
Smart Data Structures: An Online Machine Learning
Approach to Multicore Data Structures

Jonathan Eastep, David Wingate, Anant Agarwal

Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Laboratory

32 Vassar Street, Cambridge, MA 02139
{eastep, wingated, agarwal}@mit.edu

ABSTRACT
As multicores become prevalent, the complexity of program-
ming is skyrocketing. One major difficulty is efficiently or-
chestrating collaboration among threads through shared data
structures. Unfortunately, choosing and hand-tuning data
structure algorithms to get good performance across a va-
riety of machines and inputs is a herculean task to add to
the fundamental difficulty of getting a parallel program cor-
rect. To help mitigate these complexities, this work develops
a new class of parallel data structures called Smart Data
Structures that leverage online machine learning to adapt
automatically. We prototype and evaluate an open source
library of Smart Data Structures for common parallel pro-
gramming needs and demonstrate significant improvements
over the best existing algorithms under a variety of condi-
tions. Our results indicate that learning is a promising tech-
nique for balancing and adapting to complex, time-varying
tradeoffs and achieving the best performance available.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Software Libraries; I.2.6 [Artificial Intelligence]:
Learning—Connectionism and Neural Nets

General Terms
Algorithms, Design, Performance

Keywords
Self-Aware, Autonomic, Auto-Tuning, Concurrent Data Struc-
tures, Synchronization, Performance Optimization

1. INTRODUCTION
As multicores become prevalent, programming complex-

ity is skyrocketing. Programmers expend significant effort
on parallelizing and mapping problems onto hardware in a
way that keeps all threads busy and working together effec-
tively. In many applications, the most difficult aspect of de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAC’11, June 14–18, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-59593-998-2/09/06 ...$10.00.

sign is efficiently orchestrating collaboration among threads
through shared data structures. Unfortunately, application
performance is becoming increasingly sensitive to the choice
of data structure algorithms and algorithm parameter set-
tings. The best algorithm and parameter settings depend
on the machine’s memory system architecture as well as
application-specific criteria such as the load on the data
structure. Many applications have input-dependent compu-
tation which causes the load to vary dynamically. Getting
good performance across a variety of machines and inputs
is a herculean task to add to the fundamental difficulty of
getting a parallel program correct. Programmers should not
be expected to code for these complexities by hand.

Recently, self-aware computing has been proposed as one
automatic approach to managing this complexity. Self-aware
systems are closed-loop systems that monitor themselves on-
line and optimize themselves automatically. They have been
called autonomic, auto-tuning, adaptive, self-optimizing, and
organic systems, and they have been applied to a broad
range of platforms including embedded, real-time, desktop,
server, and cloud computing environments.

This paper introduces Smart Data Structures, a new class
of parallel data structures that leverage online machine learn-
ing and self-ware computing principles to self-tune them-
selves automatically. As illustrated in Figure 1a, standard
parallel data structures consist of data storage, an interface,
and algorithms. The storage organizes the data, the inter-
face specifies the operations threads may apply to the data
to manipulate or query it, and the algorithms implement the
interfaces while preserving correct concurrent semantics.

Storage and algorithms are often controlled by knobs which
are thresholds or other parameters that program implemen-
tation behaviors and heuristics. Knobs are typically con-
figured via one-size-fits-all static defaults provided by the
library programmer. When the defaults perform subopti-
mally, programmers must hand-tune the knobs; typically,
they do so through trial and error and special cases in the
code which increase code complexity and reduce readabil-
ity. Though often necessary, runtime tuning of the knobs is
typically beyond the reach of the programmer.

Figure 1b contrasts Smart Data Structures with standard
data structures. While preserving their interfaces, Smart
Data Structures augment standard data structures with an
online learning engine that automatically and dynamically
optimizes their knobs. Through learning, Smart Data Struc-
tures balance complex tradeoffs to find ideal knob settings
and adapt to changes in the system or inputs that affect
these tradeoffs.

Al i h

Online
LearningStorageSmart Data

Structure
E g Smart Queue

Storage

Al i h

Data
Structure
E g Queue Algorithm

knobs
• self‐tuned

Interface
• add
• remove
• peek

E.g. Smart QueueAlgorithm
Interface
• add
• remove• peek

E.g. Queue

knobs
• hand‐tuned

• automatically
• at runtime

p

t1 t2 tn…t1 t2 tn…
• per system
• per app
• staticApplication Threads Application Threads

79

(a) Standard Parallel Data Structures

Al i h

Online
LearningStorageSmart Data

Structure
E g Smart Queue

Storage

Al i h

Data
Structure
E g Queue Algorithm

knobs
• self‐tuned

Interface
• add
• remove
• peek

E.g. Smart QueueAlgorithm
Interface
• add
• remove• peek

E.g. Queue

knobs
• hand‐tuned

• automatically
• at runtime

p

t1 t2 tn…t1 t2 tn…
• per system
• per app
• staticApplication Threads Application Threads

79

(b) Smart Data Structures

Figure 1: The Anatomy of Smart Data Structures. Smart
Data Structures augment standard data structure interfaces,
storage, and algorithms with online machine learning to in-
ternally optimize the knobs that control their behavior.

This work prototypes an open source (GPL) library of
Smart Data Structures consisting of learning-enabled im-
plementations of common parallel programming data struc-
tures. It is available on github [1] and includes: a Smart
Lock [2] for locks, a Smart Queue for software pipelining
and work queues, and a Smart Skip List and Pairing Heap
for prioritized queues. A Smart Stack, Distributed Hash
Table, and others are planned for future expansions.

Different Smart Data Structures may use different online
learning algorithms and apply learning in different ways. In
previous work, we developed Smart Locks [2], self-tuning
spin-locks that use Reinforcement Learning to optimize the
order and relative frequency with which different threads get
the lock when contending for it: an optimization called Lock
Acquisition Scheduling. Smart Locks implement Lock Ac-
quisition Scheduling by learning a permutation order over
the contending threads. We show that Lock Acquisition
Scheduling and unfair allocation of critical sections can ac-
celerate applications on heterogeneous multicores [2].

This paper focuses on the design of the Smart Queue,
Skip List, and Pairing Heap. Their implementation aug-
ments a recently developed data structure algorithm called
Flat Combining [3] with an online learning engine. Like
the Smart Lock, these new Smart Data Structures use Re-
inforcement Learning but use it to optimize an important
discrete-valued knob in the Flat Combining algorithm rather
than a permutation order over threads. That discrete-valued
knob is called the scancount. In Section 4.2 we motivate our
decision to build on Flat Combining by showing that it out-
performs the best prior algorithms in many scenarios.

