
Continuous Queries over Data Streams
�

Shivnath Babu and JenniferWidom
Stanford University�

shivnath,widom� @cs.stanford.edu
http://www-db.stanford.edu/stream

Abstract

In many recent applications, data may take the form of
continuous data streams, rather than finite stored data
sets. Several aspects of data management needto be re-
consideredin thepresenceof datastreams,offering anew
research direction for thedatabasecommunity. In this pa-
per we focus primarily on the problem of query process-
ing,specifically onhow to defineand evaluatecontinuous
queriesover data streams. We addresssemantic issues
aswell asefficiency concerns. Our main contributionsare
threefold. First, wespecifyageneral and flexiblearchitec-
ture for query processing in the presenceof data streams.
Second, we use our basic architecture as a tool to clar-
ify alternative semantics and processing techniques for
continuous queries. The architecture also capturesmost
previouswork oncontinuousqueriesand datastreams,as
well as relatedconcepts such as triggersand materialized
views. Finally, we map out research topics in the areaof
query processing over data streams, showing where pre-
viouswork is relevant and describing problems yet to be
addressed.

1 Introduction

Traditional databasemanagement systems (DBMSs) ex-
pectall datato bemanagedwithin someform of persistent
data sets. For many recent applications, the concept of
a continuousdata streamis more appropriate than a data
set. By nature,astoreddatasetis appropriatewhensignif-
icant portionsof thedataare queriedagain and again, and
updatesaresmall and/or relatively infrequent. In contrast,
a data stream is appropriate when the data is changing
constantly (often exclusively through insertions of new
elements), and it is either unnecessary or impractical to
operate on largeportionsof the datamultiple times.

Several applicationsnaturally generate data streams as
opposedto data sets: financial tickers,performancemea-
surementsin network monitoringand traffic management,
log recordsor click-streamsin webtrackingand personal-
ization, manufacturing processes,data feeds from sensor
applications, call detail records in telecommunications,

�
Thiswork wassupportedby theNational ScienceFoundationunder

grant IIS-9811947, by NASA Amesunder grant NCC2-5278,and by a
Microsoftgraduatefellowship.

email messages, and others. Because today's database
systems are ill-equippedto perform any kind of special
storagemanagement or query processing for datastreams,
heavily stream-orientedapplicationstend to usea DBMS
largely as an offline storage system, or not at all. Like
other relatively recent new demands on data management
(e.g., triggers,objects), it would be beneficial to provide
stream-orientedprocessing asan integral part of aDBMS.
Several aspects of data management need to be recon-
sidered in the presence of data streams. The STREAM
(STanfordstREamdatA Management)projectat Stanford
is addressing the new demands imposedby data streams
on datamanagement and processing techniques.

In this paper we focus on defining a solid frame-
work for query processing in the presence of continu-
ous data streams. We consider in particular continuous
queries[TGNO92], which arequeriesthat areissuedonce
and thenlogically run continuously over the database(in
contrastto traditional one-timequerieswhich arerun once
to completion over thecurrent data sets). In network traf-
fic management, for example, continuousqueriesmay be
usedto monitor network behavior online in order to de-
tectanomalies(e.g., link congestion) and their cause(e.g.,
hardware failure, denial-of-service attack). Continuous
queries may also be usedto support load balancing or
othernetwork performanceadjustments[DG00]. In finan-
cial applications,continuousqueriesmay beusedto mon-
itor trendsand detectfleeting opportunities[Tra]. Bothof
theseapplicationsarecharacterizedby aneedfor continu-
ousqueriesthat go well beyond simple element-at-a-time
processing,by rapid datastreams,andby aneedfor timely
onlineanswers.

The organization of therestof the paper is as follows:

� In Section 2 we provide a broad survey of previous
work relevant to datastream processing and continu-
ousqueries.Alt houghthere has beenonly a handful
of papers addressing the topic directly, a number of
papers in relatedareas contain useful techniquesand
results.

� In Section 3 weintroduceaconcreteexample to mo-
tivateour discussionof continuousqueriesoverdata
streams.

� In Section 4 we define a general and flexible archi-
tecture for query processing in the presence of data

streams. Also in Section 4 weuseour basicarchitec-
ture to specify alternative semantics for continuous
queries, and to classify previous related work. We
also use the architecture to clarify how continuous
queriesoverdatastreams relate to triggersand mate-
rializedviews.

� In Section 5 wemap out, in somedetail, anumberof
openresearch topics that must be addressedin order
to realize flexible and efficient processing of contin-
uousqueriesoverdata streams.

� Sections 6 and 7 discussour vision of and plans for
a general-purposeData StreamManagement System
(DSMS).

2 Related Work

In this section we provide a general discussionof past
work that relates in some way to continuous queries
and/or datastreams. A moretechnical analysisof someof
thework will beprovidedin Section 4.3, after wepresent
our basicarchitecture.

Continuous queries were an important component
of the Tapestry system [TGNO92], which performed
content-basedfiltering over an append-only database of
email and bulletin board messages.The systemsupported
continuousqueriesexpressedusing a quiterestrictedsub-
setof SQL, in order to make guaranteesabout efficient
(incremental) evaluation and append-only query results.
The notion of continuousqueriesfor a much wider spec-
trum of environmentsis formalized in [Bar99]. The XFil-
ter content-based filtering system [AF00] performs ef-
ficient filtering of XML documents based on user pro-
files. The profiles are expressedas continuous queries
in the XPath language [XPA99]. Xyleme [NACP01] is a
similar content-basedfiltering system that enables very
high throughput with a restricted query language. The
Tribeca stream database manager [Sul96] provides re-
strictedquerying capabilit y over network packetstreams.
We will revisit muchof this work in Section 4.3.

