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ABSTRACT

This paper studies I/O-efficient algorithms for settling the classic
triangle listing problem, whose solution is a basic operator in deal-
ing with many other graph problems. Specifically, given an undi-
rected graph G, the objective of triangle listing is to find all the
cliques involving 3 vertices in G. The problem has been well stud-
ied in internal memory, but remains an urgent difficult challenge
when G does not fit in memory, rendering any algorithm to entail
frequent I/O accesses. Although previous research has attempted
to tackle the challenge, the state-of-the-art solutions rely on a set of
crippling assumptions to guarantee good performance. Motivated
by this, we develop a new algorithm that is provably I/O and CPU
efficient at the same time, without making any assumption on the
input G at all. The algorithm uses ideas drastically different from
all the previous approaches, and outperformed the existing com-
petitors by a factor over an order of magnitude in our extensive
experimentation.

Categories and Subject Descriptors

H3.3 [Information search and retrieval]: Search process
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1. INTRODUCTION
In this paper, we revisit the classic triangle listing problem. The

input is a graph1 G = (V,E), where V (E) is the set of vertices
(edges). A triangle is a clique of 3 vertices u, v, w in G, and is

∗This work was supported in part by the WCU (World Class Uni-
versity) program under the National Research Foundation of Ko-
rea, and funded by the Ministry of Education, Science and Technol-
ogy of Korea (Project No: R31-30007). Xiaocheng Hu and Yufei
Tao were also supported in part by projects GRF 4166/10, 4165/11,
and 4164/12 from HKRGC. Chin-Wan Chung was also supported
in part by the National Research Foundation of Korea(NRF) grant
funded by the Korea government(MEST) (No. 2012-0000182), and
in part by Microsoft Research Asia through KAIST-Microsoft Re-
search Collaboration Center.
1Unless otherwise stated, a graph in this paper is undirected and
simple.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

1

2

3

4

5

6

7

8

9

Figure 1: The input graph in our running example

denoted as ∆uvw. The goal of triangle listing is to output all the
triangles inG. For instance, ifG is the graph in Figure 1, the set of
triangles is {∆123,∆234,∆346,∆368,∆456,∆568}.

The importance of triangle listing has long been recognized in
the literatures of database, network analysis, knowledge discovery,
and graph theory:

Dense SubgraphMining. Given a graphG, a dense neighborhood
graph (DN-graph) [23] is a subgraph of G, where each pair of con-
nected vertices share at least a number of common neighbors. The
most efficient known algorithm [23] for DN-graph discovery uti-
lizes a triangle-listing algorithm as a black box. Hence, a faster
solution to triangle listing automatically gives rise to an improved
algorithm for mining DN-graphs.

Triangular Connectivity. Let u, v be vertices in a graph G. They
are triangularly connected [4] if there is a sequence of triangles
(∆1,∆2, ...,∆s) such that u (v) is a vertex in the first (last) trian-
gle ∆1 (∆s), and for every 1 ≤ i ≤ s − 1, ∆i shares at least
one vertex with∆i+1. In Figure 1, for instance, vertex 1 is triangu-
larly connected to vertex 5 due to the sequence (∆123,∆346,∆456).
In triangular clustering [Section 5.1, [19]], the vertices in G are
divided into equivalence classes such that, two vertices are in an
equivalence class if and only if they are triangularly connected. The
computation of equivalence classes is reduced to finding connected
components after all the triangles have been obtained [19] (hence,
fast triangle listing is again the key).

k-truss. Given a graph G, its k-truss (k ≥ 3) [10] is the maxi-
mum subgraph of G where every edge appears in at least k − 2
triangles. This is a form of so-called cohesive subgraphs that re-
veal characteristics of social networks [10, 22]. Not surprisingly,
the state-of-the-art algorithm [22] for k-truss computation deploys
triangle listing as an initial step.

NetworkMeasurement. A popular approach in studying networks
is to interpret the measurements on certain key aspects. A well-
known measurement is the (local) clustering coefficient [24]. Given
a vertex v in a graphG, its clustering coefficient equals t(v)/

(

d(v)
2

)

,
where t(v) is the number of triangles containing v, and d(v) is the
degree of v. A large clustering coefficient indicates high density
around v (i.e., many edges among the neighbors of v). The calcu-



lation of such coefficients requires computing t(v) for all vertices
v. Interestingly, as shown in [9], the most I/O-efficient algorithm
for this purpose resorts to triangle listing, after which t(v) can be
obtained by simple counting.

1.1 Motivation
We consider that the input graph G does not fit in memory, and

thus needs to be processed by an external memory graph algorithm.
Recently, such algorithms have received considerable interests (see
[6, 9, 13] and the references therein), in response to the practical
need to analyze massive graphs whose scales exceed the memory
capacity of a commodity machine. For example, as of 2011, the
social network at Facebook contains more than 721 million active
users (a.k.a. nodes), and over 69 billion friendship edges [3]. If
each edge is represented by 2 integers, the entire graph occupies
over 550 giga bytes of storage (4 bytes per integer).

I/O-efficient algorithms for triangle listing have been investi-
gated previously. Next, we give an overview of the existing so-
lutions (deferring a detailed coverage to Section 3). Henceforth,
let M be the size of our memory, and B the size of a disk block,
both measured in number of words. The values ofM and B satisfy
M ≥ 2B, i.e., the memory contains at least two blocks. Finally,
denote by K the number of triangles in G.

External Memory Compact Forward (EM-CF) [17]. Incurring
O(|E|+|E|1.5/B) I/Os, this algorithm has two main defects. First,
it performs at least |E| I/Os, which is prohibitively expensive in
most practical environments. Second, its I/O cost is insensitive to
M , rendering the algorithm unable to benefit from the availability
of extra memory. Note that the I/O complexity of EM-CF does
not depend on K because it outputs all triangles in O(K/B) I/Os
whereas in general it holds that K = O(|E|1.5) (as will be ex-
plained in the next section).

External Memory Node Iterator (EM-NI) [11]. This algorithm
runs in O(|E|1.5/B · logM/B(|E|/B)) I/Os. As with EM-CF, its
I/O complexity is (almost) insensitive toM , such that the dominat-
ing term |E|1.5/B receives no improvement even when memory is
abundant.

Graph Partition [8, 9]. Neither of the above algorithms is output
sensitive, namely, their I/O complexity is Ω(|E|1.5/B), regardless
of the output size K. Even though the term O(|E|1.5/B) is com-
pulsory in the worst case whereK reaches Ω(|E|1.5), the actualK
in a realistic graph is far less than that extreme limit. This makes
it interesting to design output sensitive algorithms that are more
efficient when K is small.

Recently, Chu and Cheng [9] made some nice progress in this
direction. The crucial idea is to target an I/O complexity of
O(|E|2/(MB) + K/B). The rationale is that |E|2/(MB) <

|E|1.5/B whenever |E|/M <
√

|E|. To see why this is not
a stringent inequality, note that even if the memory can hold
only 1% of the edges, the inequality is still satisfied as long as
|E| > 10000. In general, if the memory can accommodate a con-
stant fraction of the input graph (a situation very likely in practice),
O(|E|2/(MB) + K/B) = O(|E|/B + K/B), which is asymp-
totically optimal because any algorithm must read all edges at least
once, and report all the triangles to the disk.

Utilizing several interesting ideas of graph partitioning, Chu
and Cheng [9] presented two algorithms that achieve the desired
O(|E|2/(MB)+K/B) bound under a set of assumptions. Unfor-
tunately, as we analyze in Section 3, if any of those assumptions is
violated, their algorithms fail to guarantee the target efficiency, and
may even suffer from severe performance penalty.