Figure 2a shows the Flat Combining data structure design.
Flat Combining data structures are non-blocking, shared

Smart Queue, SkipList, PairHeap, Stack

Publication ListE.g.:
1 4

FC
Skip List

Publication List

S t

Serial Skip List

g

32

Interface
Lock Scancount

• add
• remove
• contains

knobs
• # scans over pub. list
• hand‐tuned

t1 t2 tn…
Application Threads

• per system
• per app
• static

hand tuned

82

(a) Flat Combining Skip List

Smart Queue, SkipList, PairHeap, Stack

Reinforcement
LearningPublication ListE.g.:

1 4
g

(of a discrete var)Smart
Skip List

Publication List

S t

Serial Skip List

g

32

Interface
Lock Scancount

• add
• remove
• contains

knobs
• # scans over pub. list

lf t d
t1 t2 tn…

Application Threads
• automatically
• at runtime

• self‐tuned

81

(b) Smart Skip List

Figure 2: The Smart Queue, Skip List, and Pairing Heap.
These Smart Data Structures augment the Flat Combining
algorithm with an online machine learning engine to opti-
mize a performance-critical knob of the algorithm called the
scancount.

memory data structures that consist of a publication list,
a lock, a scancount, and a serial data structure. The algo-
rithm uses the lock as a coarse-lock around the serial data
structure and the publication list as a low-overhead mecha-
nism for broadcasting the operations that the threads wish
to apply to the data structure. Threads overcome the serial-
ization of lock-based concurrency by combining : performing
not only their operation when they have the lock but also
the published operations of the other threads.

The steps of the algorithm are numbered in Figure 2a.
Each thread has a record in the publication list. In Step 1,
when a thread wants to perform an operation on the data
structure, it publishes a request and any necessary argu-
ments in its record. Next, in Step 2 the thread waits for
the operation to complete, spinning locally on a field in its
record. While spinning, the thread will periodically attempt
to acquire the lock. If successful, the thread moves to Step
3 and becomes the combiner ; otherwise it remains in Step 2
until its operation completes. In Step 3, the combiner reads
the scancount, k. Finally, in Step 4, the combiner scans the
publication list k times, each time looking for operations to
perform and applying them. The combiner may merge oper-
ations before applying them to improve efficiency. As soon
as a thread’s operation is complete, the combiner writes to
that thread’s record to signal it. That thread stops spinning
and it returns control to the application. After its k scans,
the combiner releases the lock and likewise returns control
to the application.

300

400

500

600

700

o
u
gh
p
u
t
(o
p
s/
m
s)

Smart Queue
14 threads

300

400

500

600

700

800

o
u
gh
p
u
t
(o
p
s/
m
s)

Smart Skip List
14 threads

400

500

600

700

800

900

o
u
gh
p
u
t
(o
p
s/
m
s)

Smart Pair Heap
14 threads

Ideal Static
SDS Dynamic
Avg Static

300

400

500

600

700

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Queue
14 threads

300

400

500

600

700

800

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Skip List
14 threads

400

500

600

700

800

900

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Pair Heap
14 threads

Ideal Static
SDS Dynamic
Avg Static

300

400

500

600

700

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Queue
14 threads

300

400

500

600

700

800

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Skip List
14 threads

400

500

600

700

800

900

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Pair Heap
14 threads

Ideal Static
SDS Dynamic
Avg Static

400

600

800
p
u
t
(o
p
s/
m
s)

Smart Skip List
14 threads

Ideal Static
SDS Dynamic
Avg Static

300

400

500

600

700

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Queue
14 threads

300

400

500

600

700

800

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Skip List
14 threads

400

500

600

700

800

900

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Pair Heap
14 threads

Ideal Static
SDS Dynamic
Avg Static

200

400

600

800
Th

ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Skip List
14 threads

Ideal Static
SDS Dynamic
Avg Static

Figure 3: Smart Skip List Throughput vs. Load. Through
online learning, the Smart Skip List significantly improves
performance over the average static bound, achieving and
exceeding the ideal static bound.

Thus, the scancount dictates the number of scans combin-
ers make over the publication list before returning control to
the application. Adjusting the scancount for more scans pro-
vides opportunities to catch late-arriving requests and there-
fore perform more operations in each combining phase. This
can improve synchronization overheads by reducing the rate
at which locks must be acquired and can improve temporal
locality and cache performance because more back-to-back
data structure operations are performed by the same thread
[3]. However, making more scans has the tradeoff that the
latency of data structure operations can increase because
threads remain the combiner for longer. Some applications
are not affected by this latency, but we will demonstrate
common application structures that are adversely affected.
Increased latency can be particularly bad when the extra
time spent combining is wasted because requests are not
arriving quickly enough to keep the combiner busy.

In Flat Combining, the scancount is fixed to a static de-
fault value provided by the library. The Smart Queue, Skip
List, and Pairing Heap, hereafter referred to as simply Smart
Data Structures, significantly improve performance over Flat
Combining by optimizing the scancount dynamically. Figure
2b shows that Smart Data Structures do this by augment-
ing Flat Combining with an online Reinforcement Learning
engine which balances the tradeoffs to find the optimal scan-
count. Our experiments on a 16-core Intel(r) Xeon(r) system
demonstrate that, through learning, Smart Data Structures
can outperform the state-of-the-art (Flat Combining) by up
to 1.5x over a range of conditions and readily adapt to rapid
changes in the application workload that cause the optimal
scancount to vary over time.

Figure 3 gives an example of our experimental results.
Using the benchmark developed by Hendler et al. [3] (de-
scribed in Section 4.1), we compare the throughput of the
Smart Skip List data structure which dynamically tunes the
scancount to the ideal and average throughput achieved by
the Flat Combining Skip List using a range of static val-
ues. The difference between the ideal and average static
throughput demonstrates that finding the optimal value can
substantially improve throughput. Further, the results show
that the Smart Skip List is able to learn optimal scancount
values and reach the ideal static throughput. Its through-
put actually exceeds the ideal static throughput because, for
data structures like the Skip List, the optimal scancount can
vary during execution and necessitate dynamic tuning.

To summarize, the major contributions of this work are:

• a methodology based on machine learning for designing
self-aware parallel data structures

• open source implementations of popular data struc-
tures that outperform the state-of-the-art by up to 1.5x

The rest of this paper is organized as follows. Section 2
compares Smart Data Structures to related works. Section 3
motivates and describes our learning-based design. Section
4 presents our experimental results. Section 5 concludes.

2. RELATED WORK
This paper introduces a new class of data structures called

Smart Data Structures. Building upon design principles
from self-aware computing, Smart Data Structures lever-
age online machine learning to self-optimize themselves for
different machines, applications, and inputs automatically.
This section compares Smart Data Structures to related
works. It surveys other examples of machine-learning-based
self-aware systems then compares the Smart Data Struc-
tures design methodology to existing frameworks for adap-
tive data structures. For background on concurrent data
structures, see the online appendix [4].