TheChronicledatamodel [JMS95] introducedappend-
only ordered sequencesof tuples (chronicles), a form of
datastream. They definedarestrictedview definition lan-
guage and algebra that operatesover chronicles together
with traditional relations.Theview definition restrictions,
along with restrictions on the sequenceorder within and
acrosschronicles,guaranteesthat the viewscan be main-
tainedincrementally without storingany of thechronicles.

Tworecent systems,OpenCQ [LPT99] and NiagaraCQ
[CDTW00], support continuous queries for monitoring
persistent data sets spread over a wide-area network,
e.g., web sitesover the internet. OpenCQ usesa query

processing algorithm based on incremental view main-
tenance, while NiagaraCQ addressesscalabilit y in num-
ber of queries by proposing techniques for grouping
continuous queries for efficient evaluation. Within the
same project as NiagaraCQ, reference [STD � 00] dis-
cussesthe problem of providing partial results to long-
running querieson the internet, where it is acceptable to
provide an answer over some portion of the input data.
The main technical challengeis handling blocking opera-
tors in query plans. As will be seen, our architecture pro-
videsa framework that capturesand classifiesall of these
issues.

The Alert system[SPAM91] providesa mechanism for
implementing event-condition-action style triggers in a
conventional SQL database,by using continuous queries
defined over special append-only active tables. In Sec-
tion 4.3.3 we will discusshow Alert and triggersystems
in general relate to continuousqueriesoverdatastreams.

Clearly there is a relationship between continu-
ous queries and the well-known area of materialized
views [GM95], since materialized views are effectively
queries that needto be reevaluated or incrementally up-
dated whenever the base data changes. There are sev-
eral differences between materialized views and con-
tinuous queries: continuous queries may stream rather
than store their results, they may deal with append-
only input relations,they may provideapproximaterather
than exact answers, and their processing strategy may
adapt as characteristics of the data stream change. Nev-
ertheless, much work on materialized views is cap-
tured by our architecture and is relevant to our pro-
posedapproach; seeSection 4.3.4. Of particularly im-
portance is work on self-maintenance [BCL89, GJM96,
QGMW96]—ensuring that enoughdatahasbeensavedto
maintain a view evenwhenthebasedata is unavailable—
and the relatedproblem of data expiration [GMLY98]—
determiningwhencertain basedatacan bediscardedwith-
out compromising the abilit y to maintain a view.

The Telegraph project [AH00, HF � 00, MF01] shares
some target applications and basic technical ideas with
our problem, although the general approach is differ-
ent. Telegraph usesan adaptive query engine to process
conventional (one-time) queriesefficiently under volatile
and unpredictable environments (e.g., autonomous data
sources over the internet, or sensor networks). In
closely related recent work, [MF01] addressescontinu-
ous queries, focusing on query execution strategiesover
data streams generated by sensors. The Tukwila system
[IFF� 99] also supports adaptive query processing, in or-
der to perform dynamic data integration overautonomous
data sources. Adaptive query processing is likely to be
useful for continuous queries over data streams, as dis-
cussedin Section 5.

Some work considers traditional data sets but treats

them like (finite) data streams, processing the data in a
singlepassand possibly providingintermediateor “early”
query results [HHW97, UF01]. For example, online ag-
gregation [HHW97, HH99] is a technique for handling
long-running aggregation queries, continually providing
a running aggregate with improving probabilist ic error
bounds. In more theoretical work, [HRR98] studies ba-
sic tradeoffs in processing finitedata streams,specifically
among storage requirements,number of passesrequired,
and result approximations. The problem of computing
approximate quantiles (equi-height histograms) over nu-
meric data streams of unknown length is addressedin
[MRL99] and [GK01].

Recently there has beenincreasing interestin data re-
duction techniques,where the general goal is to trade ac-
curacy for performancein massivedisk-resident datasets,
with some obviouspossible applications to data streams.
A goodsurvey appears in [B � 97]. In related work, syn-
opsis data structures [GM99] provide a summary of a
data set within acceptable levels of accuracy while be-
ing much smaller in size, and a framework for extract-
ing synopses(signatures) from data streams is proposed
in [CFPR00]. A variety of approximate query answer-
ing answering techniqueshave beendevelopedbasedon
datareduction and synopsistechniquesincludingsamples
[AGPR99, AGP00, CMN99], histograms [IP99, PG99],
and wavelets [CGRS00, VW99]. Reference [GKS01]
develops histogram-basedtechniquesto provide approx-
imate answers for correlatedaggregatequeriesover data
streams. Reference [GKMS01] presents a general ap-
proach for building small-space summaries over data
streams to provideapproximateanswers for many classes
of aggregate queries.

There has been some initial work addressing data
streams in thedata mining community. In terms of build-
ingclassical dataminingmodelsoverasingledatastream,
reference [Hid99] considers frequent itemsets and asso-
ciation rules, reference [GMMO00] considers cluster-
ing, and references [DH00, HSD01] consider decision
trees. Theonly work weknow of addressing multipledata
streams appears in [YSJ� 00], which developsalgorithms
to analyze co-evolving time sequencesto forecast future
valuesand detectcorrelationsand outliers.

Finally, stream data management and query process-
ing techniques are likely to draw on work in sequence
databases (e.g., [SLR94]), time-series databases (e.g.,
[FRM94]), main-memory databases(e.g., [Tea99]), and
real-t imedatabases(e.g., [KGM95]).

