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ABSTRACT

In this paper, we present Spade − the System S declarative
stream processing engine. System S is a large-scale, dis-
tributed data stream processing middleware under develop-
ment at IBM T. J. Watson Research Center. As a front-end
for rapid application development for System S, Spade pro-
vides (1) an intermediate language for flexible composition
of parallel and distributed data-flow graphs, (2) a toolkit of
type-generic, built-in stream processing operators, that sup-
port scalar as well as vectorized processing and can seam-
lessly inter-operate with user-defined operators, and (3) a
rich set of stream adapters to ingest/publish data from/to
outside sources. More importantly, Spade automatically
brings performance optimization and scalability to System
S applications. To that end, Spade employs a code genera-
tion framework to create highly-optimized applications that
run natively on the Stream Processing Core (SPC), the exe-
cution and communication substrate of System S, and take
full advantage of other System S services. Spade allows de-
velopers to construct their applications with fine granular
stream operators without worrying about the performance
implications that might exist, even in a distributed system.
Spade’s optimizing compiler automatically maps applica-
tions into appropriately sized execution units in order to
minimize communication overhead, while at the same time
exploiting available parallelism. By virtue of the scalability
of the System S runtime and Spade’s effective code genera-
tion and optimization, we can scale applications to a large
number of nodes. Currently, we can run Spade jobs on
≈ 500 processors within more than 100 physical nodes in a
tightly connected cluster environment. Spade has been in
use at IBM Research to create real-world streaming appli-
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cations, ranging from monitoring financial market feeds to
radio telescopes to semiconductor fabrication lines.
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1. INTRODUCTION
On-line information sources are increasingly taking the

form of data streams, that is time ordered series of events
or readings. Example data streams include live stock and
option trading feeds in financial services, physical link statis-
tics in networking and telecommunications, sensor readings
in environmental monitoring and emergency response, and
satellite and live experimental data in scientific computing.
The proliferation of these sources has created a paradigm
shift in how we process data, moving away from the tradi-
tional “store and then process” model of database manage-
ment systems toward the “on-the-fly processing” model of
emerging data stream processing systems (DSPSs). This
paradigm shift has recently created a strong interest in
DSPS-related research, in academia [1, 4, 6, 7] and indus-
try [8, 17, 21, 25] alike.

In this paper we describe the design of Spade, which is
the declarative stream processing engine of the massively
scalable and distributed System S − a large-scale stream
processing middleware under development at IBM Research.
Spade provides a rapid application development front-end
for System S. Concretely, Spade offers:

1. An intermediate language for flexible composition of

parallel and distributed data-flow graphs. This lan-
guage sits in-between higher level programming tools
and languages such as the System S IDE or stream
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SQL1 and the lower level System S programming APIs.
The Spade language provides constructs such as loops,
stream bundles, node pools, and operator partitions to
ease the specification and configuration of flow graphs
in various distributed environments.

2. A toolkit of type-generic built-in stream processing op-

erators. Spade supports all basic stream-relational op-
erators with rich windowing and punctuation seman-
tics. It also seamlessly integrates built-in operators
with user-defined ones. One particularly powerful fea-
ture of built-in Spade operators is their ability to op-
erate on list types and their ability to intermix scalar
and vectorized processing on lists.

3. A broad range of stream adapters. These adapters are
used to ingest data from outside sources and publish
data to outside destinations, such as network sockets,
relational and XML databases, file systems, etc.

Spade leverages the existing stream processing infrastruc-
ture offered by the Stream Processing Core (SPC) [2] com-
ponent of System S. Given an application specification in
Spade’s intermediate language, the Spade compiler gener-
ates optimized code that runs on SPC as a native System S
application. As a result of this code generation framework,
Spade applications enjoy a variety of services provided by
the System S runtime, such as placement and scheduling,
distributed job management, failure-recovery, and security.
More importantly, this multi-layered framework creates op-
portunities for the Spade compiler to perform various op-
timizations, so as to best map the higher level Spade con-
structs into the lower-level ones that the System S runtime
expects in order to efficiently run a distributed stream pro-
cessing application. For instance, Spade enables developers
to structure their applications using fine granular stream
operators without worrying about the performance impli-
cations that might exist in a distributed system. Spade’s
optimizing compiler automatically maps applications into
appropriately sized execution units in order to minimize the
communication overhead, while at the same time exploiting
available parallelism.

Spade’s effective code generation and optimization frame-
work enables it to fully exploit the performance and scala-
bility of System S. It currently runs on approximately 500
processors within more than 100 physical nodes in a tightly
connected cluster environment. Spade has been in use at
IBM Research to create real-world data stream processing
applications, ranging from processing financial market feeds
to radio telescopes to semiconductor fabrication lines.

In summary, Spade improves over the current state-of-
the-art in the following aspects:

• Sheer scale and performance: Spade inherits its scala-
bility from the System S Stream Processing Core, and
provides both language constructs and compiler opti-
mizations to fully utilize and expose the performance
and flexibility of SPC. The distributed flow-graph com-
position constructs of Spade offer an easy way to har-
ness the power of System S, whereas the compiler opti-
mizations deliver high-performance stream processing

1At the time of this writing, the support for stream SQL on
System S is still under development and not yet available.

operators, which can be ideally partitioned into prop-
erly sized execution units to best match the runtime
resources of System S.

• Incremental application composition and deployment :
Spade applications are expected to be long-running
continuous queries. These applications can be devel-
oped and deployed incrementally. In other words, a de-
ployable application component (a Spade job/query)
can tap into existing streams that are generated by al-
ready deployed Spade or non-Spade System S jobs.
Such connections can optionally be determined dy-
namically at run-time, using SPC’s ability to discover

source streams based on type compatibility.

