
Using Reinforcement Learning for Autonomic
Resource Allocation in Clouds:

Towards a Fully Automated Workflow
Xavier Dutreilh†, Sergey Kirgizov∗, Olga Melekhova∗, Jacques Malenfant∗, Nicolas Rivierre† and Isis Truck‡
∗Université Pierre et Marie Curie – Paris 6 CNRS, UMR 7606 LIP6, 4 place Jussieu, Paris, 75005, France

Email: {Olga.Melekhova, Jacques.Malenfant}@lip6.fr
†Orange Labs, 38-40 rue du Général Leclerc, Issy-les-Moulineaux, 92130, France

Email: {xavier.dutreilh, nicolas.rivierre}@orange-ftgroup.com
‡LIASD – EA 4383, Université Paris 8, 2 rue de la Liberté, Saint-Denis Cedex, 93526, France

Email: truck@ai.univ-paris8.fr

Abstract—Dynamic and appropriate resource dimensioning is
a crucial issue in cloud computing. As applications go more and
more 24/7, online policies must be sought to balance performance
with the cost of allocated virtual machines. Most industrial
approaches to date use ad hoc manual policies, such as threshold-
based ones. Providing good thresholds proved to be tricky and
hard to automatize to fit every application requirement. Research
is being done to apply automatic decision-making approaches,
such as reinforcement learning. Yet, they face a lot of problems
to go to the field: having good policies in the early phases
of learning, time for the learning to converge to an optimal
policy and coping with changes in the application performance
behavior over time. In this paper, we propose to deal with these
problems using appropriate initialization for the early stages as
well as convergence speedups applied throughout the learning
phases and we present our first experimental results for these.
We also introduce a performance model change detection on
which we are currently working to complete the learning process
management. Even though some of these proposals were known
in the reinforcement learning field, the key contribution of this
paper is to integrate them in a real cloud controller and to
program them as an automated workflow.

Keywords-Cloud computing; virtual machine allocation; rein-
forcement learning; autonomic computing.

I. INTRODUCTION

Dimensioning resources to applications appropriately is a
crucial issue in cloud computing. As applications go more
and more 24/7, online policies must be sought to balance per-
formance offered to clients with the cost of virtual machines
(VM) for the service provider by making their allocation
following closely the workload. Most industrial approaches
to date use ad hoc manually determined policies, such as
threshold-based ones where a low threshold on performance
triggers more allocation while a high one triggers a reduction
in the number of allocated VMs. Providing good thresholds
proved to be tricky and hard to automatize to fit every
application requirement [1].

Research is being done to apply automatic decision-making
approaches, such as reinforcement learning (RL) [2]. These
approaches are particularly well-suited to cloud computing as

they don’t require the a priori knowledge of the application
performance model, but rather learn it as the application
runs. Yet, RL faces a lot of problems to go to the field
[3][4], such as: having good policies in the early phases of
learning, time for the learning to converge to an optimal
policy and coping with changes in the application performance
behavior over time. In this paper, we propose to deal with
these problems using appropriate initialization for the early
stages, convergence speedups applied throughout the learning
phases and performance model change detection. Even though
some of these proposals were known in the RL field, the key
contribution of this paper is to integrate them in a real cloud
controller and to program them as an automated workflow.

We present our first results towards this automated learning
management workflow. Section II introduces the resource
allocation problem for cloud computing. Section III presents
the formulation of the problem in the Q-learning framework,
as we have modeled it for a private cloud deployed at Orange
Labs. Section IV then presents the core contribution of the
paper, the implementation workflow meant to bring RL to real
cloud computing infrastructures. Section V then compares to
the related work and the conclusion follows. Throughout the
paper, experimental results are shown to back up the proposals.

II. RESOURCE ALLOCATION IN CLOUDS

Cloud computing is a model for enabling convenient, on-
demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications
and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction [5].
This model promotes availability and is composed of three
delivery models: Infrastructure-as-a-Service (IaaS), Platform-
as-a-Service (PaaS) and Software-as-a-Service (SaaS). IaaS
designates the provision of IT and network resources, such
as processing, storage and bandwidth as well as management
software. PaaS designates the deployment of applications
created using particular programming languages and tools
supported by a provider onto his own cloud infrastructure.