3 A Concrete Example

Let us consider a representative application to illu strate
theneedfor continuousqueriesoverdatastreamsand why

conventional DBMS technology is inadequate. Consider
thedomain of network traffic management for a largenet-
work, e.g., the backbone network of an Internet Service
Provider(ISP) [DG00]. Network-traffic-management ap-
plicationstypically processrapid, unpredictable,and con-
tinuousdatastreams, includingpackettracesand network
performance measurements. Due to the inadequacy of
conventional DBMSs to provide the kind of online con-
tinuousquery processing that would bemostbeneficial in
this domain, current traffic-management tools are either
restrictedto offlinequery processing or to onlineprocess-
ing of simple hard-codedcontinuousqueries,oftenavoid-
ing the useof a DBMS altogether. A traffic-management
system that could provide online processing of ad-hoc
continuous queries over data streams would allow net-
work operators to install, remove, and modify appropri-
ate monitoring queries to support effective management
of the ISP's network.

As a concrete example, consider an ISP that collects
packet tracesfrom two links (among others) in its net-
work. The first link, called the customer link, connects
the network of a customer to the ISP's network. The sec-
ond link, called the backbone link, connects two routers
within the ISP's network. Each packet traceis a continu-
ousstream of packetheadersobservedonthecorrespond-
ing link. For simplicit y, we assume that a packet header
comprisesthe five fields listed in Figure 1. We use ���
	
and ���
� to denote the packet tracescollected from the
customerand backbonelinksrespectively.

Field name Description

saddr IP addressof packetsender
daddr IP addressof packetdestination
id Identification numbergivenby sender sothat

destination can uniquely identify each packet
length Length of packet
timestamp Time whenpacketheader was recorded

Figure1: Record structureof a packetheader.

A first simple continuous query (��) computes the
load on thebackbone link averagedoveroneminuteperi-
ods and notifiesthe network operator if the load exceeds
a threshold � . A SQL version of � using two self-
explanatory functions is:

� : Select notifyoperator(sum(length))
From �����
Group By getminute(timestamp)
Having sum(length) ���

Alt hough � 's functionalit y might be achievable using
triggers in a conventional DBMS, performance concerns
may dictate special techniques. For instance, if the �����
stream is coming very fast (e.g., packets in an optical

link), the only feasible approach might be to compute an
approximate answer to � by sampling the data, some-
thing conventional triggersare certainly not designedfor.

A more complex continuousquery (���) finds the frac-
tion of traffic on the backbone link coming from the cus-
tomernetwork. ��� is an example of an ad-hoccontinuous
query that a network operator might register to check in
responseto congestion, whether the customer is a likely
cause.

��� : (Select count (*)
From ���
	 As C, ����� As B
Where C.saddr = B.saddr and C.daddr = B.daddr

and C.id = B.id) �
(Selectcount (*) From ��� �)

��� joins streams ����	 and ����� on their keys to count
the number of common packets on the links. Since un-
bounded intermediate storage could potentially be re-
quiredfor joining two continuous data streams, the net-
work operator might want the systemto compute an ap-
proximateanswer. Possibleapproximationmethodsareto
allocate a fixedamount of storageand maintain synopses
of the two streams (recall Section 2), and/or exploit appli-
cation semantics—such as a high probabilit y that joining
tuplesoccur within a certain time window—to bound the
requiredstorage.

A final example continuous query (���) monitors the
top ��� source-to-destination pairs in terms of traffic on
the backbone link. (We use the SQL3 With construct
[UW97] for easeof expressing thequery.)

� � : With Load As
(Select saddr, daddr, sum(length) as traffic
From ��� �
Group By saddr, daddr)

Select saddr, daddr, traffic
From Load As ��
Where (Select count(*)

From Load as ���
Where ��� .traffic � � .traffic) �

(Select !#"%$��'& count(*) FromLoad)
OrderBy traffic

Processing ��� overthecontinuousdatastream ����� is es-
pecially challenging due its overall complexity and the
presence of Group By and Order By clauses,which
are normally “blocking” operators in a query execution
plan.

Note that in addition to the issues discussedin each
example, all three example queries are likely to benefit
from adaptivequery processing [AH00], giventheunpre-
dictable natureof network packetstreams.

A?Q

Data Stream
Continuous Query

Answer
<A,B> <B,C> <A,D>

Figure2: A continuousquery � overasingledatastream.

4 Architecture for Continuous
Queries

Now that we have seena concrete example motivating
data streams and continuous queries, the remainder of
the paper addressesthe general problem. We begin in
Section 4.1 by motivating, through an extremely simple
scenario, some of the most basic issues that arise when
processing continuous queries over data streams. Then
in Section 4.2 we present our architecture, which allows
us in Section 4.3 to classify previouswork in continuous
queries, and to relate continuous queries to triggers and
materialized views. We consider data streams that adhere
to the relational model (i.e., streams of tuples), although
many of the ideas and techniquesare independent of the
datamodel being considered.

4.1 Motivation

Let usconsider thesimplestpossible scenario to illu strate
the differencesbetweenquerying data streams and tradi-
tional storeddatasets. Supposewehaveasingle,continu-
ousstream of tuplesand asinglequery � weareinterested
in answering over the stream, as illu strated in Figure 2.
� is a continuous query—we issue it once and it oper-
ates continuously as new tuples appear in the stream—
and supposewe are interested in the exact answer to �
(as opposedto an approximation). Let us further suppose
that the data stream is append-only—it has no updatesor
deletions—sowecan think of thestream asan unbounded
append-only database (. Even in this simplest of cases,
thereare different possible ways to handle � , with differ-
ent ramifications:

(1) Supposewewant to alwaysstoreand makeavailable
the current answer) to � . Since the “database” (
may beof unboundedsize,thesizeof) also may be
unbounded(e.g., if � is a selection query).