• Relational, non-relational, and mixed workloads:
Spade supports all fundamental stream-relational op-
erators, with extensions to process list types. Support-
ing list types and vectorized operations on them en-
ables Spade to handle, without performance penalty,
mixed-workloads, such as those in signal processing
applications that usually treat a list of samples as the
basic unit of data processing (see SigSegs [12]).

The rest of this paper is organized as follows. Section 2
gives the architectural overview of Spade and relevant as-
pects of System S. Section 3 describes the Spade language
and operators. Section 4 discusses compiler optimization op-
portunities within Spade’s code generation framework. Sec-
tion 5 introduces Spade’s optimizing partitioner. Section 6
showcases an example Spade application from the finance
engineering domain. Section 7 reports our ongoing work and
future directions. Finally, Section 8 concludes the paper.

2. SYSTEM OVERVIEW
In this section we briefly describe System S and provide

relevant details of the SPC runtime components utilized by
Spade. We conclude with an overview of Spade’s code-
generation framework.

2.1 System S Overview
System S is a large-scale distributed data stream process-

ing middleware. It supports structured as well as unstruc-
tured data stream processing and can be scaled from one to
thousands of compute nodes. System S runtime can execute
a large number of long-running jobs (queries) that take the
form of Data-Flow Graphs. A data-flow graph consists of
a set of Processing Elements (PEs) connected by streams,
where each stream carries a series of Stream Data Objects

(SDOs). The PEs implement data stream analytics and are
basic execution units that are distributed over the compute
nodes. The PEs communicate with each other via their in-
put and output ports, connected by streams. The PE ports
as well as streams connecting them are typed. System S
adopts the UIMA framework [22] for the type system. PEs
can be explicitly connected using hard-coded links (e.g., in-
put port 0 of PE A is connected to output port 1 of PE
B) or through implicit links that rely on type compatibil-
ity (e.g., input port 0 of PE A is connected to any output
port that provides a superset of what it expects). The lat-
ter type of connections is dynamic and allows System S to
support incremental application development and deploy-
ment. Besides these fundamental functionalities, System S
provides several other services, such as reliability, scheduling
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Figure 1: System S from an application developer’s perspective

and placement optimization, distributed job management,
storage services, and security, to name a few.

System S provides several alternatives for a user or devel-
oper to craft data-flow graphs, as shown in Figure 1. At one
extreme, an experienced developer can use a programming
language such as C++ or Java to implement the desired
stream analytics as PEs, utilizing System S’ PE APIs. In
this case, the developer also creates PE templates that de-
scribe each PE in terms of its input and output ports, and
populates a configuration file that describes the topology of
the data-flow graph. These activities could be simplified via
the use of the System S IDE.

At the other extreme, a user with little or no expertise
could pose natural language-like, domain-specific inquiries

to the system. The Inquiry Services (INQ) planner can use
an existing set of PEs developed for the particular domain
at hand, together with their semantic descriptions and a
domain ontology, to automatically create a data-flow graph
that implements the user’s high-level inquiry. For further
details, we refer the reader to [19].

In contrast, Spade strikes a middle-ground between the
aforementioned two alternatives, by providing a declarative
processing front-end to the users, while still making it pos-
sible to integrate arbitrary user-defined or legacy code into
the data-flow graph. Developers interacting with Spade use
a set of well-defined, type-generic, and highly configurable
operators and stream adapters to compose their applica-
tions. Spade’s intermediate language also provides several
constructs to ease the development of distributed data-flow
graphs, and exposes various knobs to influence their deploy-
ment. Furthermore, it forms a common ground on top of
which support for other interfaces can be build. For in-
stance, the INQ planner can potentially generate Spade ap-
plications from high-level inquiries, or a StreamSQL query
specification can be converted into a Spade application.

2.2 Stream Processing Core Runtime
Since SPC provides the execution and communication

substrate for Spade, the basics of how a data-flow graph
is executed by the runtime is important in understanding

Spade’s code generation and optimization framework. Fig-
ure 2 shows the key architectural components of SPC run-
time.

Dataflow Graph Manager

(DGM)

Resource Manager

(RM)

PEC
PE PE

Data Fabric Server

(DF)

PEC
PE PE

Data Fabric Server

(DF)

Storage

subsystem
LAN

SAN

Figure 2: Stream Processing Core (parts relevant to
Spade are shown)

The Dataflow Graph Manager (DGM) determines stream
connections among PEs, and matches stream descriptions of
output ports with the flow specifications of input ports. The
Data Fabric (DF) is the distributed data transport compo-
nent, comprising a set of daemons, one on each node sup-
porting the system. Upon guidance from the DGM, it es-
tablishes the transport connections between PEs and moves
SDOs from producer PEs to consumer PEs. The Resource

Manager (RM) collects runtime statistics from the DF dae-
mons and the PE Execution Containers. This information is
used by the System S optimizer, a component called SODA,
for making global placement and scheduling decisions. The
PE Execution Container (PEC) provides a runtime context
and access to the System S middleware. It acts as a security
barrier, preventing the user-written applications from cor-
rupting the System S middleware as well as each other. For
further details on the SPC the reader is referred to [2].
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2.3 SPADE’s Code Generation Framework
Developers interact with Spade through Spade’s inter-

mediate language and the Spade compiler. The Spade

compiler takes a query (job) specification in Spade’s inter-
mediate language as input and generates all the artifacts
commonly associated with a native System S application.
Figure 3 illustrates the details of this process. The Spade

compiler first generates code that implements the stream
operator instances specified in the Spade query, and then
generates additional code to pack these operators into PEs
that form the basic execution units distributable over a Sys-
tem S cluster. This mapping can be optimized manually (by
the user through language constructs) or automatically (by
the compiler through learning, see Section 4). The compiler
also generates PE templates, a type system specification, a
PE topology that describes the connections among PEs and
PE-to-node assignments, and node pools that list the com-
pute nodes to be used during execution. These are fed into
the System S Job Description Language (JDL) compiler to
yield a complete job description. The operator and PE code
are compiled into executable binaries, using traditional pro-
gramming language compilers and linking against the Spade

and other System S libraries. The JDL file and the set of PE
binaries form a readily deployable job on a System S cluster
running the Stream Processing Core.