2.1 Learning-Based Self-Aware Systems
Self-aware computing has become a popular approach to

reducing the complexity of programming and designing sys-
tems. An effective implementation strategy is to use ma-
chine learning. Researchers have built systems based on
learning to address a variety of important problems in mul-
ticores and clouds spanning resource allocation, scheduling
and load balancing, and libraries and optimization.

Ipek et al. apply Reinforcement Learning and neural nets
to multicore resource management [5, 6]. They build self-
optimizing hardware agents that adapt the allocation of crit-
ical resources according to changing workloads. Hoffman et
al. [7] utilize Reinforcement Learning and control theory in a
software runtime framework which manages application par-
allelism to meet performance goals while minimizing power
consumption. Tesauro et al. use Reinforcement Learning
in the context of data centers to make autonomic resource
allocations [8]. Wentzlaff et al. from MIT are investigating
various applications of machine learning to the operating
system that they are designing for multicores and clouds [9].

Fedorova et al. extend learning to heterogeneous multi-
cores to coordinate resource allocation and scheduling [10].
Their system produces scheduling policies that balance opti-
mal performance, core assignments, and response-time fair-
ness using Reinforcement Learning. Whiteson and Stone use
Q-learning to improve network routing and scheduling [11].

Work in libraries and optimization has also benefited from
learning-based self-aware computing. We developed a spin-
lock library called Smart Locks which uses Reinforcement
Learning in a technique called Lock Acquisition Scheduling
to optimize data structure performance in heterogeneous
multicores [2]. Coons et. al apply genetic algorithms and
Reinforcement Learning to compilers to improve instruction
placement on distributed microarchitectures with results ri-
valing hand-tuning [12]. Finally, Jimenez and Lin apply
the perceptron algorithm to dynamic branch prediction and
propose a scheme that substantially outperforms existing
techniques [13]. Our view is that these pioneering works are

evidence that machine learning will play an essential role in
the development of future systems.

2.2 Adaptive Data Structures and Programs
While machine learning has been applied to a variety of

self-aware systems, not much work has investigated using
learning for adaptive data structures. The Smart Locks work
[2] is one of the only examples. There have been a variety
of related works in auto-tuned libraries and programming
frameworks that use other means. Typical auto-tuned li-
braries select from a repertoire of implementations based
on the input size, a sampling of data characteristics, and
install-time benchmarks on the machine. Domain-specific
libraries like PHiPAC, ATLAS, BLAS, LAPACK, FFTW,
and adaptive sort have demonstrated great performance for
linear algebra and sorting applications [14, 15, 16, 17].

Several programming frameworks for adaptive parallel pro-
grams exist as well. STAPL is a well-known C++ framework
that provides adaptive parallel implementations of the ISO
C++ data structures [18]. PetaBricks is a programming
language and compiler from MIT for building adaptive pro-
grams. Using the PetaBricks framework, programmers spec-
ify multiple implementations of each algorithm using a syn-
tax that enables the compiler to make algorithm decisions
and compose parallel algorithms [19].

The limitation of these works is that, while they may
adapt to different architectures and runtime conditions like
input size, they typically base these decisions on thresholds
computed during compile-time or install-time characteriza-
tion. These characterizations may poorly reflect realistic
runtime conditions. Newer technologies like dynamic fre-
quency scaling (i.e. thermal throttling and Intel’s Turbo-
boost(r)) and even fundamental properties of multi-process
environments such as variable competition for hardware re-
sources can alter effective machine performance and sub-
stantially affect the tradeoffs that determine which algo-
rithm and/or algorithm knob settings are best. Smart Data
Structures take an online, adaptive approach to balancing
tradeoffs. Through Reinforcement Learning, our design is
robust to changes in effective machine performance.

3. IMPLEMENTATION
This work introduces a new class of data structures called

Smart Data Structures which leverage online machine learn-
ing to optimize themselves at runtime. This section begins
by describing the implementation of our open source library
of Smart Data Structures. The overriding goal of our design
is to maintain ease of use in applications while providing the
highest performance available across a variety of different
machines, applications, and workloads. Our descriptions of
the implementation are framed around three key challenges
that govern our use of learning and choice of learning algo-
rithms. The major challenges are 1) measuring performance
in a reliable and portable way, 2) adapting knob settings
quickly so as not to miss windows of opportunity for opti-
mization, and 3) identifying the knob settings that are best
for long-term performance. Finally, this section motivates
some tradeoffs made by our design.

3.1 Application Interface
Smart Data Structures are concurrent, non-blocking data

structures written in C++ for shared memory C / C++ ap-
plications. C interfaces are provided for mixing with other

SDS Implementation

Learning

Reward = throughput (ops/s)

Learning
ThreadSmart Data

Structure
E.g.

Smart Queue

Storage

s
t

External Perf.
M it

• add
• remove

Interface

S a t Queue
Algorithmta

ts

Monitor
E.g. Heartbeats

• remove
• peek

Application
Threadst1 t2 tn…

83

Figure 4: Smart Data Structures Internals. All Smart Data
Structures share a learning thread which jointly optimizes
the knobs that control their behavior. Performance feed-
back, the reward, drives the optimization.

languages. From the perspective of an application developer,
integrating a Smart Data Structure into an application is as
simple as integrating a standard data structure: the devel-
oper includes a library header file and is provided standard
object-oriented interfaces.

3.2 Smart Data Structures Internals
While preserving standard interfaces, Smart Data Struc-

tures internally use machine learning to optimize their im-
plementation of those interfaces. Figure 4 illustrates. All
Smart Data Structures share a common learning thread that
runs a learning engine which jointly optimizes their knobs
(their scancounts in this case). We use online machine learn-
ing as our optimization technology because it is an effective
technique for balancing the complexities of joint optimiza-
tion and adapting to time-varying tradeoffs.

Optimization within the learning thread is driven by a
reward signal. We address Challenge 1 (ensuring that per-
formance measurements are portable and reliable) by sup-
plying an internal reward source that meets these criteria
for many applications: by default, Smart Data Structures
measure and provide their throughput as the reward. As a
failsafe, we also support a variety of external performance
monitors developers can use to provide application-specific
reward signals. One we recommend is Application Heart-
beats [20]. Heartbeats is a portable framework for express-
ing application goals and measuring progress toward them
through the abstraction of heartbeats. Developers insert calls
to Heartbeats at significant points in the application to issue
a heartbeat for each unit of progress. The learning engine
uses the rate of heartbeats, the heart rate, as the reward.

We address Challenge 2 (adapting settings quickly so as
not to miss windows of opportunity) in part by running the
learning engine in its own dedicated thread rather than in-
terleaving the learning computation within the application
code in the application threads. This decoupling allows the
learning engine to run faster, deliver optimizations sooner,
and minimize disruption of the application threads. As Sec-
tion 3.3 will elaborate, the other way we meet this challenge
is through our choice of learning algorithms.

