling without replacement [28], stated as follows.

Theorem 2. Assume maxi1,i2,i3 |Xi1i2i3 |≤γ. Let L(X )=
1√
I3
‖X −X ′‖F and L′(X ) = 1√

|Ω|
‖XΩ−X ′Ω‖F be the actual

and empirical loss function, respectively. Then for all ten-
sors X with Tucker-rank (X ) � (R,R,R), with probability
greater than 1 − 2 exp(−I), there exists a fixed constant C
such that

sup
X∈SR

∣∣L(X )− L′(X )
∣∣ ≤ Cγ( (R3+3RI) log(

√
I3)

|Ω|

)1/4

.

The proof can be derived by following the proof of Theo-
rem 2 in [31], where the main difference is that the covering
number argument in Theorem 1 for third-order tensors is
used to replace that of Lemma A2 in [31] for low-rank ma-
trices.

In the following, we show that when sufficiently many en-
tries are sampled, the solution of our model recovers a tensor
close to the ground-truth one. We assume that the observed
tensor X ′ ∈RI×I×I can be decomposed as a true tensor T
with Tucker-rank (r, r, r) and a random gaussian noise E
whose entries are independently drawn from N (0, σ2), i.e.,
X ′=T + E .

Definition 2. The root mean square error (RMSE) is a
frequently used measure of the difference between the solution
X =JA,B,CK and the true tensor T :

RMSE :=
1√
I3
‖T − JA,B,CK‖F . (13)

Using the partial observation theorem for third-order ten-
sors, as stated in Theorem 2, we give the error bound for
our model as follows.

Theorem 3. Let X = JA,B,CK be the solution of our
sparse tensor completion and decomposition model (6). Then
there exists two absolute constants C1 and C2, such that with
probability at least 1− 2 exp(−I),

RMSE≤C1γ

(
(R3+3RI) log(

√
I3)

|Ω|

) 1
4

+
‖EΩ‖F
C2

√
|Ω|

+
‖E‖F√
I3

,

where γ=maxi1,i2,i3 |Xi1i2i3 |.

The proof can be derived in a way similar to that in [22].
From Theorem 3, we can see that when the sample com-

plexity |Ω|�(R3+3RI) log(
√
I3), the first term diminishes,

and the RMSE is essentially bounded by the average mag-
nitude of entries of the noise tensor E . In other words, our
algorithm is stable. If E = 0, i.e., without any noise, our
formulation needs only O(R3+3RI) observations to exactly
recover all X ∈ SR, as stated in Theorem 1 in [24], while
much more observations are required for recovering the true
tensor by the other models [13,21,24].

Due to space limitation, we put the detailed proofs of
the theorems in an online appendix of this paper: http:

//www.cse.cuhk.edu.hk/proj-h/pub/LFTF-appendix.pdf.

5. EXPERIMENTAL EVALUATION
We studied the performance of LFTF on 3 large real-world

datasets, comparing with the best existing methods [6, 10,
14,29]. We also evaluated the scalability of LFTF, using five
large synthetic datasets, with the number of rows ranging
from 2 billions to 10 billions. The results show that LFTF
has much superior performance, in terms of both conver-
gence rate and training error, and handles datasets much
larger than existing methods.

5.1 Experiment Settings
We compared with the following methods: HaTen2 [14],

CDTF [29], SALS [29], DFacTo-ALS [10], DFacTo-GD [10].
Among these methods, HaTen2 strictly adheres to the Map-
Reduce programming paradigm, while others do not and
hence the processes of different machines can directly com-
municate. The implementations of these methods are from
their authors and were carefully tuned so that their perfor-
mance match the results in their original papers.

We ran all the experiments on a Linux computing cluster,
where each machine has 48GB RAM, two 2.0GHz Intel(R)
Xeon(R) CPU (12 physical cores in total), a 450GB SATA
disk (6Gb/s, 10k rpm, 64MB cache), and a Broadcom Giga-
bit Ethernet NIC. The Hadoop version we used is Hadoop-
2.6.0, and for MPI it is MPICH-3.1.4. Unless otherwise
stated, we used 18 machines to run the experiments, and
we made sure that all programs involved in the experiments
had access to all the available computing resources.

5.2 Convergence Analysis
We first analyze the convergence rate, the training error

obtained at convergence, and other convergence character-
istics of LFTF and the existing methods.