67

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

SaaS designates the use of applications running on a cloud
infrastructure. Companies can use clouds either to run data-
processing applications (from development tools like continu-
ous integration suites to business tools as video transcoders),
transaction-processing software (including social networks and
e-commerce websites) or event-processing systems (as fraud
detection tools in the financial market). The cloud is appealing
to them because of its ability to reduce capital expenditures
and increase return on investment since the traditional model
where physical hardware and software resources were bought
and amortized in the long term is no more.

Many web applications (like social networks) face work-
load and system changes that affect their performance during
their lifetime. First, they have to cope with large fluctuating
loads. In predictable situations (like the promotion of a new
feature), resources can be provisioned in advance through the
use of proven techniques like capacity planning. However,
for unplanned spikes (due to slashdotting for instance) and
unplannable events (e.g., a rise in popularity after a natural
disaster), auto-scaling appears to be the way to automatically
adjust resources allocated to applications based on their needs
at any given time. In addition, auto-scaling seems to be a lot
more justified when it comes to handle changes in applications
(following software improvements) and the cloud platform
itself (e.g., hardware and software upgrades). The core features
of auto-scaling are a pool of available resources that can be
pulled or released on-demand and a control loop to monitor
the system and decide in real time whether it needs to grow
or shrink. Auto-scaling is offered in PaaS environments by
providers like Google App Engine and Heroku but applications
developed specifically for these platforms are tied to them. In
that way, IaaS appears more flexible since users are given
free access to virtualized hardware, relying on providers
like Amazon [6] and Rackspace or open-source projects like
OpenNebula and OpenStack to instantiate VMs. IaaS issues
however are the lack of widely adopted standards, although
initiatives, such as DMTF and OGF OCCI, are active toward
the definition of virtualization formats and IaaS APIs; and
automation since developers must build the machinery, or use
third party tools, such as RightScale and Claudia . This paper
focuses primarily on resource allocation policies that could be
used in IaaS and PaaS management layers to perform auto-
scaling.

Resource allocation and policies

Fostered by autonomic computing concepts, allocating re-
sources to applications in clouds has been the subject of
several works in recent years. As a decision-making problem,
the allocation of VMs to an application consists in regularly
observing the workload w (in request per second), the current
number of allocated VMs u and the current performance p as
the average waiting time of requests in seconds and from that,
decides to allocate more VMs or deallocate some, in order to
maintain the performance p as close as possible to a target
performance P given by the SLA of the application while
minimizing the costs for the service provider.

Two types of policies have drawn attention in recent works:
1) Threshold-based policies, where upper and lower bounds

on the performance trigger adaptations, and where some
amount of resources are allocated or deallocated (typi-
cally one VM at a time);

2) Sequential decision policies based on Markovian deci-
sion processes (MDP) models and computed using, for
example, reinforcement learning.

Threshold-based policies are very popular among on-the-
field cloud managers. The simplicity and intuitive nature of
these policies make them very appealing. However, with the
growing complexity of applications, setting thresholds is a per-
application task and can be very tricky, especially when it
comes to find corrective actions for all possible states [1][7]
and deal with performance model changes. As an alternative
to manual threshold-based policies, modeling the system as
an MDP allows computing policies that can take into account
the inertia of the system, such as fixed costs to allocate or
deallocate VMs, which favors retaining the same number of
VMs when the variation in the workload does not last enough
time to amortize these fixed costs. Such compromises are the
cornerstones of sequential decision making.

III. THE BASIC RL PROBLEM

We now introduce the formulation of the resource alloca-
tion problem for clouds as an MDP and the corresponding
Q-learning resolution approach implemented in our VirtRL
controller [1].