3.3 Learning Engine Algorithm
To address both Challenge 2 (adapting settings quickly

so as not to miss windows of opportunity for optimization)
and Challenge 3 (identifying knob settings that are best for

long-term performance), our Smart Data Structures library
employs a Reinforcement Learning (RL) algorithm [21] that
reads a reward signal and attempts to maximize it. Us-
ing RL in the context of Smart Data Structures presents a
number of challenges: the state space is incredibly large and
mostly unobservable, state transitions are semi-Markov due
to context switches, and the entire system is non-stationary.
Because we need an algorithm that is a) fast enough for on-
line use and b) can tolerate severe partial observability, we
adopt an average reward optimality criterion [22] and use
policy gradients to learn a good policy [23]. In particular,
we use the Natural Actor-Critic algorithm [24].

The goal of policy gradients is to improve a policy, which
is defined as a conditional distribution over“actions,”given a
state. At each timestep, the agent samples an action at from
this policy and executes it. In our case, actions are a vec-
tor of discrete-valued scancounts, one for each Smart Data
Structure; executing the action means installing each scan-
count in its corresponding Smart Data Structure. Through-
out this section, we denote the distribution over actions (the
policy) as π and parameters of the distribution as θ.

To compute the quality of any particular policy, we mea-
sure the average reward obtained by executing that policy.
The average reward obtained by executing actions according
to policy π(at|θ) is a function of its parameters θ. We define
the average reward to be

η(θ) ≡ E{R} = lim
i→∞

1

i

iX
t=1

rt,

where R is a random variable representing reward, and rt
is a particular reward at time t, taken either from the sum
of throughputs from all Smart Data Structures or from an
external monitor such as Heartbeats, and smoothed over a
small window of time. The average reward is a function
of the parameters because different settings induce a differ-
ent distribution over actions, and different actions change
the evolution of the system state over time. The average
reward optimality criterion addresses Challenge 3 (finding
good long-term knob settings) by attempting to maximize
all future reward rather than immediate reward.

The goal of the natural actor-critic algorithm is to es-
timate the natural gradient of the average reward of the
system with respect to the policy parameters

∇̃θη(θ) = G−1(θ)∇θη(θ)

where G(θ) denotes the Fisher information matrix of the
policy parameters. Once it has been computed, the policy
can be improved by taking a step in the gradient direction.

Fortunately, there is a known elegant, closed-form way to
compute the natural gradient which does not involve direct
computation of the Fisher information matrix [24]. We ad-
dress Challenge 2 (adapting knob settings quickly) through
the use of this efficient algorithm. Alg. 1 shows the algo-
rithm adapted to our case. Note that the algorithm only
requires basic statistics available at each timestep: the ob-
served reward rt and the gradient of the log-probability of
the action that is selected at each timestep ∇θ log π(at|θ).
One problem is that our domain is partially observable. In a
small twist on the ordinary Natural Actor-Critic algorithm,
we therefore make a coarse approximation by assuming that
the state is constant. Improving this by combining with a
state estimation algorithm is left for future research, but the

Algorithm 1 The Natural Actor-Critic Algorithm.

1: Input: Parameterized policy π(at|θ) with initial param-
eters θ = θ0 and its derivative ∇θ log π(at|θ).

2: Set parameters At+1 = 0, bt+1 = 0, zt+1 = 0.
3: For t = 0, 1, 2, · · · do
4: Sample at ∼ π(at|θt) and set scancounts to at.
5: Observe rt
6: Update basis functions:

φ̃t = [1, 0]T , φ̂t = [1, ∇θ log π(at|θ)T]T

7: Update statistics: zt+1 = λzt + φ̂t,
At+1 = At + zt+1(φ̂t − γφ̃t)T , bt+1 = bt + zt+1rt.

8: When desired, compute natural gradient:
[v wT]T = A−1

t+1bt+1

9: Update policy parameters: θt+1 = θt + αw.
10: end.

fact that this algorithm does not depend on a detailed model
of the system dynamics is a major virtue of the approach.

So far, we have said nothing about the particular form of
the policy. We must construct a stochastic policy that bal-
ances exploration and exploitation, and that can be smoothly
parameterized to enable gradient-based learning. We accom-
plish this in the most direct way possible. For each Smart
Data Structure, we represent our policy as a multinomial dis-
tribution over the n different discrete values the scancount
can take on. We use the exponential-family parameteriza-
tion of the multinomial distribution, giving each Smart Data
Structure i a set of n real-valued weights θi. The policy for
data structure i is therefore

p(ait = j|θi) = exp{θij}/
nX
k=1

exp{θik}.

from which we sample a discrete value for the scancount.
The gradient of the likelihood of an action (needed in Alg.

1) is easily computed, and is given by

∇θ log π(ait|θi) = δ(ait)− π(ait|θi)

where δ(ait) is a vector of zeros with a 1 in the index given by
ait. When enough samples are collected (or some other gra-
dient convergence test passes), we take a step in the gradient
direction: θ = θ + αw, where w is computed in Alg.1 and
α is a step-size parameter. Currently, we take 200 samples
and use α = .1.

3.4 Learning Thread Tradeoffs
As previously described, the learning engine uses Alg. 1 to

jointly optimize scancounts for all Smart Data Structures.
To run the learning engine, our design adds one thread to
the application. The advantage is that this minimizes ap-
plication disruption and enables background optimization of
the application as it is running. The use of an extra thread
also represents a tradeoff because an application could po-
tentially have utilized the extra thread for parallelism. The
extra thread is only justified if it provides a net gain in
performance. Fortunately, net gains are easy to achieve in
common scenarios which this section will describe.