1.2 Our Contributions
Our first contribution is a new algorithm that settles the trian-

gle listing problem in O(|E|2/(MB) + K/B) I/Os in all set-

tings, namely, with no assumption at all. The algorithm is based
on ideas drastically different from those of [9]. Somewhat surpris-
ingly, we show that the term |E|2/(MB) is inevitable, namely, it
is impossible to achieve o(|E|2/(MB)) I/Os for all inputs even
if M ≪ |E|.2 This stands in sharp contrast to triangle listing in
memory, where o(|E|2)-time algorithms are well known (e.g., the
algorithm of [7] runs in O(|E|1.5) time). In external memory, the
I/O complexity O(|E|2/(MB)+K/B) is thus already worst-case
optimal within only a constant factor (even for M ≪ |E|).

As the next step, we prove that the proposed algorithm is also
CPU-efficient: it entails O(|E| log |E| + |E|2/M + α|E|) CPU
time, where α is the arboricity of the input graph – a classic metric
for measuring the density of a graph. Section 2 will present an
extended introduction to α, while for now, it suffices to note that α
never exceeds O(

√

|E|) even in the worst case [14], and is much
smaller for graphs in reality [7, 16]. It can be shown that both the
terms |E| log |E| + |E|2/M and α|E| are inevitable, namely, no
algorithm can perform only o(|E| log |E| + |E|2/M) or o(α|E|)
CPU time for all input graphs (even for M ≪ |E|). This indicates
that our algorithm is both I/O and CPU optimal by a constant factor
in the worst case.

Besides designing new algorithms, this paper also enhances the
understanding of existing algorithms. In this respect we present
two new results. First, we prove that the I/O cost of EM-NI can
actually be bounded byO(α ·SORT (|E|)), where α as mentioned
earlier is the arboricity, and SORT (|E|) is the I/O cost of sort-
ing |E| elements. The finding reveals why EM-NI is very efficient
when the input graph is sparse. In particular, α = O(1) for pla-
nar graphs, in which case the I/O complexity of EM-NI becomes
O(SORT (|E|)). This phenomenon cannot be explained by the
previous bound O(|E|1.5/B · logM/B(|E|/B)) on EM-NI.

Second, we revisit an elegant algorithm in [9] called random-

ized graph partitioning (RGP). We strengthen its analysis with a
non-trivial argument to remove a restrictive assumption that was
imposed on this algorithm. The removal reduces the remaining as-
sumptions on RGP to some weak conditions that are almost always
fulfilled, and thereby considerably improves its applicability.

1.3 Summary of Experiments
The paper also features an experimental study that is more exten-

sive than those of all the previous work dealing with I/O-efficient
triangle listing. We are the first to put all the known algorithms
into a direct cross comparison (the papers [8, 9] that represent the
state of the art unfortunately missed out EM-CF and EM-NI, which
we will show are not always the slowest methods). Our experimen-
tation involved both real and synthetic graphs. On the real side,
we used exactly the same datasets deployed in [9] to establish the
efficiency of DGP and RGP. On the synthetic side, we employed
graphs of various distributions, including ones generated from the
classic small world model [24] and the modern popular recursive
matrix (R-MAT) model [5]. The results demonstrate that MGT out-
performed all its competitors by a factor over an order of magni-
tude in both I/O and CPU efficiency. Furthermore, its performance
is consistently good regardless of the graph distribution and size.

1.4 Paper Organization
Section 2 defines a set of frequent notations, and reviews some

results from graph theory relevant to our discussion. Section 3 ana-

2The inevitability of E2/(MB) is trivial for M = Ω(|E|).
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Figure 2: Two edge-disjoint trees covering all the edges of the

graph in Figure 1

lyzes the previous I/O-efficient algorithms for triangle listing. Sec-
tion 4 describes the proposed algorithm and proves its theoretical
guarantees. Section 5 gives our new results on EM-NI and RGP,
and elaborates on their significance. Section 6 presents an exten-
sive experimental evaluation to demonstrate the superiority of the
proposed technique over the existing solutions. Finally, Section 7
concludes the paper with a summary of our findings.

2. PRELIMINARIES

Basic Notations. As mentioned before, the input to the triangle
listing problem is a simple undirected graph G = (V, E), where V
and E are the sets of vertices and edges, respectively. We represent
an undirected edge between vertices u and v as (u, v) or equiva-
lently as (v, u). For each v ∈ V ,N (v) is the set of neighbors of v,
where a neighbor is a vertex adjacent to v. Define the degree of v
as d(v) = |N (v)|.

We consider that G does not have any vertex v with d(v) =
0, i.e., an isolated vertex with no incident edge. In fact, if there
are such vertices, they can be removed immediately because they
obviously cannot appear in any triangle. Finally, we consider that
G is given in adjacency lists, where the adjacency list of a vertex
v ∈ V stores N (v) in O(1 + d(v)/B) consecutive blocks.

Arboricity. The arboricity is an important notion in graph theory
for describing the density of a graph. Formally, the arboricity of a
graphG, which is commonly denoted as α, is the minimum number
of edge-disjoint forests needed to cover the edges of G. For exam-
ple, the arboricity of the graph in Figure 1 is α = 2, because its
edges can be partitioned into 2 forests, as shown in Figure 2 (where
each forest is actually a tree), whereas apparently no single forest
can cover all the edges.

It is not immediately clear from the above definition why α is a
metric for graph density. This is made explicit by a classic result
due to Nash-Williams:

PROPOSITION 1 ([18]). If G has at least 2 vertices, its ar-

boricity α equals:

α = max
∀G′

density(G′)

where G′ = (V ′, E′) is a subgraph of G with |V ′| ≥ 2, and

density(G′) =

⌈ |E′|
|V ′| − 1

⌉

.

Phrased differently, the arboricity is determined by the densest
subgraph of G. In Figure 1, there is more than one densest sub-
graph: triangle ∆123, for instance, is one, and has a density of
⌈3/(3 − 1)⌉ = 2.

The proposition leads to the next well-known facts:

COROLLARY 1 ([7]). The arboricity α of a graph G =
(V,E) satisfies:

1. α ≤ ⌈
√

|E|⌉ in any case;
2. α = O(1) if G is planar.
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Figure 3: An oriented version of Figure 1

Note that α can reach Ω(
√
E) when G is dense, e.g., when G is

a complete graph so that |E| = |V |
2
(|V | − 1). In practice, a graph

(e.g., a social network) is much sparser than a clique, and hence, its
arboricity is much lower than

√

|E| (see [7, 16]).
Number of Triangles. As mentioned before, we denote by K the
number of triangles in the input graph G. Next, we will get some
sense about how large K can possibly be. Consider an edge (u, v)
in E. Clearly, any triangle ∆uvw containing the edge must have
the property that vertex w is a neighbor of both u and v. As u and
v have d(u) and d(v) neighbors respectively, it thus follows that
edge (u, v) can appear in at most min{d(u), d(v)} triangles. We
therefore have:

3K ≤
∑

(u,v)∈E

min{d(u), d(v)}. (1)

Chiba and Nishizeki [7] observed a delicate connection between
the above and arboricity:

PROPOSITION 2 ([7]). The right hand side of (1) is bounded
by O(α|E|).

It thus follows that K = O(α|E|). This, in turn, suggests K =
O(|E|1.5) by Corollary 1. These bounds are tight in the worst case:
when the input G is a complete graph, K =

(

|V |
3

)

= Ω(|V |3) =

Ω(|E|1.5), while α = Ω(
√
E) as analyzed before.