SPADE

application
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Figure 3: Spade’s code generation framework

In order to support customizable data stream processing
operators, Spade relies on a code generation framework, in-
stead of having type-generic operator implementations that
employ some form of condition interpretation and type in-
trospection. The reliance on code generation provides the
means for the creation of highly optimized platform- and
application-specific code. In contrast to traditional database
query compilers, the Spade compiler outputs code that is
very tailored to the application at hand as well as system-
specific aspects such as: the underlying network topology,
the distributed processing topology for the application (i.e.,
where each piece will run), and the computational environ-
ment, including hardware and architecture-specific tuning.
In most cases, applications created with Spade are long-
running queries. Hence the long runtimes amortize the build
costs. Nevertheless, the Spade compiler has numerous fea-

tures to support incremental builds as the application gets
modified, greatly reducing the build costs as well.

3. PROGRAMMING MODEL
The Spade programming model consists of a program-

ming language and the ancillary support runtime libraries
and tooling (e.g., parser, code generators, and optimizer).
The programming model was conceived with several goals
in mind. On the one hand, we aimed at providing high-
level constructs where application and tool writers alike can
quickly assemble their applications. On the other hand, we
focused on creating a framework that enables the compiler to
have direct access to the important optimization knobs such
that applications are able to derive the best performance
from the underlying runtime system. A longer discussion
on these topics will come later. Finally, the programming
model was conceived such that the out-of-the-box constructs
can be extended by adding new language operators and by
extending the existing language operators with new capabil-
ities. Specifically, we designed the programming model as
well as the tooling to support the addition of external edge

adapters as well as new operators, enabling developers to
incrementally add additional operators, forming new, and
potentially shareable, toolkits.

3.1 Guiding Principles
We believe that two particular design decisions we made

were fundamental in achieving the goals stated above: (1)
a stream-centric design, and (2) an operator-level program-
ming model. The stream-centric design implies building a
programming language where the basic building block is a
stream. In other words, an application writer can quickly
translate the flows of data she anticipates from a back-of-the-
envelope prototype into the application skeleton, by simply
listing the data flows. The second aspect, i.e., operator-level
programming, is focused on designing the application by rea-
soning about the smallest possible building blocks that are
necessary to deliver the computation an application is sup-
posed to perform. Here it is important to note that, while it
is hard to precisely define what an operator is, in most appli-
cation domains, application engineers typically have a good
understanding about the collection of operators they intend
to use. For example, database engineers typically conceive
their applications in terms of the operators available in the
stream relational algebra [5, 23]. Likewise, MATLAB [20]
programmers have several toolkits at their disposal, from
numerical optimization to symbolic manipulation to signal
processing, which, depending on the application domain, are
appropriately used.

The importance of an operator-centric view of applica-
tions is two fold. On one hand, it gently nudges application
writers to think in terms of fine-granularity operations, that
is, the fundamental processing pieces that need to be put to-
gether. On the other hand, it exposes multiple optimization
opportunities (namely, the inner-workings of the operator as
well as the operator boundaries) that are important for gen-
erating distributed (and parallel) code that will, ultimately,
run efficiently on the computing resources. Note that a side
benefit of this approach is that, through a recompilation,
one can typically obtain different versions of the same ap-
plication which are specifically optimized for different com-
putational platforms. For example, the runtime application
layout as well as the internal operator implementation for a
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cluster of x86 nodes may not necessarily be the same as the
one for a large Symmetric Multiprocessor box. The SPADE
code generators were designed with such specializations in
mind.

3.2 The SPADE Programming Language
From the programming standpoint, Spade’s syntax and

structure is centered on exposing the controls to the main
tasks associated with designing applications. At the same
time, it effectively hides the complexities associated with:
(1) basic data streaming manipulations (e.g., generic lan-
guage support for data types and building block operations);
(2) application decomposition in a distributed computing en-
vironment (e.g., how should the application be laid out in the
computing environment); and (3) the underlying computing
infrastructure and data transport issues (e.g., where to de-
ploy each operator, how to best ingest external data and
externalize the data being produced, etc). Many of these
aspects can be seen in the Spade source code for a sam-
ple application, provided in the Appendix and described in
detail in Section 6.

The source code for an application written in the Spade

language is organized in terms of 5 main sections:

• Application meta-information: This section lists
the application name, followed optionally by the de-
bug/tracing level desired.

• Type definitions: This is where application design-
ers must create a namespace for the types to be used
by the application as well as, optionally, aliases to the
types they intend to use. The type namespace provides
type system-level isolation amongst System S applica-
tions that may be concurrently running on the system.

• External libraries: This is an optional section where
application designers can include references to libraries
and their file system paths, as well as the header files
with interfaces for the external libraries employed by
user-defined operators.

• Node pools: This is an optional section where pools
of compute nodes can be defined. While an applica-
tion written in Spade can be fully optimized by the
compiler (at compile-time) and by the System S re-
source management infrastructure and scheduler (at
run-time), the creation of node pools provides a great
deal of fine-level control over placement and partition-
ing during development and hand-optimization phases.

• Program body: This is where the application itself is
described. Spade’s application description is stream-
centric in the sense that streams are first class objects.
The flow of computation is completely described by
the streams an application produces.

A typical application will ingest an external (non-System
S) data stream, creating a Spade stream, process that
stream through the utilization of one or more language-
supported operators or user-defined operators, and, finally,
externalize a data stream by producing a resulting flow that
can be tapped by software components that are external to
the System S infrastructure. Streams are created either by
manipulating and converting data coming from an exter-
nal source into a data flow understood by System S (using

Spadeś Source operator) or by performing a data trans-
formation on an incoming stream, carried out by another
Spade language operator or user-defined operator (udop, for
short). Once a Spade stream is available, it can be exter-
nalized by creating sinks, whereby the flow of data is sent
to entities that are outside of System S. The Sink opera-
tor used to perform this externalization can write to files,
sockets, among other edge adapters.