(2) Supposeinstead we choosenot to store answer) ,
but rather to make new tuples in) available when
they occur, e.g., as another continuous data stream.
Alt houghwe no longerneedunboundedstorage for
) , we still may needunboundedstoragefor keeping
track of tuples in the data stream in order to deter-
minenew tuplesin) (e.g., if � is a self-join).

Let us further complicate the problem by considering
deletionsand updates:

(3) Even if the stream is append-only, there may be up-
datesor deletionsto tuplesin answer) (e.g., if � is a
group-by query with aggregation). Now, in case(2)
above we may needto somehow update and delete
tuples in our output data stream, in addition to gen-
erating new ones.

(4) In the most general scenario, the input data stream
also may contain updatesor deletions. In this case,
typically more—possibly muchmore—of thestream
needsto bestoredin orderto continuouslydetermine
theexact answerto � .

One way to addresstheseissues is to restrict the ex-
pressivenessof � and/or imposeconstraints on charac-
teristics of the data stream so that we can guaranteethat
the sizeof � 's answer) is bounded, or that the amount
of extra storage needed to continuously compute) is
bounded. Previous work on continuous queries, e.g.,
[JMS95, TGNO92, Bar99], has tended to take this ap-
proach. Another possibilit y is to relax the requirement
that we always provide an exact answerto � , which re-
lates to the area of approximate query answering dis-
cussedin Sections2 and 3.

In this paper we do not specifically advocate one of
theseapproaches. Instead, we specify a general and flex-
ible architecture that makesthe choicesabove, and their
ramifications,explicit . We further useour basic architec-
ture to explain how continuous queries relate to triggers
and materialized views, and to define a number of open
research problems in processing continuous queriesover
data streams.

4.2 Architecture

We now introduceour general architecture for processing
continuous queries over data streams, illu strated in Fig-
ure 3. For now let us consider a single continuous query
� with answer) , operating overany numberof incoming
datastreams. Multiplecontinuousqueriescan be handled
within our architecture (as implied in the figure), and we
will discusssomeof theinteresting issuesthat arisein this
context in Section 5.4. We also assume that the query is
overdatastreams only, althoughmixing streamsand con-
ventional relationsposesno particular problems.

Whenquery � is notifiedof a new tuple * in a relevant
datastream, it can perform anumberof actions,which are
not mutually exclusive:

(i) It can determine that becauseof * there are new tu-
plesin theanswer) . If it is knownthat anew tuple +
in) will remain in) “ forever,” then � may send tu-
ple + to theStreamcomponent illu stratedin Figure3.

Q

Stream 1

Stream 2 Store

Stream

Throw

Streamn

.

.

.

.

Scratch

Figure 3: Architecture for processing continuousqueries
overdatastreams.

In otherwords,Streamis adatastream containing tu-
plesappended to) , similar to case(2) discussedin
Section 4.1.

(ii) If a new tuple + is determined to be in) , but may
at some time no longer be in) , then + is added to
the Store component illu stratedin Figure3. In other
words, together Streamand Store define the current
query answer) . If our goal is to minimize storage
for the query result, thenwe want to make sure that
tuplesare sent to Streamrather than Store whenever
possible.

(iii) Thenew stream tuple * may causetheupdateor dele-
tion of answertuples in Store. Answertuplesmight
also be movedfrom Store to Stream.

(iv) We may needto save * , or save data derivedfrom * ,
so that in the future we are assured of being able to
compute our query result. In this case, * (or the data
derivedfrom it), is sent to the Scratch component of
Figure 3. Combinedwith action (iii) , we might also
movedata from Store to Scratch.

(v) We may not need * now or later, in which case * is
sent to the Throw component of Figure 3. Note that
Throwdoesnot requireany actual storage(unlesswe
are interestedin archiving unneededdata).

(vi) As a result of the new stream tuple * , we may take
data previously saved in Scratch (or Store) and send
it to Throw instead. If our goal is to minimize stor-
age,wewant to make sure that unneededdata is sent
to Throw wheneverpossible, rather than Scratch.

4.3 The Architecture and Related Work

In this section we revisit the issues and scenarios dis-
cussedin Section 4.1, revisit the related work discussed
in Section 2,and considertriggersand materializedviews.
In all caseswe useour basic architecture as a tool for de-
tailed understanding and comparisons.

4.3.1 Query Processing Scenarios

Let us consider query processing scenarios (1)–(4) from
Section 4.1 in light of the architecture specified in Sec-
tion 4.2. In scenario (1), we want to always store � 's
entire current answer) . In terms of our architecture, (1)
says that Streamis empty, Store always contains) , and
Scratch contains any data that may be required to keep
theanswerin Storeup-to-date. In theexample casewhere
� is a selection query, Store may be of unboundedsize,
while Scratch is empty. Conversely in scenario (2) we
want to make) available exclusively as a data stream,
i.e., Streamstreams the entire answerto) while Store is
empty. In theexample casewhere � is aself-join, we can
send all answertuplesto Streamsincethey will remain in
the result forever, but Scratch may needto grow without
bound.