Oriented Input. As will be clear later, it is sometimes convenient
to work with an oriented versionG⋆ of G. To explain, let us define
a total order ≺ on V : for any two vertices u, v in G, define u ≺ v
if

• d(u) < d(v), or

• d(u) = d(v) but u has a smaller id than v.

G⋆ is obtained by giving a direction to each edge ofG that respects
≺. That is, for each edge (u, v) of G, we direct it from u to v in
G⋆ if u ≺ v. Figure 3 shows the oriented version of the graph in
Figure 1.

Henceforth, we will writeG⋆ = (V, E⋆), where E⋆ is the set of
directed edges decided as above. An edge (u, v) ∈ E⋆ points from
u to v (namely, the vertex ordering in the pair is now important).
For each vertex v, N+(v) represents the set of its out-neighbors,
that is, N+(v) = {u | (v, u) ∈ E⋆}. Define d+(v) = |N+(v)|
as the out-degree of v.

G⋆ is stored in adjacency lists, where the adjacency list of a
vertex v contains only N+(v) in O(1 + d+(v)/B) consecutive
blocks. For instance, in Figure 3, the adjacency list of vertex 4 is
the set {(vertex) 3, 5, 6}. G⋆ can be easily computed from G in
O(SORT (|E|)) I/Os by sorting.

3. PREVIOUS WORK ON TRIANGLE

LISTING
The triangle listing problem has been extensively studied in in-

ternal memory, yielding a large number of algorithms [7, 12, 14,



15, 20]. All of them finish in time O(|E|1.5), which is optimal
in the worst case where K = Ω(|E|1.5), because Ω(K) time is
needed just to report the triangles. However, these algorithms are
not amenable to external memory, as they entail Ω(|E|1.5) I/Os in
the worst case due to memory thrashing.

In this section, we extend the description in Section 1 about the
existing I/O-efficient algorithms. Focus will be devoted to the solu-
tions of [9] since they are the state of the art.

3.1 EM-CF
External memory compact forward (EM-CF) [17] accepts an ori-

ented inputG⋆ = (V,E⋆). For every edge (u, v) ∈ E⋆, it reports a
triangle∆uvw for each w ∈ N+(u)∩N+(v). For example, given
edge (4, 6) in Figure 3, it outputs∆463 because vertex 3 is the only
common vertex inN+(4) = {3, 5, 6} andN+(6) = {3, 8}.

Menegola [17] proved that N+(u)∩N+(v) can be obtained

with O(1 +
√

|E|/B) I/Os. Thus, the total I/O overhead is
O(|E|+ |E|1.5/B).

3.2 EM-NI
External memory node iterator (EM-NI) [11] also takes an ori-

ented input G⋆ = (V,E⋆). It executes in two steps:

1. Obtain the set L of all pairs (u, {v, w}) such that (u, v) ∈
E⋆ and (u,w) ∈ E⋆.

2. For each (u, {v, w}) ∈ L, check whether E⋆ has an edge
between v and w, and if so, report ∆uvw.

For example, given the input of Figure 3, the first step returns
L =

{

(1, {2, 3}), (2, {3, 4}), (4, {3, 6}), (4, {5, 6}), (4, {3, 5}),
(5, {6, 8}), (6, {3, 8}), (7, {2, 5}), (9, {7, 8})

}

, where each num-
ber is a vertex id. The second step then verifies that every pair
produces a triangle except (4, {3, 5}), (7, {2, 5}) and (9, {7, 8}).

Dementiev [11] showed how to perform the two steps in
O(|E|/B+ |L|/B · logM/B(|E|/B)) I/Os. Menegola [17] further

proved |L| = O(|E|1.5). It thus follows that EM-NI terminates in
O(|E|1.5/B · logM/B(|E|/B)) I/Os.

3.3 Graph Partition
Chu and Cheng [8, 9] proposed an algorithmic framework, which

we call graph partition (GP), for triangle listing. As explained
shortly, instantiation of the framework gives rise to different con-
crete algorithms.

The Framework. Given an input graph G = (V,E) (not its ori-
ented version), the framework divides V into disjoint partitions
V1, ..., Vp. The value of p and the partitioning strategy are precisely
what are to be instantiated later. Every triangle∆uvw inG can now
be classified into one of the following:

• Type-I: the three vertices u, v, w belong to the same parti-
tion.

• Type-II: two vertices are in the same partition, while the re-
maining vertex is in a different partition.

• Type-III: the three vertices are in distinct partitions.

For example, assume G to be the graph in Figure 1. Let p = 3 and
V1 = {1, 2, 3}, V2 = {4, 5, 6}, and {7, 8, 9}. Then, ∆123, ∆234

and ∆368 are of type-I, -II, and -III respectively.
Next, the GP framework reports all the type-I and -II triangles,

by resorting to the concept of extended subgraph, each of which
is a subgraph Gi (1 ≤ i ≤ p) constructed from a partition Vi.
Specifically, Gi is the subgraph induced by the edges adjacent to
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Figure 4: Extended subgraphs

the vertices of Vi. Figure 4 demonstrates G1, G2, G3 in the afore-
mentioned example on Figure 1. Note that an extended subgraph
Gi may contain some vertices absent in Vi. For example, the white
vertices 4, 6, 7, 8 are not in V1, but appear in G1 because each of
them is a neighbor of a vertex in V1.

Every triangle of type-I and -II exists in a unique extended sub-
graph. Making an assumption:

A1: Each extended subgraph fits in memory

the GP framework finds those triangles by loading each Gi into
memory, and invoking an in-memory triangle listing algorithm.

It remains to report type-III triangles. The framework achieves
this goal by converting type-III triangles to the previous types. Ob-
serve that a type-III triangle does not use any intra edge, i.e., an
edge with both endpoints in the same partition (e.g., the edges be-
tween black vertices in Figure 4). Motivated by this, the GP frame-
work removes all intra edges, and repeat the above on the remaining
edges of G, i.e., launching another iteration. In a new iteration, the
vertices are partitioned differently, so that a type-III triangle of a
previous iteration may now become type-I or -II, and hence can be
reported.

The partitioning strategy should guarantee Ω(M) intra edges in
every iteration. Therefore, afterO(|E|/M) iterations, the left-over
edges of G will fit in memory, at which point an in-memory algo-
rithm is deployed to find all the missing triangles.

Deterministic Graph Partitioning (DGP). This algorithm, an in-
stantiation of the above framework, adopts a deterministic strategy
to partition V into V1, ..., Vp. Assuming:

A2: |V | ≤M .

DGP first finds an independent dominating setD of V . Specifically,
D is a maximal set of vertices such that (i) no two vertices inD are
adjacent, and (ii) every vertex in V is either in D, or adjacent to
a vertex in D. For example, in Figure 1, such a set can be D =
{1, 4, 7, 8}. Then, DGP generates p = min{|D|,Θ(|E|/M)} par-
titions based on D (see [9] for details).

Randomized Graph Partitioning (RGP). As another instantia-
tion, RGP sets p = Θ(|E|/M) and generates V1, ..., Vp with a
randomized approach: each vertex in V is independently assigned
to Vi, where i is chosen uniformly at random from 1 to p.

Discussion on the Assumptions. The efficiency of the GP frame-
work relies on Assumption A1. If A1 does not hold, the in-
memory algorithm that the framework uses to find triangles in an
extended subgraphGi will incur memory thrashing, and thus suffer
from heavy performance penalty.