Spade supports having feedback loops within data flow-
graphs, where a stream generated by a downstream opera-
tor is connected back into the input of an upstream oper-
ator. This is particularly useful for user-defined operators
(see Section 5.1).

3.3 Operators
Spade was conceived around the idea of a toolkit of oper-

ators. Currently, a single toolkit is available and it provides
a collection of stream-relational operators. These operators
can be used to implement any relational query with win-
dowing extensions used in streaming applications. We are
in the process of providing support for the creation of toolk-
its geared towards other application domains, such as signal
processing and stream data mining. In lieu of these addi-
tional toolkits and as a means to allowing the creation of
customized operators, the language supports the definition
of user-defined operators (see Section 3.5).

The operators currently supported are the following:

• Functor: A Functor operator is used for performing
tuple-level manipulations such as filtering, projection,
mapping, attribute creation and transformation. In
these manipulations, the Functor operator can access
tuples that have appeared earlier in the input stream.

• Aggregate: An Aggregate operator is used for group-
ing and summarization of incoming tuples. This oper-
ator supports a large number of grouping mechanisms
and summarization functions.

• Join: A Join operation is used for correlating two
streams. Streams can be paired up in several ways
and the join predicate, i.e., the expression determining
when tuples from the two streams are joined, can be
arbitrarily complex.

• Sort: A Sort operator is used for imposing an order on
incoming tuples in a stream. The ordering algorithm
can be tweaked in several ways.

• Barrier: A Barrier operator is used as a synchroniza-
tion point. It consumes tuples from multiple streams,
outputting a tuple only when a tuple from each of the
input streams has arrived.

• Punctor: A Punctor operator is used for performing
tuple-level manipulations where conditions on the cur-
rent tuple as well as on past tuples are evaluated for
generating punctuations2 in the output stream.

• Split: A Split operator is used for routing incoming
tuples to different output streams based on a user-
supplied routing condition.

2Punctuations are out-of-band signals that mark window
boundaries for operations that may rely on user-defined win-
dows (e.g., sort, aggregate, and join).
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• Delay: A Delay operator is used for delaying a stream
based on a user-supplied time interval.

3.4 Edge Adapters
Edge adapters in the Spade language are also described

as language operators – source and sink:

• Source: A Source operator is used for creating a
stream from data flowing from an external source.
This operator is capable of performing parsing and tu-
ple creation, and can interact with a diverse set of
external devices.

• Sink: A Sink operator is used for converting a stream
into a flow of tuples that can be used by components
that are not part of System S. Its main task consists
of converting tuples into objects accessible externally
through devices such as the file system or the network.

The external resources referred to by the edge adapters
are specified by a URI (Universal Resource Locator). The
URI information is used by the code generator to appro-
priately select external libraries as well as other resource-
specific configurations. In the cases we have seen so far, the
authentication and configuration issues associated with ac-
cessing external resources can be dealt with by crafting URIs
with the necessary information or, in some cases, having the
URI refer to a configuration file with additional informa-
tion, including communication protocols, message formats,
among other things.

3.5 User-Defined Operators
The Spade language provides the capability for extend-

ing the basic building block operators by supporting user-
defined operators (udops). These operators can make use
of external libraries and implement operations that are cus-
tomized to a particular application domain. For example,
suppose a package for performing data mining on streams is
available. The udop support enables an application to re-
ceive tuples from Spade streams, hand them over to the
external package, perform computations, and, eventually,
originate Spade streams for downstream consumption.

The udop code generator creates skeleton code and seam-
lessly integrates the user-defined operator dependencies in
the overall build process. From the skeleton code, the ap-
plication developer can tap the resources of the external li-
braries, customizing the internal operator processing to the
needs of her application. Currently, the skeleton code is
generated in C++, which allows for the easy integration
of existing analytics, speeding up the process of integrating
legacy code. As will be seen in Section 4, user-defined oper-
ators are also targeted by the the optimizer. In other words,
built-in and user-defined operators alike are seamlessly pro-
cessed by the code optimizer in building the corresponding
System S application.

In our experience, we have seen developers employing
udops for a wide-range of reasons: From converting legacy
applications to System S so that they can run in a stream
environment, to wrapping external stream data mining li-
braries (such as VFML [14]), to interfacing with external
platforms (such as extracting performance metrics from IBM
DB2 [9]), among others.

3.6 Advanced Features
As we have previously mentioned, System S was conceived

to support a wide-range of stream processing applications.
The implication to the Spade programming language is the
need to support a richer set of features than typically found
in other stream processing platforms. These features span
not only what have been made available by the stream en-
gines developed by other groups, but also those aimed at
providing language constructs and mechanisms to simplify
the construction of System S applications. Three advanced
features that we deem particularly important are discussed
in this section.

3.6.1 List Types and Vectorized Operations

The Spade language includes native supports for list types
as well as vectorized operations on them. In the domains
of signal processing, data mining and pattern classification,
straightforward vector manipulation is fundamental in ap-
proximating the problem formulation to its representation
in terms of source code. Thus, such an approach improves
usability. In Spade attributes with list types are created in
one of the following three ways: (1) by reading them from an
external source via the Source operator, (2) by using a Func-
tor operator to create a new list attribute, or (3) by using
an Aggregate operator to collect attributes from multiple
tuples into a single list. Spade supports expressions that
mix and match list and scalar types. Moreover, many of the
built-in Spade functions are list-type capable, that is they
accept list types where scalars are expected, and produce a
list result accordingly. List types also enable easy string ma-
nipulations using regular expression matching, where match
results are stored in a string list.