Scenario (3) covers the casewhere answer) can have
updates and deletions even when the input streams are
append-only, e.g., aquery that performs grouping and ag-
gregation. Scenario (4) further extends to the casewhere
the input streams may have updates and deletions. As
an example, suppose � is a group-by query over a single
datastream with a min aggregation function. Sincemin is
monotonic for insertions, in scenario (3)) is maintained
in Store, and Scratch can remain empty. However, in sce-
nario (4) unboundedstorageis requiredfor Scratch to en-
sure that themin valuesover theentirestream can always
be computed. In both cases,the only time answertuples
can be sent to Stream, or movedfrom Store to Stream, is
whenit is known that for somegroup therewill beno fur-
ther insertions,updates,or deletionsof tuplesfallin g into
that group.1

4.3.2 Previous Related Work

Wenow revisit someof therelatedwork discussedin Sec-
tion 2, characterizing it in termsof our basic architecture.
Note that citations are not repeated in this section except
when needed to identify the work being discussed. Also
notethat someof therelatedwork fromSection 2 is revis-
ited instead in Section 4.3.3 on triggers or Section 4.3.4
on views.

Recall that theTapestry systemsupportsrestrictedcon-
tinuousqueriesoverappend-only datasets. In Tapestry, a
continuousquery � is rewritteninto its minimumbound-
ing monotone query ��, , which is thenrewritteninto an
incremental query ��- . As a monotonecontinuousquery,
��, has the property that its answerchangesonly by ad-

1Notethat weareassumingStreamis constrainedto beappend-only,
even though in scenario (4) we discussinput streams with updatesand
deletions. If we allow updatesand deletionsto Streamtuples,thenwe
are always free to sendanswertuplesto Streaminstead of Store, since
wecan updateor deletethemlater.

ditionof new tuples,soin termsof our architectureall an-
swertuplescan besent to Streamand Store is empty. The
incremental version ��- of the query is meant to improve
theefficiency of computing new answertupleswhennew
input tuplesare appended, but there is no mechanism for
guaranteeing that Scratch will not grow without bound.

The work in [STD � 00] on maintaining partial results
for long-runningqueriesis similar to Scenario (3) in Sec-
tion 4.1. It maintains the current partial result in Store
and any extraneededinformation in Scratch. Our discus-
sion of new query processing techniquesin Section 5.3
is relevant to the problem addressedin [STD � 00], and
we believe that basedon thesetechniquesit is possible to
exploit monotonicity more aggressively to improve upon
the algorithm in [STD � 00], reducing the data saved in
Scratch. OpenCQ and NiagaraCQ consider Scenario (4)
in Section 4.1, but they are geared towards data sets that
changeprimarily throughin-placeupdates.Thus, they do
not addresstheproblemof Storeor Scratch growingwith-
out bound.

A number of systems perform tuple-at-a-time process-
ing over their input data streams: each time a new stream
element arrives, the element is moved directly to either
Streamor Throw, without consulting any otherdata in the
stream. Packet routing and simple network algorithms
have this characteristic [Tan96], although for network
traffic management more sophisticatedstream processing
is needed, as seenin Section 3. The XFilt er and Xyleme
systems discussedin Section 2 also perform element-at-
a-time processing although the elements are XML docu-
ments.

Basic online aggregation [HHW97] maintains the cur-
rent aggregatein Storealong with an estimateof theerror,
and an empty Scratch. Follow-on work that extends on-
line aggregation to joins [HH99] doesneedto maintain
previously seentuples in Scratch. Finally, the body of
work in approximate query answering focusesprimarily
on making the bestpossible useof a limitedsizeScratch
by storing only small synopses(summaries) of the data.
References [GMP97, MRL99, MVW 00, Vit85] address
the problem of updating the synopses(i.e., Scratch) ef-
ficiently whenthe underlyingdatachanges.

4.3.3 Triggers

Triggers, also called event-condition-action rules, are
usedto monitor events and conditions in databases,and
to execute actions automatically when specific situations
are detected [WC96]. In the Alert systemintroducedin
Section 2, triggers are implementedby means of contin-
uous queries over active tables. Each tuple in an active
table representsan event, which is an updateona conven-
tional storedtable. When a new tuple is added to one of
the active tables,each continuousquery involving the ta-

ble is evaluated, and thetriggeraction is invokedon each
new tuple in thequery result.

Our mapping from triggers to the architecture of Fig-
ure 3 is basedon (and slightly generalizes) the Alert ap-
proach. We assume that events to be monitoredare gen-
erated as data streams, and we allow continuous queries
over any number of data streams together with conven-
tional stored tables. As in Alert, thesequeries perform
event and condition monitoring. For launching trigger
actions, like Alert we assume that the desired actions
are performed by SQL data manipulation commands and
user-defined stored procedures specified as part of the
continuous queries (e.g., query �� in Section 3). In
termsof our architecture,sincethereis no query “answer”
in triggers, Streamand Store may remain empty, while
Scratch is usedfor any data requiredto monitor complex
eventsor evaluateconditions.Alt ernatively,depending on
the desired trigger behavior and application interaction,
actionscould send results to Stream.

There are a number of benefits to using continuous
queries over data streams to provide trigger functional-
ity. Continuous queries specified on event streams to-
gether with conventional tables enable complex multi-
table events and conditions to be monitored, equivalent
to themostpowerful triggerlanguageproposals we know
of [WC96]. More importantly, triggerprocessing would
benefit automatically from efficient datamanagement and
processing techniques for continuous queries over data
streams, such as specialized query optimization tech-
niques(Section 5.3).