First, by Amdahl’s Law, typical applications reach a sat-
uration point where serial bottlenecks limit scalability and
adding parallelism no longer benefits performance. Here,
adding an optimizing thread is not only justified, it is one
of the only ways to continue improving performance. Most

0

1000

2000

3000

4000

2 4 6 8 10 12 14Th
ro
u
gh

p
u
t (
o
p
s/
m
s)

Threads

Queue Throughput
post comp = 800ns

FC Queue
Baskets Queue
MS Queue

0

500

1000

1500

2 4 6 8 10 12 14
Threads

Skip List Throughput
post comp = 800ns

FC Skip List
LF Skip List
Lazy Skip List

0

1000

2000

3000

4000

2 4 6 8 10 12 14
Threads

Pair Heap Throughput
post comp = 800ns

FC Pair Heap
LF Skip List
Lazy Skip List

(a) Throughput vs. Concurrency Level

0

1000

2000

3000

4000

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Queue Throughput
threads = 14

FC Queue
Baskets Queue
MS Queue

0

500

1000

1500

Post Computation (ns)

Skip List Throughput
threads = 14

FC Skip List
LF Skip List
Lazy Skip List

0

1000

2000

3000

4000

Post Computation (ns)

Pair Heap Throughput
threads = 14

FC Pair Heap
LF Skip List
Lazy Skip List

0

1000

2000

3000

4000

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Queue Throughput
threads = 14

FC Queue
Baskets Queue
MS Queue

0

500

1000

1500

Post Computation (ns)

Skip List Throughput
threads = 14

FC Skip List
LF Skip List
Lazy Skip List

0

1000

2000

3000

4000

Post Computation (ns)

Pair Heap Throughput
threads = 14

FC Pair Heap
LF Skip List
Lazy Skip List

(b) Throughput vs. Post Computation

Figure 5: Performance Characterization of the Best Existing Algorithms. The Flat Combining Queue, Skip List, and Pairing
Heap substantially outperform the others at higher concurrency levels and heavier loads (lower post computation).

applications are expected to reach their limit before they
can fully utilize future manycore machines, and many reach
those limits today.

Second, for memory-intensive applications, it is well-known
that multicore shared memory systems are becoming a scala-
bility bottleneck: adding threads can increase sharing in the
memory system until it saturates and limits performance.
Smart Data Structures can help scalability by reducing mem-
ory synchronization operations and cache miss rates through
better locality and reduced shared memory invalidations.

Finally, for the remaining applications, if we assume n
hardware thread contexts, our design must improve perfor-
mance by a factor of n/(n− 1) to outweigh the performance
lost to utilizing one thread for optimization instead of ap-
plication parallelism. The required improvements diminish
as the number of cores increase: on today’s 16-core and 8-
core machines, a factor of just 1.07x and 1.14x are needed.
Our results achieve gains up to 1.5x on a 16-core machine.
Future work will investigate this scenario further.

4. RESULTS
This section evaluates our prototype library of Smart Data

Structures. It starts with a description of our experimental
setup then presents four studies. The first characterizes the
performance of the best existing data structure algorithms
and shows that the Flat Combining data structures [3] are
the best choice to build our Smart Data Structures proto-
type upon because they achieve the best performance on
our system. The second study quantifies the impact of the
scancount value on data structure performance. It shows
that the best value varies widely, that hand-tuning would
be cumbersome, and that using the optimal scancount can
substantially improve performance. The third study evalu-
ates the performance of Smart Data Structures. It derives
performance bounds from the second study then shows that
Smart Data Structures achieve near-ideal performance un-
der a variety of conditions in many cases. We show that
Smart Data Structures improve performance over the state-

of-the-art by as much as 1.5x in our benchmarks. The fourth
study demonstrates the advantage of the learning approach
to auto-tuning in Smart Data Structures: the ability to
adapt the scancount to changing application needs. Since
it is common for the load on a data structure to be variable
in producer-consumer application structures,1 we dynami-
cally vary the load on the Smart Data Structures and show
that they achieve near-ideal performance even under high
variation frequencies.

4.1 Experimental Setup
The experiments are performed on a 16-core (quad 4-core)

Intel(r) Xeon(r) E7340 system with 2.4 GHz cores, 16 GB
of DRAM, and a 1066 MHz bus. Each core runs 1 thread
at a time. Benchmarks use up to 15 threads at once (on 15
cores), reserving one core for system processes. Where ap-
plicable, one of the 15 available cores is utilized for machine
learning. Threads are not affinitized to particular cores and
can move around during execution. Benchmarks are com-
piled for Debian Linux (kernel version 2.6.26) using gcc 4.3.2
and O3 optimizations.

All experiments measure data structure throughput using
a modified version of the synthetic benchmark developed in
the Flat Combining paper [3]. Modifications are limited to
adding support for benchmarking Smart Data Structures,
adding a second operating mode for evaluating producer-
consumer application structures, and varying the scancount
parameter used by the Flat Combining algorithm. The origi-
nal operating mode instantiates a data structure and spawns
n threads that request enqueue and dequeue operations at
random with equal likelihood. Between operations, each
thread performs post computation. Post computation is
modeled as a delay loop of integer arithmetic instructions.
For a given n, decreasing the post computation increases the
load on the data structure. The benchmark runs for 10 sec-

1E.g. work queues where the complexity of individual work
items may vary

200

400

600

ut
 (o

ps
/m

s)
Queue Sensitivity

14 threads, work=6400ns

400

600

800

ut
 (o

ps
/m

s)

Skip List Sensitivity
14 threads, work=6400ns

400

600

800

1000

pu
t
(o
ps
/m

s)

Pair Heap Sensitivity
14 threads, work=6400ns

0

200

400

600

1 5 9 13 17 21 25 29 33 37 41 45 49

Th
ro
ug
hp

ut
 (o

ps
/m

s)

Scancount

Queue Sensitivity
14 threads, work=6400ns

0

200

400

600

800

1 5 9 13 17 21 25 29 33 37 41 45 49

Th
ro
ug
hp

ut
 (o

ps
/m

s)

Scancount

Skip List Sensitivity
14 threads, work=6400ns

0

200

400

600

800

1000

1 5 9 13 17 21 25 29 33 37 41 45 49

Th
ro
ug
hp

ut
 (o

ps
/m

s)

Scancount

Pair Heap Sensitivity
14 threads, work=6400ns

) Queue Sensitivity) Skip List Sensitivity) Pair Heap Sensitivity

0

200

400

600

1 5 9 13 17 21 25 29 33 37 41 45 49

Th
ro
ug
hp

ut
 (o

ps
/m

s)

Scancount

Queue Sensitivity
14 threads, work=6400ns

0

200

400

600

800

1 5 9 13 17 21 25 29 33 37 41 45 49

Th
ro
ug
hp

ut
 (o

ps
/m

s)

Scancount

Skip List Sensitivity
14 threads, work=6400ns

0

200

400

600

800

1000

1 5 9 13 17 21 25 29 33 37 41 45 49

Th
ro
ug
hp

ut
 (o

ps
/m

s)

Scancount

Pair Heap Sensitivity
14 threads, work=6400ns

0

200

400

600

800

ou
gh
pu

t
(o
ps
/m

s)

Queue Sensitivity
14 threads, work=400ns

0

200

400

600

800

ou
gh
pu

t
(o
ps
/m

s)

Skip List Sensitivity
14 threads, work=400ns

0

200

400

600

800

ou
gh
pu

t
(o
ps
/m

s)

Pair Heap Sensitivity
14 threads, work=400ns

0

200

400

600

1 5 9 13 17 21 25 29 33 37 41 45 49

Th
ro
ug
hp

ut
 (o

ps
/m

s)