3.6.2 Flexible Windowing Schemes

Another important language feature is the support for so-
phisticated windowing mechanisms. Several of the Spade’s
built-in operators are configurable in terms of their window-
ing behavior. Generally, there is support for tumbling win-
dows, sliding windows, and punctuation-based windows. So-
phisticated combinations of windowing boundaries and slide
factors are possible (e.g., count, time, and attribute-based
windows, slides, and their combinations), but a complete
discussion is beyond the scope of this paper. Instead, we will
next sketch some of the fundamental windowing character-
istics. The most simple windowing schema is tumbling win-
dows. Tumbling windows are operated on and then flushed
when they become full (e.g., after a fixed number of tuples
have been accumulated). Sliding windows on the other hand
have two components: an expiration policy and a trigger
mechanism. The expiration policy defines when accumu-
lated tuples are purged and, therefore, they are no longer
part of the internal state carried by an operator (e.g., last
100 most recent tuples are kept around). The trigger mecha-
nism flags when the aggregation operation should take place
(e.g., an aggregation should be made and output every time
a new tuple is received by the operator). Finally, the sup-
port for punctuation-based windows allows the creation of
explicit window boundaries in a stream. Such boundaries
can be created by user-defined operators as well as by cer-
tain built-in operators. For a punctuation-based window,
an operator accumulates tuples until a punctuation is re-
ceived. Once the punctuation is received, the operation is
performed. Several rules govern how punctuations are prop-
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agated through a query network. A complete discussion of
these rules is beyond the scope of this paper, however.

3.6.3 Pergroup Aggregates and Joins

Finally, a novel aspect in Spade is the support for a group-

ing mechanism, associated with tumbling windows as well as
sliding windows. The grouping mechanism is currently a fea-
ture associated with the aggregate and equi-join operators.
It determines the scope for the expiration and trigger poli-
cies. In essence, they can apply to the whole window or to
every distinct group currently in the window. For example,
if an operator is configured such that it must keep 200 tu-
ples, the Spade language has a notation to specify whether
200 tuples should be aggregated (or joined) for the whole
window or for each group that it might be aggregating (or
joining). This approach allows the simultaneous and inde-
pendent aggregation/joining for distinct groups, which for a
large number of groups typically translates into substantial
computational savings [3].

3.7 Application Interoperability
As we have discussed, System S provides a wide-spectrum

landscape for application development. In such an environ-
ment, an important aspect is application interoperability.
The basic wiring mechanism provided by the Stream Pro-
cessing Core is fairly malleable – i.e., processing elements
can be connected to each other by hardwiring a connection
or dynamically, by having a processing element specify a
subscription flow specification expression, which determines
the properties of streams to be consumed.

A Spade application can, in a controllable fashion, inter-
operate with other Spade applications as well as with any
other System S application at runtime. While an application
stream is, by default, only available to other consumer oper-
ators in the application that defines it, a stream can be made
visible by exporting it. Conversely, external streams can be
consumed by employing a reference to a virtual stream.

4. COMPILER OPTIMIZATIONS
In this section we discuss three optimization opportuni-

ties created by Spade’s code generation framework. The
first one is the operator grouping optimization, which deals
with the mapping of operators into PEs. The second one
is the execution model optimization, which deals with the
assignment of threads to operators. Finally, the third one is
the vectorized processing optimization, which deals with the
hardware acceleration of vectorized operations on lists.

4.1 Operator Grouping Optimization
The System S runtime deals with the scheduling and

placement of PEs, whereas it does not handle operators di-
rectly. It is the responsibility of the Spade compiler to map
operators into PEs. The näıve approach of mapping each
operator to a different PE results in significant overheads
due to several factors. First, each PE is a separate execu-
tion unit and thus having as many PEs as operators implies
executing large number of processes or threads. This will
limit the performance, especially when the job is not dis-
tributed over a large number of nodes, resulting in higher
number of threads per node. Second, streaming data items
from one PE to another involves message transmission and
queuing delays, and thus having too many PEs will cause ad-
ditional delays at each link of the data-flow graph. This will

increase latency especially when the job is distributed over
a large number of nodes (higher transmission delays). On
the other hand, the other extreme case of having a single PE
obviously prevents us from making use of processing power
from multiple nodes. Therefore, the goal of the operator
grouping optimization is to find the best balance between
these two extremes.

O4O3

O3 O4

O2O1

O2O1

PE1

PE2

Figure 4: Example operator to PE mapping

Figure 4 shows an example operator-to-PE mapping,
where four operators are mapped into two PEs. Note
that PEs have buffers attached to their input/output ports.
When PEs are located in different nodes, tuples are mar-
shaled into SDOs and transferred over the network from in-
put buffers to output buffers. In contrast, only a pointer is
passed around when the PEs are co-located on the same
node and sit under the same PE container. The intra-
PE transfers among operators within the same PE are sig-
nificantly more efficient than their inter-PE counterparts.
This will become clearer in the next section, where we de-
scribe Spade’s optimizing partitioner used for operator-to-
PE mapping.

4.2 Execution Model Optimization
As we discussed, Spade can map a set of operators into

a PE. By default, operators that are part of a composite

PE do not run parallel threads. Optionally, Spade can as-
sign multiple parallel threads to operators. With the current
trend of increasing the number of cores in CPU hardware to
improve performance, multi-threading becomes an impor-
tant aspect of high-performance applications. Making use
of multiple cores at the level of operators entails generating
multi-threaded code for the built-in operators. For instance,
an Aggregate operator can potentially use multiple threads
to compute aggregates defined over different attributes, in
parallel. Assuming built-in operators have parallel imple-
mentations, the high-level problem is to decide how to best
distribute threads to operators within a PE. At the time
of this writing, Spade does not generate parallel code for
individual operators. To make use of multiple cores on a
single node, Spade creates multiple PE’s to be run on the
same node. We are currently working on code generation
for multi-threaded built-in operators and the problem of op-
timizing the thread-to-operator mapping.