In this set of experiments, we used three large real-world
datasets: Netflix, YahooMusic, and AmazonMovie. The
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Table 2: Summary of real-world datasets

Dataset I J K Observations

Netflix 480,189 17,770 2,182 100,480,507
YahooMusic 1,823,179 136,736 9,442 699,640,226

AmazonMovie 889,167 253,059 1,762,532 720,766,541
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Figure 5: Running time on Netflix (in log scale)

Netflix dataset has three columns, (user id, movie id, date),
and the YahooMusic dataset is in the form of (user id, mu-
sic id, artist id). The AmazonMovie dataset is converted
from the reviews of movies on Amazon into the form of
(user id, movie id, word), by splitting the review text into
words and removing stop words. Ratings by the users are
used as the measure. Table 2 gives a summary of the datasets.

5.2.1 Running Time Comparison
We ran all the methods to convergence and measured their

running time as the metric to evaluate the efficiency of each
algorithm. Figure 5 plots the running time (in log scale) of
the algorithms on the Netflix dataset. We first observe that
HaTen2 is two orders of magnitude slower than the other
algorithms, which we explain as follows. HaTen2 is imple-
mented on Hadoop and performs computation in rounds of
MapReduce jobs. Each iteration of HaTen2 involves hun-
dreds of MapReduce jobs; thus, by considering the overhead
of starting each MapReduce job alone, this can take several
thousands of seconds to complete an iteration. We omitted
the results of HaTen2 in the following study because Haten2
took hours or even days to finish a complete run.

Like HaTen2, SALS and CDTF are also implemented on
Hadoop. However, SALS and CDTF do not strictly follow
the MapReduce programming paradigm: when they enter
the Reduce phase, Reducers directly communicate with each
other and use message passing to perform distributed com-
puting. This allows them to get rid of the costly “context
switch” (i.e., dumping to HDFS and loading from it) be-
tween consecutive MapReduce jobs, and thus enjoy much
higher efficiency than HaTen2. Another algorithm, Flexi-
FaCT [6], is also implemented in this way, but it was shown
in [29] that FlexiFaCT is clearly beaten by both SALS and
CDTF, and thus SALS and CDTF serve as better baselines
for our comparison.

Figure 6 reports the running time of all the algorithms ex-
cept HaTen2 on the three real-world datasets. LFTF is the
fastest algorithm on all the three datasets. DFacTo-ALS and
DFacTo-GD are also fast, but they have poorer convergence
quality as to be shown in Section 5.2.2. SALS and CDTF
are at least 17 times slower than LFTF, which reveals the
advantage of using SGD in our LFTF approach, compared
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Figure 7: RMSE plot of Netflix (best viewed in color)

with the ALS approach adopted in SALS and CDTF. The
key difference is that LFTF performs updates using the lock-
free asynchronous SGD approach, and fully utilizes all the
CPU cores at all time.

5.2.2 Convergence Quality Comparison
Next, we plot the training root-mean-square error (RMSE)

over time to verify the correctness and monotonic decrease of
training error. We are interested in finding which algorithm
can produce lower RMSE within the same time period.

We first show in Figure 7 that DFacTo-ALS and DFacTo-
GD do not obtain reasonable RMSE for the Netflix dataset
(similar patterns also obtained for the other datasets), as
they only converge to a high RMSE value. Note that al-
though the two lines of DFacTo-ALS and DFacTo-GD look
flat in Figure 7, we actually ran them until convergence,
i.e., the decrease in their RMSE value is less than a thresh-
old (which is 0.0001 for all the algorithms). As a rating in
the Netflix dataset ranges from 1 to 5, an RMSE value of
greater than 3 implies that it is even worse than simply set-
ting 3 as the predicted rating for all entries. As the authors
of DFacTo-ALS and DFacTo-GD only reported the training
time but not the training error in [10], we also could not
make cross comparison of the results. Thus, we omit their
results in the following analysis.

Figure 8 shows the RMSE plot for all the datasets. LFTF
is able to attain a lower RMSE much faster than the other
methods. But we note that given sufficient time, the other
method such as SALS also attains similar RMSE as LFTF.

Analysis on performance improvement. LFTF is a
new solution that enjoys the benefits of the state-of-the-
art ALS-based and SGD-based solutions (i.e., massive par-
allelism/light computation), yet without their performance
limitations (i.e., time-consuming network transmission).
Thus, LFTF shares similar convergence characteristics as
ALS and SGD. However, we remark that, in the case of
distributed computing, a faster theoretical convergence rate
does not necessarily imply shorter wall-clock running time,
as the overhead of data transmission often leads to long over-
all running time. Thus, the primary focus of our work, as
well as that of the other existing distributed methods [6,10,
14,15,29] for the same reason, is not to improve the conver-
gence quality or theoretical convergence rate, but to improve
the efficiency of distributed tensor factorization.