Scancount

Queue Sensitivity
14 threads, work=6400ns

0

200

400

600

800

1 5 9 13 17 21 25 29 33 37 41 45 49

Th
ro
ug
hp

ut
 (o

ps
/m

s)

Scancount

Skip List Sensitivity
14 threads, work=6400ns

0

200

400

600

800

1000

1 5 9 13 17 21 25 29 33 37 41 45 49

Th
ro
ug
hp

ut
 (o

ps
/m

s)

Scancount

Pair Heap Sensitivity
14 threads, work=6400ns

0

200

400

600

800

1 5 9 13 17 21 25 29 33 37 41 45 49Th
ro
ug
hp

ut
 (o

ps
/m

s)

Scancount

Queue Sensitivity
14 threads, work=400ns

0

200

400

600

800

1 5 9 13 17 21 25 29 33 37 41 45 49Th
ro
ug
hp

ut
 (o

ps
/m

s)

Scancount

Skip List Sensitivity
14 threads, work=400ns

0

200

400

600

800

1 5 9 13 17 21 25 29 33 37 41 45 49Th
ro
ug
hp

ut
 (o

ps
/m

s)

Scancount

Pair Heap Sensitivity
14 threads, work=400ns

Figure 6: Data Structure Sensitivity to Scancount in Producer-Consumer Application Structures: Throughput vs Scancount
Over a Range of Loads. The ideal scancount varies widely and depends on both the load and the data structure.

onds before joining threads and recording the results.2 For
Smart Data Structures, one unit of reward is credited for
each operation completed. The benchmark takes the num-
ber of threads, the amount of work between operations, and
a static scancount setting (where applicable) as parameters.

In the operating mode we added, threads can be config-
ured as producers or consumers. Producers perform only en-
queue operations and skip the post computation between op-
erations. Consumers perform only dequeue operations and
do perform the post computation. In our experiments, we
use one producer and n−1 consumers to model a work queue
application structure where a master enumerates work to be
performed by the workers. The Flat Combining data struc-
tures are non-blocking; thus, to model a producer-consumer
application structure, consumers spin until they successfully
dequeue valid data. For Smart Data Structures, one unit of
reward is credited for each valid item that is dequeued.

In all experiments, we average 10 trials per configuration.
We calculate error bars where appropriate using standard
error: s√

10
, where s is the sample standard deviation.

4.2 Performance of Existing Alternatives
This experiment characterizes the performance of the best

existing concurrent queue and priority queue implementa-
tions to determine which to build Smart Data Structures
upon. The best queues are the Michael Scott queue (the
MS Queue) [25], the baskets queue of Hoffman et. al [26],
and the Flat Combining queue [3]. The best priority queues
in the literature are the Skip List based priority queue of
Lotan and Shavit [27], the Flat Combining Skip List, and
the Flat Combining Pairing Heap [3]. We also compare a
lazy lock-based Skip List developed by Herlihy and Shavit
[28]. Our benchmark studies how data structure through-
put is impacted by two key variables: the number of threads
operating on the data structure and load on the data struc-
ture. The load is adjusted by varying the amount of post

2The benchmark supports instantiation of multiple data
structures, other distributions of enqueue and dequeue op-
erations, and different durations as well.

computation between operations: decreasing post computa-
tion increases the load. The first mode of our benchmark is
used (see Section 4.1).

Figure 5 shows that the Flat Combining data structures
significantly outperform the others over a wide range of con-
currency levels and loads. The Flat Combining Queue, Skip
List, and Pairing Heap achieve up to 2x, 4x, and 10x im-
provements, respectively. Hendler et al. analyze the sources
of the improvement [3]. They show that Flat Combining
a) significantly reduces synchronization overheads and b)
improves cache performance because centralizing the oper-
ations via combining improves locality and reduces shared
memory invalidations. We demonstrate in Section 4.4 that,
through machine learning, our Smart Data Structures proto-
type improves upon the high performance of Flat Combining
by an additional factor of up to 1.5x.

4.3 Scancount Sensitivity
This study quantifies the impact of the scancount value on

Flat Combining data structure performance to motivate our
auto-tuning of this knob via machine learning. Recall that
the scancount determines how many scans of the publication
list that the combiner makes when combining. We expect
that increasing the scancount will improve performance be-
cause it provides more opportunities to catch late-arriving
requests and increases the number of operations performed
on average in each combining phase. This reduces synchro-
nization overheads and improves cache performance. How-
ever, making more scans has the tradeoff that the average
latency of data structure operations can increase. Some ap-
plications are not sensitive to added latency, but some are.
The best scancount value balances these tradeoffs and can
be further influenced by the particular load the application
places on the data structure.

For two common application structures, this study eval-
uates different static values for the scancount and exam-
ines the impact on data structure throughput for different
loads. We use the two operating modes of the benchmark
described in Section 4.1 to benchmark the two application

300

400

500

600

700

o
u
gh
p
u
t
(o
p
s/
m
s)

Smart Queue
14 threads

300

400

500

600

700

800

o
u
gh
p
u
t
(o
p
s/
m
s)

Smart Skip List
14 threads

400

500

600

700

800

900

o
u
gh
p
u
t
(o
p
s/
m
s)

Smart Pair Heap
14 threads

Ideal Static
SDS Dynamic
Avg Static

300

400

500

600

700

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Queue
14 threads

300

400

500

600

700

800

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Skip List
14 threads

400

500

600

700

800

900

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Pair Heap
14 threads

Ideal Static
SDS Dynamic
Avg Static

300

400

500

600

700

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Queue
14 threads

300

400

500

600

700

800

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Skip List
14 threads

400

500

600

700

800

900

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Pair Heap
14 threads

Ideal Static
SDS Dynamic
Avg Static

400

600

800

p
u
t
(o
p
s/
m
s)

Smart Skip List
14 threads

Ideal Static
SDS Dynamic
Avg Static

300

400

500

600

700

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Queue
14 threads

300

400

500

600

700

800

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Skip List
14 threads

400

500

600

700

800

900

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Pair Heap
14 threads

Ideal Static
SDS Dynamic
Avg Static

200

400

600

800

Th
ro
u
gh
p
u
t
(o
p
s/
m
s)

Post Computation (ns)

Smart Skip List
14 threads

Ideal Static
SDS Dynamic
Avg Static

Figure 7: Smart Data Structures Throughput vs Load: A Comparison Against Ideal and Average Static Throughput Bounds.
Smart Data Structures improve throughput in most cases, achieving or exceeding the ideal static throughput in many cases.

structures. In Application Structure 1, threads have no data
dependency: they run autonomously, requesting enqueue
and dequeue operations at random with equal likelihood.
In Structure 2, threads follow a producer-consumer pattern
analogous to a work queue program with a master that enu-
merates work for workers to perform. For Structure 1, we
find that the data structures consistently benefit from the
highest static scancount assignment (graphs are omitted for
space). This is expected since threads have no data inter-
dependency and thus are not impacted by latency.