4.3.4 Materialized Views

Materialized views, whether in a conventional DBMS or
in a data warehousing environment [GM95], fall natu-
rally into our architecture. The basedata over which the
views are defined, if not available in conventional stored
tables,is storedin Scratch. The view itself is maintained
in Store. Updatesto the basedata can be represented as
oneor moredatastreams,asdiscussedin Section 4.3.3 for
triggers. In terms of this mapping, work on materialized
view self-maintenance and expiration, discussedin Sec-
tion 2, is gearedspecifically towards minimizing the size
of Scratch. Pureself-maintenanceguaranteesthat Scratch
is empty [BCL89, GJM96], although for many views
pureself-maintainabilit y is impossible,soauxiliary views
must be stored and maintained in Scratch [QGMW96].
Dataexpirationexploitsconstraintstodetermineprecisely
when data can be removed from Scratch, although no
boundsonthesizeof Scratch are guaranteed. The Chron-
icle data model discussedin Section 2 for materialized
views is designedto ensure boundedstoragefor Scratch,
but like pureself-maintainabilit y it restricts theallowable
view definitions significantly. To the bestof our knowl-

edge, no work on materialized views has addressedthe
problemof bounding the sizeof the materialized view it-
self,sothat thesizeof Store also can be bounded.

5 Research Problems

In this section we outlinea number of research problems
associated with processing continuous queries over data
streams. We begin at a relatively global level, becoming
more detailed as the section progresses.In several cases
the architecture of Section 4.2 is usedto make the prob-
lems and issuesmore concrete.

5.1 Basic Problems and Techniques

At the most global level, what sets continuous queries
over data streams apart from previous work is a unique
combination of:

� Online processing. The applications discussedin
Section 1 require that continuous queries are pro-
cessed, well, continuously. Specifically, when new
tuplesarrive in a data stream they generally must be
“consumed” immediately, usually performing oneor
more of actions (i)–(vi) from Section 4.2. In some
applications the tuples may arrive so fast that some
of themneedto be ignoredentirely.

� Storage constraints. In the general case for con-
tinuousdatastreams, the amount of storagerequired
for the answer to a continuous query, or to ensure
that theansweralwayscan becomputed, may beun-
bounded (recall Section 4.1). Furthermore, even if
thereis “nearly” unboundedstorageavailableondisk
or other tertiary devices,performance requirements
may besuch that Storeand/or Scratch from Figure3
needto reside in a limitedamount of main memory.

While neither of theseproblems in isolation is entirely
new, dealing with themtogether, while at the same time
offering thefull functionalit y and efficiency of a database
query processor, is a new challenge.

Next we mention threebasic techniquesthat have been
explored primarily in other contexts within the database
or broaderComputerScienceresearch community. All of
themappear directly relevant to our problem.

� Summarization. Summaries(or datasynopses) pro-
videa conciserepresentation of a data setat the ex-
penseof some accuracy. As discussedin Section 2,
many techniquesfor summarization havebeendevel-
oped, including sampling, histograms, and wavelets.
(SeeSection 2 for citations.) We expect summa-
rization to play an important role in query process-
ing over data streams due to the storage constraints

discussedabove. New issues to resolve in the data
stream environment include: (i) how to make guar-
anteesabout accuracy of continuous query results
basedonsummaries;(ii) how to maintain summaries
efficiently in thepresenceof very rapid datastreams;
(iii) what summarization techniquesare bestfor un-
predictable data streams. We revisit some of these
issuesin Section 5.3.

� Online data structures. A data structure designed
specifically to handle continuous data-flow is typi-
cally referredto as an onlinedata structure [FW98].
Continuousqueriesby nature suggestthe useof on-
linedatastructuresfor query processing.

� Adaptivity. We expect continuous queries and the
data streams on which they operate to be long-
running. Unlike during the processing of a simple
one-time query, during the lifetime of a continuous
query parameters such as the amount of available
memory, stream datacharacteristics,and stream flow
ratesmay vary considerably. While adaptive query
processing techniques for more traditional queries
have attracted interest recently (seeSection 2 for a
discussion), thework sofar that we are aware of has
not consideredall of theparametersor kindsof adap-
tivity (e.g., changing approximations) that arise in a
data stream context.

Distillin g thebasic problemsand techniquesabove,we
seethat processing continuous queriesover data streams
entails making fundamental tradeoffs among efficiency,
accuracy, and storage. References [AMS96, HRR98]
provide some initial contributions from the theory com-
munity along theselines,but it is an openproblem to un-
derstand the implications of thesetradeoffs in a real sys-
tem processing continuous queries for one or more real
applications.

Next wewill consider in moredetail several specific re-
search challenges.We will start in Section 5.2 by briefly
discussing the issue of languagesfor specifying contin-
uous queries. Then in Section 5.3 we focus on query
evaluation and optimization, including execution plans
and operators for continuous queries. We briefly address
research problems associated with multiple continuous
queriesin Section 5.4.

5.2 Languages for Continuous Queries

Alt hough we certainly do not advocate inventing a new
query language for the purposeof specifying continuous
queries over data streams—particularly over streams of
relational tuples—therearesome issuesthat mustbecon-
sidered. Let us take SQL as an example, where queries
can now operate over streams as well as storedrelations.

Most previouswork on continuous querieshas restricted
the languagebeing considered in order to guaranteecer-
tain properties such as bounding the size of Scratch (or
eliminating it entirely), or ensuring that all query results
can be sent to Streamand none to Store. It appears to be
an open problem to determine for arbitrary SQL queries
whetherthesekindsof propertiesaresatisfied, particularly
if weaccept theuseof Scratch and Storebut want to make
sure they are boundedin some way. We also believe that
for certain applicationscontinuousquerieswill needto re-
fer to the sequencing aspect of streams. Here SQL with
extensions for ordered relations [SLR94], or with built -
in time-seriessupport [FRM94], might be a reasonable
choice.