4.2.1 Alternative Hardware Architectures

New opportunities in optimizing the execution model arise
with the increasing diversity of the hardware available for
general purpose computing, such as the Cell processor [15],
graphics processors (GPUs) [18], network processors [16],
etc. Acceleration of data stream operators on these hard-

1129



ware often require a different execution model and special-
ized code. We have performed prototype implementations of
stream joins (see [11]) and sorting (see [10]) on the Cell pro-
cessor. Integrating full Cell support into Spade will involve
developing code generators to specialize these implementa-
tions for given operator configurations3.

4.3 Vectorized Processing Optimization
The vectorized operations on list types can be acceler-

ated through Single-Instruction Multiple-Data (SIMD) op-
erations available in most modern processors. Spade utilizes
Streaming SIMD Extensions (SSE) on the Intel processors
to accelerate the basic arithmetic operations on list types.

5. SPADE’S OPTIMIZING PARTITIONER
Spade’s optimizing partitioner uses operator fusion as the

underlying technique for forming PEs out of operators and
employs a two-phase learning-based optimization approach
to configure the operator partitions.

5.1 Operator Fusion
Spade uses code generation to fuse operators into PEs.

Concretely, a PE generator produces code that (1) fetches
tuples from the PE input buffers and relays them to the
operators within, (2) receives tuples from operators within
and inserts them into the PE output buffers, and (3) for
all the intra-PE connections between the operators, it fuses

the outputs of operators with the inputs of downstream ones
using function calls. This fusion of operators with function
calls results in a depth-first traversal of the operator sub-
graph that corresponds to the partition associated with the
PE, with no queuing involved in-between.

As noted earlier, Spade supports multi-threaded opera-
tors, in which case the depth-first traversal performed by
the main PE thread can be cut short in certain branches,
where separate threads can continue from those branches in-
dependently. The latter requires operators to be thread-safe.
For user-defined operators, Spade automatically protects
the process methods to provide thread-safety. For built-
in operators, finer grained locking mechanisms are used for
this purpose. Spade code generators do not insert these
locks into the code if an operator is not grouped together
with other operators and is part of a singleton PE.

Since Spade supports feedback loops in the data-flow
graph, an operator graph is not necessarily cycle-free, which
opens the possibility of infinite looping within a composite
PE. The rationale behind allowing feedback loops in Spade

is to enable udops to tune their logic based on feedback
from downstream operators. Under operator fusion, Spade

does not allow feedback links into built-in operators and ex-
pects feedback links into udops to be connected to non-tuple-
generating inputs. This guarantees cycle free operation un-
der operator fusion. In our experience, feedback loops have
been a valuable asset in developing applications that are
heavy on udops, an example of which is a semiconductor
fabrication line monitoring application (built with Spade)
that uses downstream yield statistics to tune its upstream
detection algorithm.

3The System S runtime is already ported to the PowerPC
architecture. A PE can run on the PPE side of a Cell pro-
cessor, and can interact with the SPE threads to accelerate
processing of data streams.

5.2 Statistics Collection
In order to decide on how to best partition the operators

into PEs, Spade needs to know resource usage characteris-
tics of operators. Such characteristics are dependent on the
workload, as well as the specific configurations of the opera-
tors. Even though the internal mechanics of built-in Spade

operators are known and thus a cost model can potentially
be build, the same does not hold for user-defined operators.
Moreover, heavy use of functions within expressions that ap-
pear in built-in operators makes it harder to come up with
accurate cost models. Relying on the long-running nature of
Spade jobs, we adopted a learning-based statistics collection
framework. Before compiling a Spade job for the final exe-
cution, we compile it in a special statistics collection mode.
The application is then run in this mode to collect runtime
information for each operator and each link in the data-flow
graph. These statistics include metrics such as CPU load
and network traffic. After this information is collected, the
application is compiled for a second time. In this second
compilation step, the Spade optimizer uses the statistics
collected in the earlier step to come up with an optimized
operator grouping, and applies operator fusion to yield the
composite PEs. At this point the long-running Spade job is
ready to be deployed.

5.3 Optimization Goal
Given the CPU load and network traffic statistics for

the data-flow graph at hand, Spade’s optimizing partitioner
aims at minimizing the total inter-PE communication, while
respecting the constraint that the total load imposed by the
operators within a PE should not exceed the capacity of a
single processor. The optimizer will pick the smallest num-
ber of nodes that satisfy this constraint. Even though this
strategy is more tailored towards throughput optimization,
it also works well for reducing the latency. Our experience
has shown that crossing PE boundaries is a major cause of
increased latency. Thus, the conservative nature of Spade’s
optimizing partitioner with respect to creating additional
PEs reduces the latency in general.

6. AN EXAMPLE SPADE APPLICATION
In this section we describe a sample Spade application

from the finance engineering domain, called Bargain Index

Computation. We also present a performance study of a
parallel and distributed version of this application, to give
the reader an idea of the level of performance and scalability
achievable with Spade and System S.

6.1 Bargain Index Computation
We consider a stock trading scenario, where the aim is

to find bargains to buy. A sell quote for a given stock is
considered a bargain, if it is available in quantity and at a
cheaper price relative to its moving average price as seen in
recent trades. Bargain index is a scalar value representing
the magnitude of the bargain, i.e. how much of a bargain
it really is. We would like to compute the bargain index for
every stock symbol that appears in the source stream. The
visual representation of the Spade query that implements
this logic using built-in Spade operators is given in Figure 5.
In what follows, we describe the source data, the processing
logic, and the result management aspects of this application.
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Figure 5: Bargain Index computation for all stock symbols

Source Data: Trades and Quotes

The source data contains trade and quote information. A
trade shows the price of a stock that was just traded,
whereas a quote reveals either an “ask” price to sell a stock
or a “bid” price to buy a stock. For this application, we only
consider the ask price in the quote data, i.e., we care about
sell quotes and ignore the buy ones. Table 1 lists relevant
fields of the trade and quote data. Note that, each trade
has an associated price and a volume, whereas each quote
has an associated ask price and an ask volume. In Figure 5,
live stock data is read directly from the IBM WebSphere
Front Office (WFO) [24] − a commercial middleware plat-
form for performing front office processing tasks in financial
markets. Spade’s source operator has built-in support for
tapping into WFO sources and converting them into Spade

streams.