For Structure 2, however, we find that throughput can
be adversely affected by high latency. When the producer
thread becomes the combiner, work is not being enumer-
ated and inserted into the queue; the consumers can run
out of work and spin idly. Figure 6 shows throughput for
Structure 2 as a function of the static scancount value for
different loads. These graphs are characteristic excerpts of
our results. We find that throughput can be greatly im-
proved by using optimal scancount values, that the optimal
values depend significantly on the load and type of data
structure, and that the optimal values are hard to predict.
Achieving optimal static settings by hand would be cumber-
some, potentially requiring trial and error or special cases in
the code which increase complexity and reduce readability.
Smart Data Structures provide an automatic approach, and
Section 4.4 will show that they are able to find these optima.

4.4 Performance of Smart Data Structures
This study evaluates the performance of Smart Data Struc-

tures. It builds on Section 4.3 to derive ideal and aver-
age static throughput bounds that, taken together, show
the variation in throughput of Smart Data Structures in
response to the scancount value. We quantify the perfor-
mance benefit of learning by comparing the throughput of
Smart Data Structures against the bounds. The benchmark
is the producer-consumer benchmark described in Section
4.1. The ideal and average static throughput bounds for a
given load are computed by varying the scancount, record-
ing the throughput over all scancount values, and taking the
maximum and average, respectively.

Figure 7 shows Smart Data Structures throughput over a
range of loads. We find that Smart Data Structures improve
performance in almost all cases. Further, the Smart Queue
and Smart Skip List substantially improve throughput over
the average static bound. The Smart Queue achieves near-
ideal results, the Smart Skip List exceeds the static ideal
throughput, and the Smart Pairing Heap sees moderate im-

provement. Respectively, they improve throughput over the
average static bound by up to 1.2x, 1.5x, and 1.05x.

The improvements of the Smart Pairing Heap are lowest
because, of the three data structures, the Pairing Heap pro-
vides the least opportunity for improvement via optimizing
the scancount. This is evident in Figure 7 by looking at
the distance between bounds. In addition, while our design
attempts to minimize the overhead of integrating machine
learning into the Flat Combining data structures, small over-
heads do persist which somewhat reduce the throughput
achieved. This is evident in Figure 7 by looking at the
distance from Smart Queue throughput to the ideal static
bound. The Smart Queue finds the optimal scancount but
pays a small overhead to do so.

The other interesting result is that the throughput of the
Smart Skip List actually exceeds the static ideal bound. Ex-
periments suggest that the additional improvement derives
from dynamically tuning the scancount rather than using
static values. For data structures like the Flat Combining
Skip List, even for a given load, the optimal knob settings
vary during execution. A major virtue of the online learn-
ing approach in Smart Data Structures is that it capitalizes
on the performance potential of dynamically adjusting knob
settings. Dynamic tuning is often necessary but impracti-
cal to achieve by hand, and Smart Data Structures provide
this facility automatically. Section 4.5 will investigate how
well Smart Data Structures adapt dynamically. Future work
will attempt to identify the dynamic throughput bound (the
optimal bound) in addition to the ideal static bound.

Over all, the results demonstrate that Smart Data Struc-
tures are able to learn optimal scancount values for our
benchmarks and that the overhead of learning is low enough
that net throughput improvements are high. Further, the
improvements provided by Smart Data Structures multiply
the already high performance benefits of Flat Combining
that we have shown in Section 4.2.

4.5 Adaptivity of Smart Data Structures
This study demonstrates the advantage of the learning ap-

proach to auto-tuning in Smart Data Structures: the ability
to adapt the scancount to changing application needs. Fur-
ther, it assesses how well Smart Data Structures are able
to adapt dynamically. One common factor that can lead
to changing needs in producer-consumer and other applica-
tion structures is input-dependent behavior. For example,
consider a work queue producer-consumer scenario: suppose
a graphics application uses a work queue to coordinate the

Figure 8: Smart Data Structures Throughput Under Variable Load: A Comparison Against Ideal and Average Static Through-
put for Different Variation Frequencies. In many cases, Smart Data Structures achieve near-ideal throughput (or better).

parallel rendering of each input video frame. The scene com-
plexity can vary significantly over the timescale of a just
a few frames (as little as 15ms). Scene complexity affects
the computational complexity of the work items involved in
rendering the scene. The computational complexity of work
items determines the rate at which new work is generated
and thus the load placed on the work queue data structure.

We have shown in Sections 4.3 and 4.4 that data structure
throughput depends critically on optimizing the scancount
for different loads and data structures. Using the benchmark
described in Section 4.1, this experiment varies the load on
Smart Data Structures over a range of different variation fre-
quencies and compares throughput to computed ideal and
average bounds. For a given variation frequency, the bench-
mark is broken into 1

f
periods, or intervals. In each inter-

val, the benchmark puts a different load on the data struc-
ture. We look at three dynamic schedules of loads, selected
at random. Each is a cycle of 10 different loads, repeated
throughout the 10 second duration of the benchmark. They
are: 800 ; 6400 ; 200 ; 3200 ; 1600 ; 100 ; 400 ;

100 ; 400 ; 800 and 1600 ; 200 ; 400 ; 1600 ;

200 ; 1600 ; 3200 ; 100 ; 200 ; 800 and 800 ; 100 ;

6400 ; 200 ; 200 ; 100 ; 400 ; 800 ; 3200 ; 400.
The ideal and average throughputs are computed from

Figure 7 by a) looking up the maximum and average through-
put achieved for the load in a given interval and b) assum-
ing the scancount can be switched instantaneously when the
load changes to achieve that throughput for the whole in-
terval. Figure 8 shows the results. Even under the highest
variation frequency of 1

10µs
, Smart Data Structures achieve

near-ideal throughput in many cases. As expected, through-

put does slowly decrease as the interval frequency increases.
Currently, the finest period granularity that our benchmark
supports is 10µs due to timing overheads. If we could fur-
ther decrease the period, we would expect throughput to
approach the average bound.

5. CONCLUSION
This paper demonstrates a methodology for using machine

learning to design self-aware data structures. We introduce
a new class of data structures called Smart Data Structures
that leverage online learning to optimize themselves auto-
matically and help eliminate the complexity of hand-tuning
data structures for different systems, applications, and work-
loads. We prototype an open source library of Smart Data
Structures [1] for common parallel programming needs and
demonstrate that it substantially improves upon the best
existing data structures by up to 1.5x in our experiments.

The Smart Data Structures design methodology is not a
silver bullet for mitigating all of the complexities of mul-
ticore programming, but it does provide a foundation for
researchers to further investigate possible synergies between
programming and the power of adaptation through machine
learning. Our view is that machine learning is a robust and
high performance framework for making complicated trade-
offs, and that machine learning will play an essential role in
the development of future systems.