Unfortunately, the assumption will definitely be violated on DGP
in the worst case. To see this, consider that G is a complete graph
such that |V | < M ≪ |E| =

(

|V |
2

)

. It is easy to verify that D can
contain only 1 vertex in this case. As a result, p = 1, and hence, the
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Figure 5: A triangle inG
⋆ and its pivot edge (u ≺ v ≺ w)

extended subgraph G1 obtained from V1 is exactly G itself, which
does not fit in memory.

On the other hand, the question whetherA1 holds on RGP (with
sufficiently high probability) was left open in [9], and still remains
unanswered. In this paper, we will close the issue by proving a
positive answer based on a non-trivial analysis in Section 5.2.

Chu and Cheng [9] showed that under the assumption:

A3: p = O(M/B), that is, M = Ω(
√

|E| ·B)

DGP and RGP ensure I/O complexity3 O(|E|2/(MB) + K/B),
given the simultaneous satisfaction of Assumption A1 and (for
DGP)A2.

It is worth mentioning that A3 is necessary to generate p ex-
tended subgraphs in O(|E|/B) I/Os (because a block of memory
needs to be reserved as the output buffer for each extended sub-
graph). This assumption can be removed by turning to sorting, but
at the expense of increasing the I/O complexities of DGP and RGP
to O(|E|2/(MB) · logM/B(|E|/B) +K/B).

4. A NEW ALGORITHM
This section presents a new algorithm called massive

graph triangulation (MGT), which settles triangle listing with
O(|E|2/(MB) + K/B) I/Os in all circumstances, namely, need-
ing no assumption at all. In the meantime, MGT entails only
O(|E| log |E| + |E|2/M + α|E|) CPU time, where α is the ar-
boricity of the input graph (see Section 2). Both the I/O and CPU
complexities are worst-case optimal as we will prove later.

4.1 Guaranteeing I/O-Efficiency
We will first describe MGT by focusing only on I/O efficiency,

i.e., pretending that all CPU operations were for free. The algo-
rithm accepts an oriented input G⋆ = (V,E⋆) as defined in Sec-
tion 2, which can be computed from the original input G = (V,E)
in O(SORT (|E|)) I/Os.
Pivot Edge. Let us make an observation about how a triangle∆uvw

of G appears in the oriented graph G⋆. Recall that there is a total
order ≺ on the vertices of V . Assume, without loss of generality,
that u ≺ v ≺ w. Thus, the edges of ∆uvw have directions as illus-
trated in Figure 5. In particular, u, v and w have 2, 1 and 0 outgoing
edges in the triangle, respectively. We refer to the outgoing edge of
v as the pivot edge of ∆uvw, and u as the cone vertex of ∆uvw.

Algorithm. MGT runs in iterations, each performing two steps:

1. Load into memory the next cM edges in E⋆, where c < 1 is
a constant to be decided later. Let Emem be the set of those
edges.

2. Report all the triangles whose pivot edges are in Emem .

MGT correctly finds all triangles because (i) Step 1 ensures every
edge of E⋆ to appear inEmem in a unique iteration, and (ii) for any

3The complexity is expected for RGP.
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Figure 6: Illustration of Step 2 (solid edges are inEmem )

triangle ∆, Step 2 guarantees its discovery in the iteration where
Emem contains the pivot edge of ∆.

Details of Step 2. Next, we show how to implement Step 2 in
O(|E|/B) I/Os, plus the minimum cost of outputting the triangles
found.

Algorithm 1: STEP 2 (VERSION 1)

Input: G⋆ = (V,E⋆) and a set Emem of edges in memory
Output: All triangles whose pivot edges are in Emem

obtain Vmem from Emem1

for each vertex u ∈ V do2

read N+(u) from disk to acquireNmem(u) in memory3

S ← the set of edges from u to the vertices inNmem(u)4

find in S ∪Emem all the triangles where u is the cone5

vertex
releaseNmem(u) and S from memory6

return7

Let Vmem be the set of vertices induced by the edges in theEmem

returned by Step 1. For example, suppose thatEmem consists of the
solid edges in Figure 6; then Vmem = {3, 5, 6, 8}. In this case, Step
2 ought to output ∆436, ∆456, and ∆568 because their pivot edges
(3, 6), (5, 6), and (6, 8) are in Emem .

Step 2 processes each vertex u ∈ V in turn as follows. First,
define:

Nmem(u) = N+(u)∩Vmem (2)

namely, Nmem(u) is the set of out-neighbors of u that appear in
Vmem . We obtain Nmem(u) by reading the adjacency list N+(u)
from the disk, while in the meantime adding a vertex v ∈ N+(u)
toNmem(u) if v ∈ Vmem . Note that

|Nmem(u)| ≤ |Vmem | ≤ 2|Emem | ≤ 2cM.

Hence, by setting c appropriately4 , Emem and Nmem(u) together
occupy at most M words of storage, and can co-exist in memory.

The knowledge of Nmem(u) essentially “augments” Emem with
up to |Nmem(u)| edges leaving u. For instance, the processing
of vertex 4 in Figure 6 gives Nmem(4) = {3, 5, 6}. Effectively,
Nmem(4) permits us to “see” 3 more edges in memory: (4, 3),
(4, 5) and (4, 6).

As a crucial fact, if a triangle ∆uvw (where u is the cone vertex)

should be reported by Step 2, it can now be discovered in memory.
To understand, recall that Step 2 needs to report ∆uvw only if the
pivot edge (v, w) ∈ Emem . This implies that v and w both belong
to Vmem , and hence, also to Nmem(u). It follows that edges (u, v)
and (u,w) have been “augmented” into memory.

For illustration, consider again vertex 4 in Figure 6. As men-
tioned before, Nmem(4) reveals edges (4, 3), (4, 5) and (4, 6) in

4For example, c can be 1/4 in a naive implementation where an
edge requires two words to store.



memory. At this moment, ∆463 and ∆456 (which are the triangles
of vertex 4 that Step 2 needs to report) are memory resident.

After processing u, we clear Nmem(u) from memory, and move
on to handle the next vertex of V . Note that Emem is kept in mem-
ory throughout Step 2. Algorithm 1 summarizes the above in pseu-
docode.

I/O Complexity. Each iteration performs one scan over the adja-
cency lists of all vertices in O(|E|/B) I/Os. The number of it-
erations is Θ(|E|/M) because each of them loads Θ(M) distinct
edges of E⋆ into Emem , except possibly the last iteration. This,
as well as the fact that Θ(B) triangles can be reported in one I/O,
proves that the I/O cost of MGT is bounded by O(|E|2/(MB) +
K/B).

4.2 A CPU-Efficient Algorithm
The MGT algorithm described in the previous section does not

achieve the desired bound O(|E| log |E| + |E|2/M + α|E|) on
CPU time. Towards that purpose, we will modify the algorithm
with extra ideas. This subsection will do so under the small-degree
assumption:

d+(v) ≤ cM/2 for all v ∈ V (3)

where c is the same constant as in our earlier description. Recall
that d+(v) is the out-degree of v in G⋆. Section 4.4 will remove
this assumption, and obtain the final version of MGT that guaran-
tees the claimed I/O and CPU bounds in all cases.

All-or-Nothing Requirement. Previously, the Emem of an itera-
tion is permitted to include cM arbitrary edges of E⋆. Now we
require that Emem should contain either all the outgoing edges of
v or none of it, for every v ∈ V . For instance, the set Emem in
Figure 6 satisfies this all-or-nothing requirement.