A. Resource allocation as an MDP

With long lasting executions, applications become more and
more subject to changes, affecting their end-user performance.
To cope with such changes in a decent amount of time
and minimize SLA violations, our controller takes resource
allocation decisions regularly. As such and as the decisions
themselves influence each others over time, the decision-
making is modeled as an MDP [8]. Coarsely speaking, an
MDP involves a decision agent that repeatedly observes the
current state s of the controlled system, takes a decision a
among the ones allowed in that state and then observes a
transition to a new state s′ and a reward r that will drive
its decisions. As their name indicates, MDPs are stochastic.
Hence, the new state and sometimes also the reward observed
from the transition obey probability distributions that charac-
terize the behavior of the underlying controlled system.

The MDP that models our approach to the VM allocation
problem is defined as M = 〈S,A, T,R, β〉 where:
• S = {(w, u, p) | 0 ≤ w ≤Wmax ∧ 0 ≤ u ≤ Umax ∧ 0 ≤
p ≤ Pmax} is the state of the MDP where:

– w ∈ N is the workload in number of requests per
second, bounded by Wmax = 40;

– u ∈ N is the current number of homogeneous VMs
allocated to the application, bounded by Umax = 10;

– p ∈ R is the performance expressed as the average
response time to requests in seconds, bounded by a
value Pmax chosen from experimental observations.

68

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

• A = {a ∈ Z | Amin ≤ a ≤ Amax} is the action set
which consists in adding, maintaining or reducing the
number of homogeneous VMs allocated to the applica-
tion. The actions have been bounded between Amin =
−1 and Amax = 10 in our experimental setup;

• T : S × A × S → [0, 1] is the probability distribution
P (s′|s, a) of a transition to new state s′ given that the
system is in state s and action a is chosen;

• R : S × A → R is the cost function expressing the
expected reward when the system is in state s and action
a is taken. When stochastic, it can be expressed as
R : S × A × R → [0, 1], the probability distribution
P (r|s, a) of observing a reward r when the system is in
state s and action a is taken;

• β, 0 < β < 1 is a discount factor used to finitely evaluate
the overall expected reward for an infinite sequence of
decisions. The value β = 0.45 has been used throughout
our experiments.

When the functions T and R can be determined prior to
the execution of the controlled system, traditional dynamic
programming (DP) algorithms, such as value iteration [2][8]
can be applied to find an optimal policy. Value iteration solves
the following equation expressing the expected total reward
over infinite horizon (for the deterministic reward case):

V ∗(s) = max
a

[
R(s, a) + β

∫
s′∈S

T (s, a, s′)V ∗(s′)

]
(1)

and then the optimal allocation policy is given by:

π∗(s) = argmax
a

[
R(s, a) + β

∫
s′∈S

T (s, a, s′)V ∗(s′)

]
(2)

The value iteration algorithm does this by successive ap-
proximations until a predefined error bound ε is reached:

(∀s ∈ S), initializeV0(s)
t := 0
loop

t := t+ 1
foreach s ∈ S

foreach a ∈ A
Qt(s, a) := R(s, a) + β

∫
s′∈S T (s, a, s′)Vt−1(s)

πt(s) := argmaxa Qt(s, a)
Vt(s) := Qt(s, πt(s))

until sups |Vt(s)− Vt−1(s)| < ε
return πt

B. Resolution through Q-learning

The advantage of traditional DP algorithms is that policies
are computed offline. The decision-making at runtime then
simply amounts to applying the precomputed policy π∗ to
the sequence of observed states to provide the corresponding
actions. However, T and R are often very difficult to estimate.
This can require lengthy experimentation and measurement
processes upon the actual controlled system and it must be
redone each time a modification to the system may change
the probability distributions of its transitions or rewards.