5.3 Query Evaluation and Optimization

In any database system it is the job of the query opti-
mizer to choosein advancethe“best” query plan for exe-
cuting each query, basedon a variety of statistics main-
tained for this purpose. A continuous query processor
also should selecta “best” execution plan, although we
expectthat fewerof thedecisionswill bemadein advance
due to the long-running nature of continuousqueriesdis-
cussedin Section 5.1. Techniquessuchaseddies[AH00],
which construct and adapt query plans on-the-fly, come
the closestthat we know of to the query execution style
weenvision. However, that work is still designedfor one-
time rather than continuous queries, the query execution
strategies do not adapt to all relevant parameters in the
datastream context, and thenotion of adaptivity is geared
solelytowardsonlineprocessing.

Let us assume a standard pipelined(or iterator-based)
approach to query processing [Gra93]. One of the funda-
mental differencesbetweentraditional query plans oper-
ating over stored relations and plans operating over data
streams can be characterized as “push” versus “pull.”
Specifically, a traditional query plan usually has a tree
shape and is executed top-down in a “pull” style: each
query operator polls itschildrenfor therequiredinput, ul-
timately accessing storedindexesor relationsat theleaves
of thequery tree.Parallel query plans relax this paradigm
to some extent [Gra90], but usually do not usethe fully
“push-based” model that datastreams may demand. In an
execution plan for a continuous query over data streams,
we expect that it will be the appearance of a new tuple
in a relevant stream that sets the plan into action. Of
coursethis ideais not new, but rather a query processing
variant on triggers, alerts, and other “active” constructs
in databases[WC96]. Some initial work on combining
“push” versus “pull” query execution plans in thecontext
of datastreams appears in [MF01].

“Push” versus “pull” aside, let us consider other
changesthat may be required to adapt traditional query

plan operators to the data stream context. We will first
consider true pipelinedoperators (such as selections and
joins), then we will consider blocking operators (such
as aggregation and sorting). Finally we will consider a
new classof operators that may be useful for continuous
queriesoverdata streams.

5.3.1 Pipelined operators

The simpleststandard pipelinedoperators, such as selec-
tions,can betranslatedto thedatastream context with lit -
tle modification. However, as soonas we introducejoins
we are faced with a choice. We can either: (i) evaluate
portions of the query multiple timesas in a nested-loop
style join, which we assume is undesirable or even im-
possible in the data stream context; or (ii) useScratch to
hold temporary results during query processing, as in a
pipelinedhashjoin [WA91].

The caseof joinspointsout that whenprocessing con-
tinuous queriesover data streams, we not only want our
query operators to be pipelined, we also want them to
operate with bounded intermediate storage (even in the
presenceof unboundedstreams). For example, we might
modify a pipelinedjoin operator to degrade gracefully to
an approximate join when the requiredstorage begins to
reach limits. Semantic constraints in thespirit of data ex-
piration [GMLY98], or online feedback acrossoperators
in the spirit of ripple joins [HH99], could be applied to
compute approximations with minimal loss of informa-
tion.

As it turns out, the architecture we introducedin Sec-
tion 4.2 for continuous queries as a whole also applies
nicely to individual query plan operators: Store and
Scratch represent the intermediate storagerequiredby an
operator, while Streamrepresents the pipelined operator
results. Thus, techniquesdevelopedat the query level for
summarization, approximation, or for moving data from
Scratch or Store to Streamor Throw, might be applicable
recursively to query plan operators. It is important to bear
in mind, however, that Scratch and Storewill generally be
boundedglobally, not on a per-operator basis.

5.3.2 Blocking Operators

A blocking operator is onethat mustobtain itsentireinput
set before it can produce any output—typical examples
are sorting and aggregation. In a conventional pipelined
query plan, all operators that follow a blocking operator
must wait until the operator obtains its entire input and
begins producing its results. Obviously blocking oper-
ators cannot behave in their conventional fashion in the
presenceof continuousdatastreams,sincetheinput is un-
boundedand the operator would block “forever.” Part of
the solution to this problem must be basedon semantic

considerations such as thosediscussedin Section 4.1—
e.g., what is the result of an aggregation or a sort now
whenmoredatamay becoming later? In addition to tech-
niquessuchasonlineaggregation [HHW97, HH99], there
has been some work addressing closely-related prob-
lems [LPT99, STD � 00] that develops techniquesbased
on incremental view maintenance. Developing similar
techniquesfor continuousqueriesover data streams, and
even more fundamentally understanding the semantics
implied by the varioustechniques,remains an openprob-
lem.

5.3.3 Synopsis Operators

We discussedthe requirement for summariesor synopses
in Section 5.1 and cited some of the most relevant work
in Section 2. Oneapproachto incorporatingsynopsisdata
structuresinto a database systemis to encapsulate them
as basicoperators that may appear in query plans. In sup-
port of this approach, reference[GM99] showsthat differ-
ent classesof queriesaresupportedefficiently by different
synopsisdata structures.Thus, thequery optimizercould
be chargedwith choosing the bestsynopsisoperator for
each purposeundercurrent conditions.

Taking this ideaonestepfurther, synopsisquery opera-
torscould providethe capabilit y to “ tune” certain param-
eterswithin theoperator, suchasaccuracy and confidence
of approximation (e.g., probabilist ic confidence bounds
for aggregates[HHW97]), and maximumstoragerequired
(e.g., a randomsample of size .). Particularly relevant in
this context are thesemantic synopsisstructuresproposed
in [BGR01], which summarizeamassivedisk-resident re-
lation basedon error tolerance parameters provided in-
dependently for each attribute. If we provide synopsis
operators with thesetypesof parameters, then approxi-
mate query plans can be constructed carefully basedon
the query structure and available storage. Of coursethis
power also posessignificant challengesfor the query op-
timizer.