Compared with existing distributed methods, LFTF is
able to attain a lower RMSE much faster than these meth-
ods, as reported in Figures 5-8, for the following reasons.
Existing distributed methods have to shuffle all parameters
across the machines in the cluster, leading to O(R(I1 + I2 +

753



0

200

400

600

800

1000

1200

LFTF DFacTo-ALS DFacTo-GD SALS CDTF

R
u

n
n

in
g 

Ti
m

e
 (

se
co

n
d

s)
 

(a) Netflix

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

LFTF DFacTo-ALS DFacTo-GD SALS CDTF

R
u

n
n

in
g 

Ti
m

e
 (

se
co

n
d

s)
 

(b) YahooMusic

0

500

1000

1500

2000

2500

LFTF DFacTo-ALS DFacTo-GD SALS CDTF

R
u

n
n

in
g 

Ti
m

e 
(s

e
co

n
d

s)
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Figure 6: Running time on different real-world datasets
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

R
M

SE
 

Time (seconds) 

10B

8B

6B

4B

2B

Figure 9: Scalability by varying training set size

· · ·+IK)) network transmission complexity (needed for shuf-
fling all the factor matrices) for each single iteration, dur-
ing which the CPUs are being idle. In contrast, in LFTF
the CPU is busy performing computation all the time. As

the discussion in Section 4.1 shows that (c · O(bR |Ω|
Im

)) �
(d · O(bRM)) holds for LFTF, meaning that the network
transmission time is negligible compared with the CPU com-
putation time. Thus, LFTF is able to do much more real
computation work within the same time frame.

5.3 Scalability Test
In this set of experiments, we tested the scalability of

LFTF using synthetic datasets based on the characteristics
of Netflix. Let X ∈ RI×J×K be the Netflix tensor with O
observations, where I, J , K, and O are given in Table 2.
We generated 5 datasets Xi ∈ R(i·f ·I)×(i·f ·J)×(i·f ·K) with
(i · f ·O) observations, where i ∈ {2, 4, 6, 8, 10} and f = 10.
In other words, we enlarge the cardinality of each attribute
by i · f times, and generated 5 tensors with 2, 4, 6, 8 and
10 billion observations, respectively. The largest tensor used
here is larger than the largest in any existing work.

We measured the time needed for LFTF to converge for
the 5 synthetic datasets, as plotted in Figure 9. We can see
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Figure 10: Scalability by varying machine number

that the time taken by LFTF to converge increases grace-
fully and linearly when more training data are used.

We also tested the horizontal scalability of LFTF by fix-
ing the dataset but changing the number of machines. The
dataset we used has only 100 million observations so that
it can easily fit in a single machine. Figure 10 shows that
the time to reach the same RMSE is almost halved when the
number of machines is doubled, which verifies the horizontal
scalability of LFTF.

5.4 Training Higher-Order Tensor Models
Although our work focuses on 3-mode tensors, we also

tested LFTF on higher-order tensors to investigate its con-
vergence characteristics. We generated three tensor datasets,
with the number of modes ranging from 3 to 5. The size of
training data, i.e., the number of rows, was fixed at 1 billion
and each mode corresponds to 100,000 parameters. Using
η = 0.0002 and λ = 0.8, we obtained the convergence char-
acteristics as shown in Figure 11a.

Figure 11a shows that LFTF can effectively train tensors
with higher order to convergence with comparable quality
and efficiency. As LFTF is a methods that trades memory
for faster speed, an important trade-off here is that LFTF
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Figure 11: Training higher-order tensor models

needs to replicate (K − 1) copies of training data, which
may limit its scalability when the tensor order increases, as
shown by the blue bars in Figure 11b. However, we observed
that LFTF only needs one copy of the training data in each
stage of training. Thus, we can keep the unused copies in
secondary storage, and prefetch only the required copy of
training data into main memory when we are about to start
the next stage. In this way, we can significantly reduce the
total memory usage, as shown by the red bars in Figure 11b,
while keeping comparable running speed with prefetching.