6. REFERENCES
[1] J. Eastep, D. Wingate, and A. Agarwal, “Smart Data

Structures Project.” [Online]. Available:
github.com/mit-carbon/Smart-Data-Structures

[2] J. Eastep, D. Wingate, M. D. Santambrogio, and
A. Agarwal, “Smartlocks: Lock Acquisition Scheduling for
Self-Aware Synchronization,” in ICAC 2010 Proceedings,
June 2010.

[3] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir, “Flat
Combining and the Synchronization-Parallelism Tradeoff,”
in SPAA ’10: Proceedings of the 22nd ACM Symposium on
Parallelism in Algorithms and Architectures. New York,
NY, USA: ACM, 2010, pp. 355–364.

[4] J. Eastep, D. Wingate, and A. Agarwal, “Appendix: Data
Structures Background.” [Online]. Available:
github.com/mit-carbon/Smart-Data-Structures/wiki/
Data-Structures-Background

[5] E. Ipek, O. Mutlu, J. F. Mart́ınez, and R. Caruana,
“Self-Optimizing Memory Controllers: A Reinforcement
Learning Approach,” in Proceedings of the 35th
International Symposium on Computer Architecture, 2008,
pp. 39–50.

[6] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated
Management of Multiple Interacting Resources in Chip
Multiprocessors: A Machine Learning Approach,” in
Proceedings of the 2008 41st IEEE/ACM International
Symposium on Microarchitecture. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 318–329.

[7] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva,
and A. Agarwal, “SEEC: A Framework for Self-aware
Management of Multicore Resources,” CSAIL, MIT, Tech.
Rep. MIT-CSAIL-TR-2011-016, March 2011.

[8] G. Tesauro, “Online Resource Allocation Using
Decompositional Reinforcement Learning,” in Proc.
AAAI-05, 2005, pp. 9–13.

[9] D. Wentzlaff, C. Gruenwald, N. Beckmann,
K. Modzelewski, A. Belay, L. Youseff, J. E. Miller, and
A. Agarwal, “An Operating System for Multicore and
Clouds: Mechanisms and Implementation,” in SoCC, 2010.

[10] A. Fedorova, D. Vengerov, and D. Doucette, “Operating
System Scheduling on Heterogeneous Core Systems,” in
Proceedings of the Workshop on Operating System Support
for Heterogeneous Multicore Architectures, 2007.

[11] S. Whiteson and P. Stone, “Adaptive Job Routing and
Scheduling,” Engineering Applications of Artificial
Intelligence, vol. 17, pp. 855–869, 2004.

[12] K. E. Coons, B. Robatmili, M. E. Taylor, B. A. Maher,
D. Burger, and K. S. McKinley, “Feature Selection and
Policy Optimization for Distributed Instruction Placement
Using Reinforcement Learning,” in PACT ’08: Proceedings
of the 17th International Conference on Parallel
Architectures and Compilation Techniques. New York,
NY, USA: ACM, 2008, pp. 32–42.

[13] D. A. Jiménez and C. Lin, “Dynamic Branch Prediction
with Perceptrons,” in HPCA ’01: Proceedings of the 7th
International Symposium on High-Performance Computer
Architecture. Washington, DC, USA: IEEE Computer
Society, 2001, p. 197.

[14] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel,
“Optimizing Matrix Multiply Using PHiPAC: A Portable,
High-Performance, ANSI C Coding Methodology,” in ICS
’97: Proceedings of the 11th International Conference on
Supercomputing. New York, NY, USA: ACM, 1997, pp.
340–347.

[15] R. C. J.Dongarra, “Automatically Tuned Linear Algebra
Software,” Knoxville, TN, USA, Tech. Rep., 1997.

[16] M. Frigo and S. G. Johnson, “FFTW: An Adaptive
Software Architecture for the FFT.” IEEE, 1998, pp.
1381–1384.

[17] M. Olszewski and M. Voss, “Install-Time System for
Automatic Generation of Optimized Parallel Sorting
Algorithms,” in Proceedings of the International

Conference on Parallel and Distributed Processing
Techniques and Applications, 2004, pp. 17–23.

[18] A. Buss, Harshvardhan, I. Papadopoulos, O. Pearce,
T. Smith, G. Tanase, N. Thomas, X. Xu, M. Bianco,
N. Amato, and L. Rauchwerger, “STAPL: Standard
Template Adaptive Parallel Library,” in SYSTOR ’10:
Proceedings of the 3rd Annual Haifa Experimental Systems
Conference. New York, NY, USA: ACM, 2010, pp. 1–10.

[19] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao,
A. Edelman, and S. Amarasinghe, “PetaBricks: A
Language and Compiler for Algorithmic Choice,”
SIGPLAN Not., vol. 44, no. 6, pp. 38–49, 2009.

[20] H. Hoffmann, J. Eastep, M. Santambrogio, J. Miller, and
A. Agarwal, “Application Heartbeats: A Generic Interface
for Specifying Program Performance and Goals in
Autonomous Computing Environments,” in ICAC 2010
Proceedings, 2010.

[21] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction. Cambridge, MA: MIT Press, 1998.

[22] S. Mahadevan, “Average reward reinforcement learning:
Foundations, algorithms, and empirical results,” Machine
Learning, vol. 22, pp. 159–196, 1996.

[23] R. J. Williams, “Toward a theory of reinforcement-learning
connectionist systems,” Northeastern University, Tech. Rep.
NU-CCS-88-3, 1988.

[24] J. Peters, S. Vijayakumar, and S. Schaal, “Natural
actor-critic,” in European Conference on Machine Learning
(ECML), 2005, pp. 280–291.

[25] M. M. Michael and M. L. Scott, “Simple, Fast, and
Practical Non-Blocking and Blocking Concurrent Queue
Algorithms,” in PODC ’96: Proceedings of the 15th Annual
ACM Symposium on Principles of Distributed Computing.
New York, NY, USA: ACM, 1996, pp. 267–275.

[26] M. Hoffman, O. Shalev, and N. Shavit, “The Baskets
Queue,” in OPODIS’07: Proceedings of the 11th
International Conference on Principles of Distributed
Systems. Berlin, Heidelberg: Springer-Verlag, 2007, pp.
401–414.

[27] I. Lotan and N. Shavit, “Skiplist-Based Concurrent Priority
Queues,” in IPDPS ’00: Proceedings of the 14th
International Symposium on Parallel and Distributed
Processing. Washington, DC, USA: IEEE Computer
Society, 2000, p. 263.

[28] M. Herlihy and N. Shavit, The Art of Multiprocessor
Programming. Morgan Kaufmann, 2008.