To address these limitations, reinforcement learning has
been proposed to learn these as the controlled system operates
and as the controller is making decisions to learn from experi-
ence. Among the different reinforcement learning approaches
[2], the Q-learning is based on the equation for Q(s, a) derived
from the value function (see equation 1) and appearing in
the inner loop of the value iteration algorithm. It turns out
that the function Q(s, a), or Q-function, is easy to learn
from experience. Given a controlled system, the learning agent
repeatedly observes the current state s, takes an action a and
then a transition occurs and it observes the new state s′ and the
reward r. From these observations, it can update its estimation
of the Q-function for state s and action a with:

Q[s, a] := (1− α)Q[s, a] + α
(
r + βmax

a
Q[s′, a′]

)
(3)

where α is the rate of learning, balancing the weight of
what has already been learned with the weight of the new
observation. Throughout our experiments, we have used the
value α = 0.8. The basic Q-learning algorithm is then [2]:

(∀s ∈ S)(∀a ∈ A(s)), initializeQ(s, a)
s := the initial observed state
loop

Choose a ∈ A(s) according to a policy derived from Q
Take action a and observe next state s′ and reward r
Q[s, a] := (1− α)Q[s, a] + α (r + βmaxaQ[s′, a′])
s := s′

end loop
return π(s) = argmaxaQ(s, a)

C. Experimental results

In order to experiment the Q-learning, we have defined
a reward function as follows. Given a state s = (w, u, p),
an action a, the next state s′ = (w′, u′, p′) and a target
performance PSLA (notice that u′ = u+a), CO(a) represents
the cost of acquiring and renting the VMs, while PE(s′)
captures the penalties imposed when the target performance
is violated:

R(s′, a) = CO(a) + PE(s′)

CO(a) =

{
ci × a if a > 0
0 else + cf × u′ ×∆t

PE(s′) =
pc

3600
×∆t×

{ (
1 + p′−PSLA

PSLA
) if p′ > PSLA

0 else

where:
• cr = 0.095 (US$ per hour) is the rental cost of VMs

per unit of time (it corresponds to the price of a standard
on-demand VM on Amazon EC2 [6]);

• ci = 1
60cr is the initial one-shot cost of getting a new

VM when allocated. It is fixed as a fraction of the rental
cost for an hour;

• ∆t is the length of the time interval between decisions
(40 seconds in our experiments);

• pc = 10 (US$ per hour) is the penalty for the application
per unit of time for not providing the level of performance

69

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

Fig. 1. Comparison of the policies obtained at convergence for two different workload patterns. On the left, a sinusoidal with a dynamic oscillation slope
on a long period is used while, on the right, one with a shorter period and a random noise is applied. Beware that the scales are not the same for both cases.

agreed in the SLA. Beware that such a value has direct in-
fluence on the aggressiveness and the conservativeness of
resource allocation strategies captured by the Q-learning.

This reward function has been used to simulate a cloud
executing Olio [9] and the VirtRL decision agent. In this setup,
we assume that all VMs used by Olio share a common size
which is 1 compute unit (equivalent to 2.66 GHz guaranteed),
256 MB of memory and 20 GB of storage. Figure 1 shows
the policies that have been obtained at convergence given
two different workload patterns. The first pattern is a long-
period sinusoidal function that was used as a baseline for the
learning algorithm as its characteristics were easy to learn.
The second is a short-period sinusoidal function with random
noise, meant to represent the characteristics of real workloads
more accurately. Even though these workloads are meant to
mimic the cyclic variations of many real-world application
workloads, their period has been forced shorter than real ones
to put more stress on the learning process.

As we can see from the plots, in both cases, the Q-learning
algorithm has converged to an allocation policy that follows
the workload with a similar period. The bottom plots give
the corresponding performance of the application, the green
line giving the target performance while the red line gives the
actual one. Besides, to date, our experiments have shown that
the time spent in computations and the memory space used to
store the representation of the functions are negligible in the
cloud computing context.

IV. VIRTRL REINFORCEMENT LEARNING WORKFLOW

Besides the basic learning algorithm, the VirtRL workflow
introduces three new activities discussed below:
• Initialization of the Q-function;
• Convergence speedup phases at regular intervals of ob-

servations;
• Performance model change detection.