We fulfill the requirement by processing one vertex at a time in
Step 1 (of MGT). Specifically, let v be the next vertex whose out-
going edges have never appeared inEmem . We add all its outgoing
edges to Emem if the size of the resulting Emem does not exceed
cM . Otherwise, v is left to the next iteration; and Step 1 terminates
here by returning the current Emem . This can also be described in
pseudocode as:

Algorithm 2: STEP 1

Input: G⋆ = (V,E⋆)
Output: A set Emem of at least cM/2 edges in E⋆

Emem ← ∅1

for each vertex v ∈ V whose edges have never entered Emem2

do

if |N+(v)|+ |Emem | ≤ cM then3

add all the edges of v to Emem4

else5

break6

return Emem7

The above strategy may end up with anEmem with less than cM
edges. However, under the small-degree assumption, except the
last iteration |Emem | must be at least cM/2, because if |Emem | <
cM/2, then Emem should have been able to take in the (at most
cM/2) outgoing edges of one more vertex.

Step 2 of MGT proceeds as described earlier. Since |Emem | is
stillΘ(M) except possibly in the final iteration, the I/O complexity
of the algorithm remains bounded by O(|E|2/(MB) +K/B).

CPU-Implementation of Step 2. Our description so far has ig-
nored all the in-memory operations, the details of which are to be
filled in next. Define

V +
mem

= {v ∈ Vmem | v has an outgoing edge in Emem}

For example, in the example of Figure 6, V +
mem

= {5, 6}. Vertices
3 and 8, which belong to Vmem , are not in V +

mem
because they have

no outgoing edge in Emem .
We create hash structures on Vmem , V +

mem
, Emem so that:

• Given any vertex v, whether v ∈ Vmem and/or v ∈ V +
mem

can be decided in O(1) time.

• Given any vertices u, v, whether (u, v) ∈ Emem can be de-
cided in O(1) time.

Clearly, these hash structures occupy only O(|Emem |) space.
For each vertex u ∈ V , Step 2 needs to report all the triangles

∆uvw where u ≺ v ≺ w and the pivot edge (v, w) exists in Emem .
Expanding the procedure in Section 4.1, we first obtain Nmem(u)
in O(|N+(u)|) time, by using constant time to check whether v ∈
Vmem for each v ∈ N+(u). We then further acquire:

N+
mem

(u) = Nmem(u)∩V +
mem

in O(|Nmem (u)|) = O(|N+(u)|) time, by checking whether v ∈
V +
mem

for each v ∈ Nmem(u). In Figure 6, for instance, when u is
vertex 4, we haveNmem(4) = {3, 5, 6} and N+

mem
(4) = {5, 6}.

Next, we use O(|N+
mem

(u)| · |Nmem(u)|) time to find the trian-
gles of u that should be reported in the current iteration. For each
vertex pair

(v, w) ∈ N+
mem

(u)×Nmem(u) with v 6= w

check in constant time whether (v, w) ∈ Emem . If so, report∆uvw.
For instance, to process vertex 4 in Figure 6, the algorithm probes
edges (5, 3), (5, 6), (6, 3) and (6, 5) in Emem . The second and
third exist in Emem , thus spawning ∆456 and ∆463. Algorithm 3
restates the above details in pseudocode:

Algorithm 3: STEP 2 (DETAILS EXPANDED)

Input: G⋆ = (V,E⋆) and a set Emem of edges in memory
Output: All triangles whose pivot edges are in Emem

obtain Vmem and V +
mem

from Emem1

build hash structures on Vmem , V +
mem

, and Emem2

for each vertex u ∈ V do3

read N+(u) from disk to acquireNmem(u) in memory4

obtain N+
mem

(u) fromNmem(u) in memory5

for each v ∈ N+
mem

(u) do6

for each w ∈ Nmem(u) do7

if v 6= w and edge (v, w) ∈ Emem then8

output ∆uvw9

releaseNmem(u) andN+
mem

(u) from memory10

return11

The complexity O(|N+
mem

(u)| · |Nmem(u)|) may appear expen-
sive at first glance due to its quadratic nature. Somewhat surpris-
ingly, when one adds up this complexity for all vertices throughout
all iterations, the sum turns out to be O(α|E|), as we analyze next.

4.3 Bounding the CPU-Time
This subsection will analyze the CPU time of the modified MGT

algorithm under the small-degree assumption. Let us start with a
useful fact:



LEMMA 1.
∑

v∈V

(

d+(v)
)2

= O(α|E|).
PROOF. For any v ∈ V :
(

d+(v)
)2

= d+(v)
∑

u∈N+(v)

1 =
∑

u∈N+(v)

d+(v).

Hence:
∑

v∈V

(

d+(v)
)2

=
∑

v∈V

∑

u∈N+(v)

d+(v)

=
∑

(v,u)∈E⋆

d+(v)

≤
∑

(v,u)∈E⋆

d(v)

(by how (v, u) is directed) =
∑

(v,u)∈E

min{d(v), d(u)}

(by Proposition 2) = O(α|E|).

By the discussion of the previous subsection, in an iteration of
MGT, Step 2 spends

O(|N+(u)|+ |N+
mem

(u)| · |Nmem(u)|)
= O(|N+(u)|+ |N+

mem
(u)| · |N+(u)|) (4)

time on each vertex u ∈ V . The terms |N+(u)| of all u ∈ V add
up to exactly |E⋆| = |E|. Hence, the total contribution by this term
throughout all the Θ(|E|/M) iterations is O(|E|2/M). Hence-
forth, we will focus on the second term |N+

mem
(u)| · |N+(u)|.

Let h = Θ(|E|/M) be the number of iterations actually per-
formed by MGT. Denote by N+

mem
(u, i) the content of N+

mem
(u)

in the i-th iteration, for 1 ≤ i ≤ h. In other words, the total contri-
bution (to the CPU time) of the second term in (4) across all nodes
u and all iterations i is at most

h
∑

i=1

∑

u∈V

O(|N+
mem(u, i)| · |N+(u)|). (5)

Our all-or-nothing requirement (see Section 4.2) ensures:

LEMMA 2. N+
mem

(u, 1), ..., N+
mem

(u, h) are mutually disjoint.

PROOF. The all-or-nothing requirement guarantees that each
vertex v ∈ V belongs to V +

mem
in a unique iteration. In other

words, the sets V +
mem

of all iterations are mutually disjoint. The
lemma then follows from the fact N+

mem
(u, i) is a subset of the

V +
mem

of iteration i, for 1 ≤ i ≤ h.

As N+
mem

(u, i) ⊆ N+(u) for each i, the lemma implies:

h
∑

i=1

|N+
mem

(u, i)| ≤ |N+(u)| = d+(u).

Hence:

h
∑

i=1

(

|N+
mem

(u, i)| · |N+(u)|
)

≤
(

d+(u)
)2
. (6)

Therefore:

(5) =
∑

u∈V

h
∑

i=1

O
(

|N+
mem

(u, i)| · |N+(u)|
)

(by (6)) =
∑

u∈V

O
(

d+(u)
)2

(by Lemma 1) = O(α|E|).

u
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v
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Figure 7: Illustration for the conversion algorithm (S consists

of the solid edges)

Finally, recall that the input to the triangle listing problem is an
undirected graph G, from which the oriented version G⋆ is com-
puted by sorting, which (when implemented as the standard exter-
nal sort [1]) takes O(|E| log |E|) CPU time. We thus have proved
that MGT entailsO(|E| log |E|+|E|2/M+α|E|) CPU time over-
all.

4.4 Removing the Small-Degree Assumption
This subsection presents the last component of our MGT algo-

rithm, which deals with the case where the oriented input G⋆ does
not satisfy the small-degree assumption (see (3)). In other words,
there is at least one vertex v such that d+(v) > cM/2.