Ticker Type Price Volume Ask Price Ask Size

MWG Trade 24.27 500 − −

TEO Quote − − 12.85 1

UIS Quote − − 5.85 6

NP Trade 28.00 5700 − −

TEO Trade 12.79 700 − −

Table 1: Sample trade and quote data (relevant
fields shown)

Processing Logic: Bargain Detection

To compute the bargain index, we first need to separate the
source stream into two branches, trades and quotes. This is
achieved via the use of two Functor operators (see Figure 5).
The Functor operator that creates the upper trade branch
also computes trade price × volume, which will later be used
to compute the volume weighted average price (VWAP) − a
commonly used metric in algorithmic trading. The Aggre-
gate operator that follows the Functor computes a moving
sum over price × volume and volume. It uses a per-group

window of size 15 tuples with a slide of 1 tuple, i.e. it outputs
a new aggregate every time it receives a trade, where the ag-
gregate is computed over the last 15 tuples that contained
the same stock symbol of the last received trade. Another
Functor operator is used to divide the moving summation
of price × volume to that of volume, giving the most re-
cent VWAP value for the stock symbol of the last received
trade. The resulting intermediate stream is connected to
the first input of an equi-Join (on stock symbol) operator,
which has a per-group window of size 1 tuple on the same

input. In other words, the join window for the first input
has one group for each unique stock symbol seen so far and
stores the last VWAP value within each group. The second
input of the join is connected to the quote stream, and has
a zero-sized window (this is a single-sided join). The aim
is to associate the last received quote with the most recent
VWAP value computed for the stock symbol of that quote.
Once this is done, a simple formula is used to compute the
bargain index as a function of the ask price, ask size, and
the VWAP value. A final Functor operator filters out the
bargain indexes that are zero, indicating that a bargain has
not been detected.

Results Management and DB2 DSE

In Figure 5, the non-zero bargain index values are fed into a
Sink operator, which is connected to IBM DB2 Data Stream
Edition [9] − an extension of DB2 designed for persisting
high-rate data streams. The result database can potentially
be connected to an automated trading platform, in order to
act upon the bargain index results.

6.2 A Parallel Version for Historical Data
We now present a parallel and distributed version of the

same query and provide brief performance results. To show-
case scalability, we use historic market feed data stored on
the disk. The data set contains 22 days’ worth of ticker data
(the month of December 2005) for ≈ 3000 stocks with a total
of ≈ 250 million trade and quote transactions, resulting in
≈ 20GBs of data. It is organized as one file per day on the
disk, and is stored on IBM’s General Parallel File System
(GPFS) [13] − a commercial high-performance shared-disk
clustered file system. For this workload, we run the bargain
index computation query and store the detected bargains
back into output files on GPFS.

To parallelize the processing we run 22 copies of the flow
depicted in Figure 5, one for each trading day. This is
achieved using a Spade for loop construct that encloses the
complete query specification. For performance reasons, we
run operators that are part of the processing of the same
day within a single PE. We distribute these PEs over 16
nodes in our cluster. Spade is capable of expressing more
sophisticated parallelization and distribution schemes, yet
for this application a simple coarse-grained scheme is suffi-
ciently effective. The Spade code for this parallel version of
the application is given in the Appendix.

It is important to note that a developer interacts only with
the Spade language and the compiler, for generating a par-
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Figure 6: Tuple ingestion rate for the parallel and
distributed bargain index computation application,
using 22 parallel queries distributed over 16 nodes.

allel and distributed System S application, like the bargain
index computation one we have described in this section.
The resulting application runnables are easily deployable on
the System S cluster using convenience scripts automatically
generated by the Spade compiler, which in turn rely on the
System S job management infrastructure. Figure 6 shows
the performance obtained from running our example appli-
cation. The figure plots the aggregate tuple ingestion rate as
a function of the current wallclock time. Note that the sus-
tained processing rate is around 1.6 million tuples/sec and
the total time required to compute all the bargain index val-
ues for a month’s worth of disk resident data takes less than
3.5 minutes. The downward trend in the aggregate inges-
tion rate after the initial flat plateau is due to some of the
daily subqueries completing earlier than some others, since
different days have differing trading volumes. Moreover, re-
call that 22 queries are distributed over 16 machines, which
results in further imbalance in the server loads. This is be-
cause all operators within the same query are packed into a
single PE, resulting in 22 units that are distributable over
16 machines. However, our choice of 16 nodes for this ex-
perimental study was not arbitrary. We picked the available
nodes that have high-bandwidth access to the GPFS file sys-
tem, in order to avoid a potential file system bottleneck.

7. ONGOING AND FUTURE WORK
The System S platform in general, and Spade in partic-

ular are both under very active development at IBM Re-
search. While several real-world applications have been im-
plemented using Spade demonstrating its usability, many
new improvement fronts have also been opened.

An important ongoing development is the implementation
of a rapid-application development environment based on
visual metaphors for composing an application. With such
an environment, developers will be able to compose stream
flows visually, but as importantly, they will be able to con-
trol parallelization and distribution characteristics, manu-
ally tweak optimization choices, debug applications, visu-
alize performance metrics, among other tasks. Performing
several of these tasks is already possible, however, the abil-
ity to do them in an integrated and visual manner will make
the application development and improvement cycle much
easier.