A. Initialization of the Q-learning
The Q-learning algorithm presented above involves an un-

specified initialization step for the Q-function. In theory, pro-
vided that the mathematical conditions are observed [10], con-
vergence is guaranteed. Pragmatically, however, the distance
between the initial Q-function and the one at convergence has
two major impacts on the learning process: decisions made
during the early phases and time to converge.

In order to apply the control as the learning process is
being done, a policy must be followed from which decisions
will be chosen and taken on the controlled system. Defining
such a policy can be complicated and it also must allow for
some exploration of the different possible actions in order for
the learning to get the outcome of these actions to discover
which is the best one for each state. In the cloud computing
context, without prior information about the application, only
a standard policy can be applied, such as an ε-greedy policy
[2], which is a kind of stochastic policy defined as:

π(s) =

{
argmaxaQ(s, a) with probability 1− ε
choose a ∈ A(s) randomly with probability ε

For such a policy to give good results, Q(s, a) must be
a good approximation of the optimal Q-function at conver-
gence. Until each state has been visited enough times for the
learning to update the Q-function to a value approaching the
optimal, the current Q-function provides no better information
to choose the action than what provides the initial Q-function
itself. Hence, for an ε-greedy policy to give good results during
the first phase of the learning, a good initial Q-function must
be found.

As the above value iteration algorithm shows, there is a
tight relationship between the value function V (s) and the
Q-function. For a given policy π, we have:

Qπ(s, π(s)) = R(s, π(s))+β

∫
s′∈S

T (s, π(s), s′)V π(s′) (4)

70

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

Fig. 2. The two plots show the average difference between two successive Q-functions as learning observations are processed. On the left, no convergence
speedup is applied, while on the right, convergence speedups are applied every 5.000 observations. Green curves show the case with initialization, while
red ones show learning without initialization. Convergence speedups accentuate the differences between successive Q-functions during the early phases of
learning, but diminish them in the middle phase (before 30.000 observations). After 30.000 observations, speedups make little difference.

while the value function itself can be computed for a given
policy using the following equation:

V π(s) = R(s, π(s)) + β

∫
s′∈S

T (s, π(s), s′)V π(s′) (5)

But, of course, we need definitions for the functions R
and T , as well as a policy π. Our approach to initialization
considers approximate functions R and T , and applies a greedy
policy (always choose the best possible action) to find an
approximate value function V

π
, which in turn is put into

equation 4 to give an initial Q-function Q.
Figures 2 and 3 show the result of applying such an

initialization, along with convergence speedups to which we
return in the next subsection. The approximate reward function
that we have chosen is the above reward function truncated
of its penalty term (that is much more difficult to estimate).
The approximate transition function retains the determinism
in the new number of VMs, but considers the next workload
and the next performance values as normal random variables
centered on the current workload and performance values
respectively. The no-initialization case in fact takes Q ≡ 0
as the initial Q-function. In Figure 2, we can see that the
initialized case exhibits larger average differences at first, but
then converges faster to lower differences during a second
phase until the overall convergence becomes the same after
30.000 observations approximately. In Figure 3 that is ex-
plained in section IV-B, we can see that, after beginning the
execution with 10 VMs, the decisions make the allocation
come to a less costly number of VMs much faster, though

the performance is more volatile. The fact that our current
estimated reward function completely neglects the penalties for
bad performance, explains this behavior. A bit more guidance
than a simple ε-greedy policy during this first phase or a more
precise estimated reward function, quite simply overcomes
these negative effects.

B. Convergence speedups

As presented above, Q-learning learns very progressively
the Q-function, updating it only for the visited states and
only when they are visited. Compared to the value iteration
algorithm, the Q-learning updates the Q-function only for the
visited state at each observation, while the value iteration
updates the V-function for all states at each iteration. Is it
possible to speed up the convergence of Q-learning by using
ideas coming from the value iteration algorithm? This is
the basic idea behind model-based Q-learning [2][11], which
recognizes that there is more to learn from the observations
〈s, a, r, s′〉 than just from the value of Q(s, a).