MGT handles the case by working on the original (undirected)
input G, instead of the oriented version G⋆. It removes certain
edges of large-degree vertices, while ensuring that all the triangles
involving those edges have been reported. The edge removal turns
G into another graph G′, whose oriented version G′⋆ satisfies the
small-degree assumption. G′⋆ is then fed into the algorithm in Sec-
tion 4.2 to report the remaining triangles.

ConvertingG toG′. Given G = (V,E), we carry out the conver-
sion as follows:

1. Identify a vertex u ∈ V with d(u) > cM/2. If u does not
exist, the conversion terminates withG′ = G.

2. Load a set S of cM/2 edges5 of u into memory.

3. Report all the triangles that involve at least one edge in S.

4. Remove the edges in S from E. Repeat from Step 1.

We refer to an execution from Step 1 to 4 as an iteration. The
number of iterations is bounded by Θ(|E|/M) because Θ(M)
edges are removed by an iteration. Next, we explain how to im-
plement Step 3 efficiently.

The edges of S form a 2-level tree where u is the root, as shown
in Figure 7 where the solid edges constitute S. Let T be the set of
leaf vertices of this tree, e.g., T = {w1, w2, ..., w5} in Figure 7.
Clearly, any triangle ∆ involving at least an edge in S must have u
as a vertex. Furthermore, ∆ must be one of the types below:

• Type-1: 2 vertices of∆ are in T .

• Type-2: Only 1 vertex of ∆ is in T .

In Figure 7, for instance, ∆uw1w2 and ∆uvw5 are of type-1 and -2
respectively (note that u /∈ T ).

We create a hash structure on T to permit testing whether v ∈ T
in constant time for any v ∈ V . Both types of triangles can be
found easily by a single scan on E. This is in fact obvious for type-
1: for every edge (v, w) ∈ E, report ∆uvw if and only if both v
and w belong to T .

5The value cM/2 is chosen to facilitate understanding. In practice,
one can load as many edges of u as the memory can accommodate.
The algorithm still works the same way as described subsequently.



To find type-2 triangles, we process the adjacency list N (v) of
each vertex v 6= u as follows. First, check whether u ∈ N (v), and
if not, we are done with v and move on to the next vertex. Other-
wise, obtain T (v) = N (v) ∩ T (e.g., T (v) = {w3, w5} in Fig-
ure 7). So far we need to readN (v) from the disk once, and spend
O(|N (v)|) CPU time. Finally, for every vertex w ∈ T (v), output
a triangle ∆uvw; this requires O(|T (v)|) = O(|N (v)|) CPU time.

It is thus clear that each iteration of our conversion algorithm
performs O(|E|/B) I/Os, and entails O(|E|) CPU time, plus
the minimum output cost. Therefore, the overall algorithm has
an I/O complexity O(|E|2/(MB) + K/B) and CPU complexity
O(|E|2/M + K) = O(|E|2/M + α|E|) (recall from Section 2
that K = O(α|E|)).
Putting Everything Together. The graph G′ has the property that
every vertex v ∈ V has degree at most cM/2. Hence, its ori-
ented version G′⋆ satisfies the small-degree assumption due to the
obvious fact d+(v) ≤ d(v). We can now apply the algorithm of
Section 4.2 to find the remaining triangles. It is easy to verify that
every triangle in G is reported exactly once. This completes the
whole MGT algorithm, which brings us to this paper’s first main
result:

THEOREM 1. The MGT algorithm solves the triangle listing

problem in O(|E|2/(MB) + K/B) I/Os and O(|E| log |E| +
|E|2/M + α|E|) CPU time.

4.5 Worst-Case Optimality
We now explain why it is impossible to design an algorithm with

I/O complexity o(|E|2/(MB)) even whenM = o(|E|). Consider
that the input G is a complete graph, and M ≥ |V | = Θ(

√

|E|).
The number of triangles equals

(

|V |
3

)

= Ω(|V |3). Therefore, any
algorithm must incur

Ω(|V |3/B) = Ω(|E|1.5/B)

= Ω(|E|2/(|V |B)) = Ω(|E|2/(MB))

I/Os just to report the triangles. This argument shows that the term
|E|2/(MB) is compulsory in the worst case, implying that the I/O
complexity in Theorem 1 is already optimal up to a constant factor.
Note that this optimality result holds for any M satisfying M ≥
|V |, that is, as long as all the vertices (but not edges) can be stored
in memory.

The above finding also implies a lower bound of Ω(|E|2/M) on
CPU time because Ω(|V |3) = Ω(|E|2/M) time is needed just to
output triangles. This immediately rules out any algorithm with
o(|E| log |E|) CPU time because |E| log |E| = o(|E|2/M) when

M = Θ(
√
E). Given also the necessity of the term α|E| (see

Section 2), it follows that any algorithm must incur Ω(|E| log |E|+
|E|2/M + α|E|) CPU time in the worst case, matching the upper
bound in Theorem 1.

5. FINDINGS ON KNOWN ALGORITHMS
This section will strengthen the current understanding about two

existing algorithms for triangle listing: EM-NI and RGP, as re-
viewed in Section 3. For EM-NI, we will reveal for the first time
why the algorithm is especially efficient on sparse graphs. For RGP,
we will remove a restrictive assumption imposed on its applicabil-
ity.

5.1 EM-NI
We now prove:

THEOREM 2. The EM-NI algorithm solves the triangle listing

problem in O(α · SORT (|E|)) I/Os.

PROOF. As mentioned in Section 3, the previous work has

shown that EM-NI performsO( |E|
B

+ |L|
B

logM/B
|E|
B

) I/Os. Below,
we will show that |L| = O(α|E|) which therefore will establish the
theorem because SORT (|E|) = Θ(|E|/B · logM/B(|E|/B)).

Let G⋆ = (V,E⋆) be the oriented input to EM-NI. Recall that
L is the set of all such pairs (u, {v, w}) that (u, v) and (u,w) are

both in E⋆. For each u ∈ V , there are exactly
(

d
+(u)
2

)

such pairs,
where d+(u) is the out-degree of u. Therefore:

|L| =
∑

u∈V

(

d+(u)

2

)

≤
∑

u∈V

(

d+(u)
)2

which is O(α|E|) by Lemma 1.

Previously, the I/O-complexity of EM-NI was understood as
O(|E|1.5/B ·logM/B(|E|/B)) (see Section 3). Hence, Theorem 2

is separated from the old result whenever α = o(
√

|E|). More-
over, Theorem 2 clearly indicates that the I/O efficiency of EM-NI
depends linearly on α, which as discussed in Section 2 measures
the graph density. In particular, when G is planar, α = O(1)
(see Corollary 1), in which case EM-NI finishes inO(SORT (|E|))
I/Os.

Theorem 2 makes it possible to compare EM-NI and our MGT
algorithm in a more sensible manner. Interestingly, EM-NI never

has a better complexity as long as M ≥ |V |. To see this, first
notice that:

α ≥ |E|
|V | − 1

. (7)

The above inequality results directly from the definition of α as
the minimum number of edge-disjoint forests needed to cover all
the edges of E: as each forest has at most |V | − 1 edges, at least
|E|/(|V | − 1) forests are needed to cover all the |E| edges. There-
fore, whenM ≥ |V |,

α > |E|/|V | ≥ |E|/M
which makes

|E|2/(MB) < α|E|/B < α · SORT (|E|)
namely, the I/O complexity in Theorem 2 is never better than that
in Theorem 1.

5.2 RGP
Recall from Section 3 that the graph partition framework [9],

which is the state of the art, relies on a key assumptionA1 to attain
its I/O efficiency. Chu and Cheng [9] instantiated the framework
into the DGP and RGP algorithms. As explained in Section 3, un-
fortunately, Assumption A1 is inherent in DGP and thus impossi-
ble to remove. However, it remains open whether the assumption
can be eliminated on RGP. The rest of the subsection will answer
this question almost in all scenarios.