The addition of new and domain-specific operator toolkits
is also ongoing. We are in the process of identifying and se-
lecting the important building blocks commonly used in the
domains of signal processing, stream data mining, and finan-
cial engineering with the aim of making them full-fledged
built-in operators in the language.

On the code generation side, we are actively working
on integrating special-purpose hardware platforms with the
goal of providing unprecedented performance to time-critical
stream processing applications.

At the other end of the spectrum, we are also working
towards front-ending Spade with higher-level languages in-
cluding Stream SQL and System S’s semantic composition
framework [19], allowing these different front-ends to auto-
matically and efficiently output System S artifacts, leverag-
ing System S capabilities to the fullest extent.

Finally, we are improving the interoperability features of
Spade. On the one hand we are including additional edge
adapters for both data ingestion and data externalization,
spanning from support for binary data and HTTP-based
protocols to the integration with other middleware plat-
forms. On the other hand, we are increasing the capabilities
of Spade applications to interact with non-Spade System S
applications, leveraging System S’ capabilities for on-the-fly
dynamic application composition [17].

8. CONCLUSIONS
In this paper we have presented System S’ Spade −

a declarative stream processing engine. We believe that
Spade is introducing a programming framework that is novel
in many ways compared with the existing stream processing
middleware platforms. Among its novel features, we believe
that the native support for edge adapters and toolkits of
operators as well as the reliance on code generation, cou-
pled with the optimization framework make Spade particu-
larly suitable for building high-performance scalable stream
processing applications. Also its ability to extend the col-
lection of edge adapters and toolkits make it adequate for
developing applications geared towards application domains
we have not yet even contemplated. While Spade is la-
beled as an intermediate language, it is directly usable by
application developers for quickly prototyping complex ap-
plications. Nevertheless, the advances discussed in Section 7
will further decrease the barrier of entry for novice develop-
ers. We have also shown performance results for a relatively
complex stream processing application built completely with
Spade lending quantitative credibility to our optimization
strategy as well as System S’ high-performance capabilities.
In conclusion, despite the many challenges ahead, we believe
that Spade already provides an interesting and important
set of abstractions for composing and building large-scale,
distributed, and scalable stream processing applications.
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APPENDIX: Spade source code

# %1 and %2 are the first and second parameters

#define NCNT min(%1,16) #* number of nodes to utilize *#

#define FCNT min(%2,30) #* number of days to analyze *#

[Application]

vwap # trace

[Typedefs]

typespace vwap

[Nodepools]

nodepool ComputingPool[16] := () # automatically allocated from available nodes

[Program]

#* Source data format:

* 1 ticker:String, 8 volume:Float, 15 askprice:Float, 22 peratio:Float,

* 2 date:String, 9 vwap:Float, 16 asksize:Float, 23 yield:String,

* 3 time:String, 10 buyer:String, 17 nsellers:Float, 24 newprice:Float,

* 4 gmtoffset:Integer, 11 bidprice:Float, 18 qualifiers:String, 25 newvolume:Float,

* 5 ttype:String, 12 bidsize:Float, 19 seqn:Long, 26 newseqn:Long,

* 6 ex:String, 13 nbuyers:Float, 20 exchtime:String, 27 bidimpvol:String,

* 7 price:Float, 14 seller:String, 21 blocktrd:String, 28 askimpvol:String,

29 impvol:String *#

for_begin @day 1 to FCNT # for each day

stream TradeQuote@day(ticker:String, ttype:String, price:Float, volume:Float, askprice:Float, asksize:Float)

:= Source()["file:////gpfs/ss/taq_200512"+select(@day<10,"0@day","@day")+".csv", nodelays, csvformat]

{ 1, 5, 7-8, 15-16 }

-> partition["mypartition_@day"], ComputingPool[mod(@day-1,NCNT)]

stream TradeFilter@day(ticker: String, myvwap:Float, volume:Float)

:= Functor(TradeQuote@day) [ttype="Trade" & volume>0.0]

{ myvwap := price*volume }

-> partitionFor(TradeQuote@day), ComputingPool[mod(@day-1,NCNT)]

stream QuoteFilter@day(ticker:String, askprice:Float, asksize:Float)

:= Functor(TradeQuote@day) [ttype="Quote" & askprice>0.0]{}

-> partitionFor(TradeQuote@day), ComputingPool[mod(@day-1,NCNT)]

stream VWAPAggregator@day(ticker:String, svwap:Float, svolume:Float)

:= Aggregate(TradeFilter@day <count(15), count(1), pergroup>) [ticker]

{ Any(ticker), Sum(myvwap), Sum(volume) }

-> partitionFor(TradeQuote@day), ComputingPool[mod(@day-1,NCNT)]

stream VWAP@day(ticker:String, cvwap:Float)

:= Functor(VWAPAggregator@day) [true]

{ cvwap := (svwap/svolume)*100.0 }

-> partitionFor(TradeQuote@day), ComputingPool[mod(@day-1,NCNT)]

stream BargainIndex@day(ticker:String, bargainindex:Float)

:= Join(VWAP@day <count(1), pergroup>; QuoteFilter@day <count(0)>)

[{ticker}={ticker}, cvwap > askprice*100.0]

{ bargainindex := exp(cvwap-askprice*100.0)*asksize }

-> partitionFor(TradeQuote@day), ComputingPool[mod(@day-1,NCNT)]

export stream NonZeroBargainIndex@day(schemaof(BargainIndex@day))

:= Functor(BargainIndex@day) [bargainindex>0.0] {}

-> partitionFor(TradeQuote@day), ComputingPool[mod(@day-1,NCNT)]

Null := Sink(NonZeroBargainIndex@day) ["file:///Bargains@day.dat"]{}

-> partitionOf(TradeQuote@day), ComputingPool[mod(@day-1,NCNT)]

for_end
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