Model-based Q-learning uses these observations to estimate,
in the statistical sense, the functions R and T . Consider the
following measures:

• C[s, a] is the number of times the state s has been
observed and the action a taken;

• TC [s, a, s′] is the number of times a transition from state
s and action a to the state s′ has been observed;

• RC [s, a] is the sum of the rewards that has been obtained
when the state s has been observed and action a taken.

71

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

Hence, for each observation 〈s, a, r, s′〉, these counters are
updated as:

TC [s, a, s′] := TC [s, a, s′] + 1 (6)
RC [s, a] := RC [s, a] + r (7)
C[s, a] := C[s, a] + 1 (8)

Given these statistics, estimators T̄ and R̄ of the functions T
and R are computed as:

T̄ (s, a, s′) =
TC [s, a, s′]

C[s, a]
(9)

R̄(s, a) =
RC [s, a]

C[s, a]
(10)

With these estimators, it becomes possible to compute an
estimator V̄ ∗ of the optimal V-function V ∗ and use this
estimator to update the current Q-function. This approach to
convergence speedups is the most aggressive compared to
other partial sweeps of the state space, such as eligibility traces
and sample backups model-based techniques [2].

Figure 3 compares the decisions made during the learning
process given that convergence speedups are applied or not.
For these experiments, we present results for speedups made
at each 5,000 observations. At the top, during the early phases
of learning, the differences are due to the initialization, as ex-
plained in the previous subsection, as no convergence speedup
has been performed yet. In the middle, we see that when
convergence speedups have been made during the first period
of learning, the decisions follow more closely the workload
and the performance is more stable. After 30,000 observations,
there is no longer a noticeable difference between the two.
Convergence speedups therefore help to have a better policy
earlier in the learning process.

C. Model changes detection

With long-lasting application executions, it is less and
less possible to ignore that the behavior of applications will
change over time, a key assumption when applying MDPs to
model them. Indeed, applications can be updated with patches
or major software releases that change their performance.
Moreover, the workload can also change, for example with a
different mix of the possible requests hence also changing its
average performance. Reinforcement learning, if the learning
is pursued during the whole lifetime of the application, can
adapt the policy to relatively smooth changes in its behavior
[2]. However, the learning will not be able to react to major
changes in the behavioral model promptly, especially if the
rate of random actions used for learning is decreased over
time, as suggested to ease the convergence.

Our proposal is to use again the information gathered
with the model-based reinforcement learning approach to
do statistical testing upon the observations used to estimate
R and T , between older and newer observations to decide
whether a model change has occurred or not. As the form
of the probability distributions is not known, non-parametric
testing shall be used. And because the two samplings are not

independent, appropriate tests such as Wilcoxon signed rank
test [12] shall be used. We conjecture that such tests can detect
major changes in the behavior of the application and that the
more subtle changes undetectable with them can be dealt with
by using continuous learning all over the application execution.
Experiments to back up this claim are currently undertaken.

V. RELATED WORK

Several works apply resource allocation techniques in cloud
computing. We concentrate here on the ones that take a
disciplined rather than an ad hoc approach to the problem.

Among the different works on threshold-based policies,
Lim et al. propose proportional thresholding to adapt policy
parameters at runtime [13]. It consists in modifying the range
of thresholds in order to trigger more frequent decisions when
necessary. This approach adapts very well to fast changing
conditions and is directly integrable into automated agents
with stability mechanisms. Although the aforementioned paper
gives answers to the latency instability, it still lacks of an adap-
tation of the power of the decisions to fluctuating workloads.

Xu et al. propose a two-level controller [14]. A first level
applies fuzzy logic techniques to learn the relationship be-
tween workload, resources and performance. It then controls
the resource allocation by deciding at a regular interval the
level of resources needed by each application, thanks to the
fuzzy rules previously learned. The second level applies a
simply knapsack technique to allocate the resources to the
different applications. Though interesting to learn the behavior
of applications, this approach limits itself to homogeneous
applications by computing only one set of rules and does
not really care about stability. Rao et al. with their VCONF
[4] apply reinforcement learning but in the context of neural
networks, in a way that parallels the work of Xu et al. Their
neural network represents the relationship between workload,
resources and performance used to perform vertical scaling.