We will need the following Chernoff bound:

PROPOSITION 3 ([2]). Let X1, ..., Xn be independent ran-

dom variables between 0 and 1. Let X =
∑n

i=1 Xi and µ =
∑n

i=1 E[Xi]. Then:

Pr[X ≥ 2µ] ≤ exp(−µ/3).

The remainder of this subsection will follow the notations in Sec-
tion 3.3. In addition, let dmax be the largest degree of the vertices
in the input graphG = (V,E). We now present the last main result
of this paper:



THEOREM 3. Under the condition:

A4: M ≥ 24dmax ln |E|,
AssumptionA1 holds with probability at least 1− 1/|E|.

PROOF. Set p = c|E|/M where c is a constant to be decided
later. For each vertex v ∈ V and each i ∈ [1, p], define

Xi(v) =

{

d(v) if v ∈ Vi

0 otherwise

As v is assigned to Vi with probability 1/p, E[Xi(v)] = d(v)/p.
Let Xi =

∑

v∈V Xi(v), namely, Xi is the sum of the degrees
of all vertices inGi. Let Yi be the number of edges in the extended
subgraph Gi obtained from Vi. We observe:

Yi ≤ Xi. (8)

The inequality holds because every edge in Gi is counted at least
once byXi. Clearly:

E[Xi] =
∑

v∈V

E[Xi(v)] =
∑

v∈V

d(v)

p
=

2|E|
p

=
2M

c
.

The random variables Xi(v) of different v ∈ V are mutually
independent. Furthermore, Xi(v) ≤ dmax. Hence, applying
Chernoff bound (Proposition 3) on the random variables Zi(v) =
Xi(v)/dmax of all v ∈ V gives:

Pr

[

∑

v∈V

Zi(v) ≥ 4M

c · dmax

]

≤ exp

(

− 2M

3c · dmax

)

⇒

Pr

[

Xi ≥ 4M

c

]

≤ exp

(

− 2M

3c · dmax

)

(9)

WhenM ≥ 3c · dmax ln |E|, it holds that

exp

(

− 2M

3c · dmax

)

≤ 1

|E|2 <
1

|E| ·
M

c|E| =
1

p|E|
with which (9) gives:

Pr

[

Xi ≥ 4M

c

]

≤ 1

p|E| (10)

Gi can be stored in at most 2Yi words, which by (8) is at most
2Xi words. Setting c = 8, (10) shows that 2Xi ≥ M occurs with
probability at most 1/(p|E|) when M ≥ 24dmax ln |E|, namely,
the probability for Gi not to fit in memory is at most 1/(p|E|).

Therefore, whenA4 holds, the probability that any ofG1, ..., Gp

does not fit in memory is at most 1/|E|, thus completing the
proof.

For a massive input graphGwith a massiveE, Theorem 3 shows
that A1 holds with extremely high probability as long as the mem-
ory is not too small. Note that condition A4 is tight up to only a
logarithmic factor, because when M < dmax, A1 can never be

satisfied such that not only RGP but also the graph partition frame-
work itself will not be able to function. To see this, let v be the
vertex in G with degree dmax, and suppose that v ∈ Vi, for some
i ∈ [1, p]. Then, the extended subgraph Gi created from Vi must
contain at least dmax edges, and therefore, does not fit in memory.

Theorem 3 has reduced the assumptions on RGP’s applicability
to only A3 and A4, both of which appear reasonable given the
memory capacity of today’s machines. Perhaps more important is
the fact thatA3 andA4 can be checked efficiently, by scanning the
input graph at most once to glean |E| and dmax. In contrast, there
does not appear a way to check the original assumptionA1, except
for letting the algorithm run anyway.

6. EXPERIMENTS
In this section, we experimentally compare the proposed algo-

rithm against the previous methods for triangle listing in external
memory. The next subsection will explain the environments where
our experiments were performed. Then, Section 6.2 (6.3) evaluates
the efficiency of alternative solutions on real (synthetic) datasets.

6.1 Environmental Setup
All the experiments were performed under Linux (specifically

Ubuntu 12.04) on a machine that was running an Intel 3GHz CPU
(dual core) and was equipped with 8 giga bytes of memory. The
block size B, which was fixed by the operating system, was equal
to 4k bytes.

We compared our MGT algorithm against the existing I/O-
efficient solutions to triangle listing, namely, EM-CF, EM-NI, DGP
and RGP, all of which have been reviewed in Section 3. We imple-
mented all the algorithms in C++, using the gcc compiler with the
optimizer option O3. Our implementation is fully memory con-
scious. Namely, the binary executable of each algorithm accepts
(among others) a parameter M that specifies in number of bytes
how much memory can be used. It is guaranteed that the algorithm
makes full use of the allocated memory, but its memory usage at
any instant never exceeds M .

We measured the cost of an algorithm in two aspects: number of
I/Os, and overall running time. The former was counted by strictly
adhering to the standard external memory model [1], namely, an
I/O reads a block from the disk into memory, or conversely, writes
B words in memory to a disk block. The total running time, on the
other hand, was measured as the amount of wall-clock time elapsed
during the algorithm’s execution.

In all cases, the input graph was given in adjacency lists without
orientation. This is precisely the format assumed by DGP and RGP.
If an algorithm (i.e., MGT, EM-CF, and EM-NI) requires an ori-
ented version of the graph (as defined in Section 2), it carried out
the orientation on the fly. For these algorithms, each cost we report
later has always included the overhead incurred from performing
the orientation. Finally, we exclude the output cost (i.e., the time to
report the triangles found) because it is identical for all algorithms
as they must return exactly the same set of triangles.

6.2 Performance on Real Data

Datasets and Methodology. We deployed exactly the same real
datasets as were used in [9] where state-of-the-art DGP and RGP
were developed. These datasets are named LJ, USRD, WebUK and
BTC respectively, whose meta information is displayed as below6:

LJ USRD BTC WebUK

|V | 4,846,609 23,947,347 164,660,997 62,338,347
|E| 42,851,237 28,854,312 386,411,047 938,715,528

|E|/|V | 8.84 1.20 2.35 15.06

disk size 364 M 403 M 4.1 G 7.5 G

Table 1: Meta data of real graphs

More specifically, LJ represents a social network (see
http://www.livejournal.com) where a vertex corresponds to an in-
dividual, and an edge indicates friendship between two persons.
USRD, on the other hand, is a part of the US road network, where
a vertex (edge) is a road junction (segment). BTC is an object re-
lational graph where a vertex is a real-world object, and an edge

6The graph sizes listed here are different from those provided in
[9], which, however, is due to the errors in [9], as has been verified
by our communication with the authors of [9].
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Figure 8: Efficiency comparison on real graphs

reflects a certain relationship between two objects (e.g., a person
owns an item). This graph was obtained from the RDF dataset
of the Billion Triple Challenge 2009 (http://vmlion25.deri.ie). Fi-
nally, WebUK captures the hyperlinks (i.e., edges) among a set of
web pages (i.e., vertices) gathered for investigation of web spams
(http://barcelona.research.yahoo.net).

Clearly, the amount M of memory allocated to an algorithm is
the most crucial factor behind its efficiency. IfM is so large that the
entire input graph fits in memory, all algorithms will behave simi-
larly because they essentially degenerate into in-memory triangle
listing. The key of evaluating an external memory algorithm lies in
examining how well it performs when only a fraction of the dataset

fits in memory. Motivated by this, for each input graph, we varied
M from 5% of the graph’s disk size (see Table 1) to 25%, and in
the meantime, compared the performance of different algorithms.