6. RELATED WORK
Alternating Least Squares (ALS) and Gradient De-

scent (GD). Bader and Kolda [4] developed an efficient
algorithm to solve sparse Tensor Factorization model, in
which they re-arrange the update formula in order to avoid
intermediate data explosion problem caused by the mate-
rialization of very large, unnecessary intermediate Khatri-
Rao products. Similar strategies are used in DFacTo-ALS
and DFacTo-GD [10], which re-arrange the update formula
in a different way. These works focus on shorter iteration
time, but their update rules are very coarse-grained and do
not consider the sparsity of data, resulting in problematic
convergence behavior. In addition, the MapReduce-based
GigaTensor [15] and HaTen2 [14] involve many rounds of
MapReduce jobs and are hence slow.

SALS [29] and CDTF [29] are two better ALS-based meth-
ods, which consider the sparsity of data in designing update
rules. Although ALS itself is easy to parallelize, it has high
computational complexity and cannot effectively interleave
CPU computation with network transmission. In contrast,
LFTF enjoys much higher efficiency than SALS and CDTF
on the same hardware, as shown in our experiments.

Stochastic Gradient Descent (SGD). The problem
of ALS and GD, which are adopted by the aforementioned
methods, is that they cannot reach a reasonable convergence
in an efficient manner like SGD. FlexiFaCT [6] implements
distributed SGD on the MapReduce framework. Although
SGD completely avoids the data explosion problem of ALS
and GD, the difficulty of designing SGD algorithm is how to
resolve conflicting updates. To tackle this problem, Flexi-
FaCT performs SGD in a synchronous manner. Although in
this case there is no conflicting update, it introduces exten-
sive synchronization and locking. As one round of SGD is
usually fast with linear time complexity, the overhead of fre-
quent execution barriers overtakes the benefit of SGD, and
significantly slows down the overall process.

Asynchronous ML Algorithms. In recent years we
have seen growing interests in the development of highly-
efficient asynchronous ML algorithms. HogWild! [26] uses

a method to exploit concurrency for SGD in the shared-
memory setting, based on the assumption that the training
data is sparse enough, and conflicting updates rarely hap-
pen. However, the same techniques cannot apply in the
shared-nothing setting, where updates to global parameters
are no longer timely enough. In order to achieve higher
throughput for the distributed setting, Ho et al. proposed
a framework called Stale Synchronous Parallel (SSP) [12],
which attempts to improve performance by reusing stale pa-
rameters on a local machine when updated values (stored in
a key-value store) are not yet available. Using stale pa-
rameters is known to make convergence slower, while read-
ing/writing data from/to the key-value store also incurs high
communication overheads.

Large-Scale Matrix Factorization (MF). Large-scale
MF has been extensively studied as MF is an important
building block in a recommender system. The two state-of-
the-art lock-free MF algorithms are FPSGD [35] and NO-
MAD [34], both employ different strategies to avoid conflict-
ing SGD updates in a lock-free manner. However, compared
with HogWild!, the two algorithm does not exploit the data
sparsity as HogWild! does in a local machine. Twitter de-
veloped the Factorbird system [27] dedicated for MF, which
employs partitioning as most lock-free approaches do, and
performs asynchronous updates locally using the HogWild!-
style SGD. Many existing methods for solving MF using
SGD have excellent performance, and Factorbird combines
these contributions into a highly usable system. However,
all these methods cannot be naturally generalized to tensor
data while retaining their efficiency.

7. CONCLUSIONS AND FUTURE WORK
We presented LFTF, a novel distributed solution for large-

scale tensor factorization. LFTF re-formulates the original
problem, so that it becomes possible to exploit distributed
asynchronous execution, and thus gets rid of the BSP syn-
chronization overhead. We verified by experiments that
LFTF converges significantly faster than the best existing
methods, with a lower training error.

Our work also reveals several possible future research di-
rections: (1) More high-level data mining tools can be built
upon LFTF in order to enjoy much faster tensor analyt-
ics. (2) The use of asynchrony should extend to wider areas
in machine learning and data mining, and there are much
more possibilities of using Husky’s programming framework
to naturally expresses asynchrony and develop highly ef-
ficient algorithms (the work in this paper is just one ex-
ample). (3) Researchers can make use of Husky’s expres-
sive yet simple enough framework to experiment and de-
velop novel distributed algorithms to solve many big data
problems (e.g., machine learning, graph analytics, and even
coarse-grained workloads [19, 33]), as over-simplified frame-
works (e.g., MapReduce or Parameter Servers) may limit
the design space as well as algorithm performance, while
the use of low-level tools (e.g., MPI) significantly increases
the development cost. For future work, we aim to develop
more efficient and scalable algorithms that follow the above
three directions.
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