Tesauro et al. explore the application of reinforcement learn-
ing in a sequential decision process [3]. The paper presents two
novel ideas: the use of a predetermined policy for the initial
period of the learning and the use of an approximation of the
Q-function as a neural network. The results are interesting,
though dependent on the form of the reward function. Besides
that, the initial learning with a predetermined policy appears
less promising than an initialization using a precomputing
of the Q-function through the traditional value-iteration al-
gorithms in a model-based learning approach [11]. Amoui et
al. have also applied RL successfully to the management of
quality attributes in a news web application to optimize the
application throughput [15]. An interesting point of this work
is the use of simulation to initialize the learning functions.

Bahati and Bauer [16] propose to use RL to manage
threshold-based rules. A first controller applies these rules to
a target application in order to enforce its quality attributes. A
second controller monitors these rules, adapts its thresholds
to changing conditions and disables irrelevant rules. This
approach is interesting since it limits the state space to appro-
priate state-action pairs and allows the reuse of learned models

72

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

Fig. 3. Comparison between the decisions made during the learning process as observations pass given that convergence speedups are applied or not. On
the left, plots show decisions and the resulting performance when no speedup is made, while on the right convergence speedups are applied every 5,000
observations.

73

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

from one rule set to the next. Nonetheless, this approach
reintroduces the burden of setting up efficient thresholds, does
not qualify learned models nor give much information about
the time it takes to achieve convergence.

Zhang et al. propose a pragmatic approach to resource
allocation which consists in preallocating enough resources to
match up to 95% of the observed workload and then allocates
more resources on another cloud when this threshold is passed
[17]. No real automatic control approach is applied to prevent
instability, however.

Kalyvianaki et al. design controllers built on top of statisti-
cal and Kalman filtering to track CPU utilization and allocate
pieces of processing units to VMs [18]. Their agents scale
individual VMs as well as multi-tier applications while coping
with workload changes. However, authors limit themselves to
vertical scaling within the bounds of three physical servers;
their controllers only work on applications with immediate
rewards and do not care about stability.

VI. CONCLUSION AND FUTURE WORKS

Reinforcement learning is a promising approach towards an
autonomic solution to the problem of dynamically adapting
the amount of resources allocated to applications in cloud
environments. However, reinforcement learning algorithms re-
quire care and expertise to deal with the main requirements
of self-adapting cloud infrastructures: good allocation policies
from the start, prompt convergence to the optimal policy and
capability to deal with evolution in the performance model of
applications. In this paper, we have evaluated experimentally,
through simulation, the possibilities of two techniques:
• Careful initialization of the learning functions in order to

have a good policy from the start;
• Convergence speedups for model-based reinforcement

learning which inserts complete policy evaluation steps
at regular intervals into the learning phases.

We have simulated Olio, a standard testbed web application,
on a cloud and applied to this simulation a reinforcement
learning approach to resource allocation. The main conclusions
from these experiments are:
• Good initialization made by evaluation standard policies

proved successful to begin the learning and the decisions
with an already good policy and therefore good perfor-
mance from the start;

• Convergence speedup techniques did improve a bit the
error in the Q-function of the learning process, but
more importantly succeeded in making the learned policy
approach the optimal one faster.

We are currently conducting experiments to validate the
use of statistical testing over the behavior model learned to
complete the more traditional use of continuous learning, to
take care of large changes in the performance model of the
application and the cloud infrastructure by reinitializing the
learning process. We are implementing on a cloud prototyped
at Orange Labs an automated workflow to put these techniques
at work for the allocation of virtual machines to applications

and therefore to provide with a truly autonomic solution to
this problem on actual industrial-strength clouds.