Results. Figure 8 presents all the results of the experiments on the
real graphs. In the first row, Figure 8a plots the I/O cost of each al-
gorithm on dataset LJ as a function of the memory size. Let the I/O
speedup of MGT over another algorithm X be defined as the ratio
between the numbers of I/Os entailed byX and MGT, respectively
(e.g., an I/O speedup 2 means that MGT needs half as many I/Os
as X). Figure 8b shows the I/O speedups of MGT over the other
algorithms as the memory grows. Figures 8c and 8d demonstrate



the corresponding results on the overall running time, noticing that
wall-clock speedup of MGT is defined by extending I/O-speedup
straightforwardly to wall-clock time. The second, third, and last
rows of Figure 8 present the outcome of the same experiments on
USRD, BTC andWebUK, respectively.

In Figure 8, EM-CF and EM-NI are sometimes omitted from a
“speedup diagram” if MGT achieves an exceedingly high speedup
over them. For example, EM-CF is absent from Figure 8b because
it incurred over 100 times more I/Os than MGT (as a result, the
inclusion of EM-CF would destroy the diagram’s clarity). On the
other hand, the disappearance of DGP from a diagram is always due
to its inapplicability. Recall that this algorithm is subject to several
assumptions as discussed in Section 3.3. If any of AssumptionsA1,
A2 andA3 is violated, DGP fails to execute. In fact, DGP failed in
at least one setting on every dataset: specifically,M = 5%,≤ 20%,
≤ 15% and = 5% for LJ, USRD, BTC and WebUK, respectively.
All failures were due to violation of AssumptionA2 with only one
exception: the failure on WebUK (M = 5%) was due toA1. RGP,
on the other hand, never failed in any of our experiments. This is
perfectly explainable: our analysis in Section 5.2 has reduced its
assumptions to A3 and A4, both of which were easily satisfied in
our settings.

It is evident from Figure 8 that MGT exhibited by far the best
performance overall. In a majority of cases, it significantly outper-
formed all its competitors in both I/O and CPU efficiency. Further
observe that, against every other method, MGT was faster in over-
all execution time by a factor over an order of magnitude in at least
one experiment. These findings confirm the high effectiveness of
the proposed techniques in practice, in addition to their rigorous
theoretical guarantees which have already been established in ear-
lier sections.

Regarding the other algorithms, EM-CF is clearly the worst-
performing solution. This is not surprising because, as mentioned
in Section 3.1, its I/O complexity is even greater than Ω(|E|),
which is already prohibitively expensive in reality. EM-NI, on the
other hand, is very sensitive to the graph density, as predicted by our
analysis in Section 5.1. When the density is low, this algorithm can
be fairly efficient, as can be seen from its performance on USRD

(which is nearly planar). Unfortunately, with the increase of den-
sity, the cost of this algorithm grows dramatically, in fact to such
an extent that it can be even more expensive than EM-CF (see Fig-
ure 8o). DGP is a capable method in the sense that, when it did not
fail, it demonstrated acceptable performance (although still several
times slower than MGT). Finally, RGP, which enjoys the same I/O
complexity as MGT, apparently has a much larger hidden constant
in its complexity.

6.3 Performance on Synthetic Data

Datasets and Methodology. Having established the superiority of
our MGT algorithm on real data, we now proceed with a set of
controlled experiments that aims at comparing the competing algo-
rithms on different types of graphs, and evaluating their scalability
with the graph size. Towards this purpose, we generated graphs of
three distributions:

• Random (RAND): Given a pair of values n and m, we gen-
erated a random graph with n vertices by creating m edges,
each of which connects a vertex pair chosen uniformly at ran-
dom. This was followed by a clean-up process to eliminate
duplicate edges between the same pair of vertices.

• Recursive Matrix (R-MAT): Proposed by Chakrabarti et al.
[5], this model has gained considerable popularity due to its
simplicity and ability to emulate a large variety of graphs in

reality. It captures the fact that the vertex degree distribution
of a real graph often resembles but is not exactly a power
law. Given a pair of n and m, we created an R-MAT graph
of n vertices and m edges using the generator published at
http://www.cse.psu.edu/∼madduri/software/GTgraph with
its default parameters (the same R-MAT parameters were
also used in the experiments of [21, 25]). Finally, duplicate
edges were removed by a clean-up process.

• Small World (S-WORLD): This classic model was first de-
scribed by Watts and Strogatz [24]. Given n and m where
m is a multiple of 2n, an S-WORLD graph was obtained as
follows. First, imagine putting n vertices on a circle where
each vertex v is connected to its m/(2n) nearest neighbors
on the left and right, respectively7 . This creates m edges in
total. Then, independently with probability p, each edge of v
is replaced by an edge that connects v to another vertex cho-
sen randomly. At the end, a clean-up process was invoked
to remove duplicate edges. We set the model parameter p to
1%, as this was the median value in the experiments of the
seminal work [24].

We set m = 16n in all experiments. For each distribution, we
generated 5 graphs by varying n from around 16 to 80 million. The
following table gives the meta data of all the synthetic graphs after
duplicate removal (these figures apply to all distributions):

|V | 16 ×2
20 32 ×2

20 48×2
20 64×2

20 80 ×2
20

|E| 2.7 ×10
8 5.4×10

8 8.1×10
8 10.7 ×10

8 13.4×10
8

disk size 2.1 G 4.2 G 6.4 G 8.5 G 10.6 G

Table 2: Meta data of synthetic graphs (all distributions)

For each graph, we inspected the efficiency of all algorithms by
fixing the amount of allocated memory to 1 giga bytes. The only
exception was EM-CF, which was omitted from further inspection
due to its huge uncompetitive running time.

Results. Figure 9 demonstrates the comparison results of MGT,
DGP, RGP and EM-NI on synthetic graphs, by focusing on the I/O
and wall-clock time in the first and second rows, respectively. DGP
has no results on S-WORLD graphs when |V | ≤ 32× 220 because
it failed due to the violation of A1.

The relative superiority of different algorithms generally follows
the patterns observed earlier from real datasets. In every exper-
iment, MGT outperformed all its competitors by a wide margin
in both I/O and CPU efficiency. This phenomenon nicely comple-
ments the results of the preceding subsection in showing the robust-
ness of MGT’s performance, regardless of the graph distribution
and the graph size.

7. CONCLUSIONS
Triangle listing is an important classic problem on graphs that

has numerous applications in different domains. Although it has
been well studied in internal memory, solving it I/O-efficiently on
massive graphs exceeding the memory capacity still remains as a
challenging task. Previously, there have been several attempts to
tackle the challenge. However, even the state-of-the-art algorithms
still entail lengthy execution time, and even so, are haunted by var-
ious assumptions that limit the applicability of those algorithms.

7The 1st left neighbor of v is the vertex immediately to the left of
v on the ring, the 2nd neighbor is the vertex further to the left, and
so on.
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Figure 9: Efficiency comparison on synthetic graphs

In this paper, we have presented a new algorithm named MGT
based on fresh ideas drastically different from the previous ap-
proaches. The proposed algorithm does not rely on any assump-
tion, and outperformed every other alternative solution by a factor
up to at least an order of magnitude in our extensive experimental
evaluation. Furthermore, the MGT algorithm is based on a solid
theoretical foundation, which proves its excellent efficiency in all
settings, regardless of the graph distribution and size. In particular,
we have shown that the I/O and CPU complexities of MGT are both
optimal in the worst case.
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