Much work and experimentation still need to be done.
Our experimentations to date show that, even with our pro-
posed workflow, applying reinforcement learning on a per-
application basis will still need more information from its
environment to be usable in the real world. Reinforcement
learning should rather be applied in the context of a larger-
scale workflow, where clouds could gain information from
applications to applications in order to make the techniques
much more successful. We plan to experiment now with higher
level descriptions of applications and their need for adaptation
in order to select from past applications learned policies from
which the learning can be initialized more accurately.

REFERENCES

[1] X. Dutreilh, N. Rivierre, A. Moreau, J. Malenfant, and I. Truck, “From
Data Center Resource Allocation to Control Theory and Back,” in
Proc. of the 3rd IEEE Int. Conf. on Cloud Computing, CLOUD 2010,
application and industry track. IEEE, 2010, pp. 410–417.

[2] R. Sutton and A. Barto, Reinforcement learning — an introduction. MIT
Press, 1998.

[3] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, “A Hybrid
Reinforcement Learning Approach to Autonomic Resource Allocation,”
in Proc. of the 2006 IEEE Int. Conf. on Autonomic Computing (ICAC).
IEEE Computer Society, 2006, pp. 65–73.

[4] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin, “Vconf: a reinforcement
learning approach to virtual machines auto-configuration,” in Proc. of
the 6th Int. conf. on Autonomic computing (ICAC), 2009, pp. 137–146.

[5] P. Mell and T. Grance, “The NIST Definition of Cloud
Computing,” Tech. Rep., July 2009. [Online]. Available:
http://www.csrc.nist.gov/groups/SNS/cloud-computing/

[6] “Amazon EC2,” http://aws.amazon.com/ec2/.
[7] J. A. Rolia, L. Cherkasova, and C. McCarthy, “Configuring workload

manager control parameters for resource pools,” in NOMS, 2006, pp.
127–137.

[8] D. Bertsekas, Dynamic Programming and Optimal Control, 2nd ed.
Athena Scientific, 1995, volume 1 and 2.

[9] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong,
A. Klepchukov, S. Patil, O. Fox, and D. Patterson, “Cloudstone: Multi-
platform, multi-language benchmark and measurement tools for web
2.0,” 2008.

[10] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming. Athena
Scientific, 1996.

[11] M. L. Littman, “Algorithms for Sequential Decision Making,” Ph.D.
dissertation, Dep. of Computer Science, Brown U., mars 1996.

[12] D. Sheskin, Handbook of parametric and non-parametric statistical
procedures. Chapman and Hall, 2007.

[13] H. C. Lim, S. Babu, and J. S. Chase, “Automated control for elastic
storage,” in Proc. of the 7th Int. Conf. on Autonomic computing (ICAC).
ACM, 2010, pp. 1–10.

[14] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, “On the Use of
Fuzzy Modeling in Virtualized Data Center Management,” in Proc. of
the 4th Int. Conf. on Autonomic Computing (ICAC). IEEE Computer
Society, 2007, pp. 25–34.

[15] M. Amoui, M. Salehie, S. Mirarab, and L. Tahvildari, “Adaptive Action
Selection in Autonomic Software Using Reinforcement Learning,” in
Proc. of the 4th Int. Conf. on Autonomic and Autonomous Systems
(ICAS). IEEE Computer Society, 2008, pp. 175–181.

[16] R. M. Bahati and M. A. Bauer, “Towards adaptive policy-based man-
agement,” in NOMS. IEEE, 2010, pp. 511–518.

[17] H. Zhang, G. Jiang, K. Yoshihira, H. Chen, and A. Saxena, “Resilient
workload manager: taming bursty workload of scaling internet appli-
cations,” in Proc. of the 6th Int. Conf. industry session on Autonomic
computing and communications. ACM, 2009, pp. 19–28.

[18] E. Kalyvianaki, T. Charalambous, and S. Hand, “Self-adaptive and
self-configured cpu resource provisioning for virtualized servers using
kalman filters,” in Proc. of the 6th Int. Conf. on Autonomic computing
(ICAC). ACM, 2009, pp. 117–126.

74

ICAS 2011 : The Seventh International Conference on Autonomic and Autonomous Systems

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-134-2