5.4 Multiple Continuous Queries

In the paper so far we have assumed a single continuous
query overmultipledatastreams. Let usnow considerthe
morerealistic scenario wherean application registersmul-
tiple continuous queries simultaneously, probably over
shareddatastreams. Becausecontinuousqueriesarelong-
running, and some applications may involvea very large
number of continuousqueries,we expectthat some form
of multi-queryoptimization [Fin82, Sel88,CDTW00] will
be a relevant and perhaps essential technique. There has
beensome recent work on optimizing multiple contin-
uous queries, focusing either on very large numbers of
querieswhereeachquery performselement-at-a-timepro-

cessing [AF00, NACP01], or on subquery merging in the
XML context [CDTW00]. In terms of our architecture,
the queriesin thesesystems are limitedenough that they
alwayshaveempty or boundedStoreand Scratch compo-
nents.

Research yet to be performed includesextending the
techniques from [AF00, NACP01, CDTW00] to handle
morecomplex queries,couplingmulti-query optimization
techniqueswith approximate query answering, and opti-
mizing the useof bounded-sizeScratch and Store when
they are shared among many continuous queries. More
generally, the overall problem of understanding and im-
plementing the tradeoffs among efficiency, accuracy, and
storage becomes at least one step more complex in the
presenceof multiplecontinuousqueries.

6 A Data Stream Management Sys-
tem

Our ultimategoal is to build a completedata streamman-
agement system (DSMS), with functionalit y and perfor-
mancesimilar to that of atraditional DBMS,but which al-
lowssomeor all of thedatabeing managedto comein the
form of continuous,possibly very rapid, data streams. In
suchasystem, traditional one-timequeriesarereplacedor
augmentedwith continuousqueries,and techniquessuch
as synopsis and online data structures, approximate re-
sults, and adaptive query processing become fundamen-
tal features of the system. Other aspects of a complete
DBMS also needto be reconsidered, including storage
management, transaction management, userand applica-
tion interfaces,and authorization.

Obviously building a complete DSMS—even a re-
search prototype—entails a significant effort. One ap-
proachwould beto modify orextend an existingDBMS to
include the functionalit y that we envision. However, our
approachwill be to build a completeDSMSfromscratch,
sowe can fully explore the issuesunderour own control.
We have described many novel and interesting research
problemsthat weexpectto encounteralong theway.

7 Conclusions and Research Plan

Many recent applicationsneedto processcontinuousdata
streams in addition to or instead of conventional stored
data sets. In this paper we have specified a general and
flexible architecture for processing continuousqueriesin
the presence of data streams. We have used our ba-
sic architecture as a tool to clarify alternative semantics
and processing techniquesfor continuousqueries,as well
as to relate past and current work to the general Data
StreamManagement System (DSMS) we envision. We

have mapped out a number of research topics in the area
of query processing over data streams, including new re-
quirements for online, approximate, and adaptive query
processing.

At Stanford we have begun to build a complete proto-
typeDSMScalled STREAM (STanfordstREamdatAMan-
ager). We are focusing initially on:

� A flexible interface for reading and storing data
streams—or stream synopses—aspart of ahierarchi-
cal storagemanager.

� A processorfor continuous queries specified using
SQL or relational algebra including aggregation.

� A client Application Programming Interface (API)
for registering continuous queries and receiving
query results.

We expect that the development of our prototype sys-
tem, as well as continuous detailed evaluation of poten-
tial applications such as the network monitoring system
described in Section 3, will lead to further algorithmic
and systemresearch issues. Pleasevisit http://www-
db.stanford.edu/stream.

Acknowledgements

We are grateful to JoseBlakeley for excellent comments
on an initial draft, and to the entire STREAM group at
Stanford for many inspiring discussions.

References
[AF00] M. Alt inel and M. J. Franklin. Efficient filtering of

XML documents for selective dissemination of information.
In Proc. of the 2000 Intl. Conf. on Very Large Data Bases,
pages53–64,September2000.

[AGP00] S. Acharya, P. B. Gibbons, and V. Poosala. Con-
gressional samples for approximate answering of group-by
queries. In Proc. of the 2000ACM SIGMOD Intl. Conf. on
Management of Data, pages487–498,May 2000.

[AGPR99] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ra-
maswamy. Join synopsesfor approximate query answering.
In Proc.of the 1999ACM SIGMOD Intl. Conf. on Manage-
ment of Data, pages275–286,June1999.

[AH00] R. Avnur and J. M. Hellerstein. Eddies: Continuously
adaptive query processing. In Proc. of the 2000ACM SIG-
MOD Intl. Conf. on Management of Data, pages261–272,
May 2000.

[AMS96] N. Alon, Y. Matias,and M. Szegedy. Thespacecom-
plexity of approximatingthe frequency moments. In Proc.of
the 1996Annual ACM Symp. onTheoryof Computing, pages
20–29,May 1996.

[B / 97] D. Barbaraetal. TheNew Jersey datareduction report.
IEEE Data Engineering Bulletin, 20(4):3–45,1997.

[Bar99] D. Barbara. Thecharacterizationof continuousqueries.
Intl. Journal of Cooperative Information Systems, 8(4):295–
323,December1999.

[BCL89] J. A. Blakeley, N. Coburn, and P. A. Larson. Updat-
ing derivedrelations: Detecting irrelevant and autonomously
computable updates. ACM Trans. on Database Systems,
14(3):369–400,1989.

[BGR01] S. Babu, M. N. Garofalakis, and R. Rastogi. SPAR-
TAN: A model-basedsemantic compressionsystemfor mas-
sive data tables. In Proc. of the 2001ACM SIGMOD Intl.
Conf. on Management of Data, pages283–294,May 2001.

[CDTW00] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Ni-
agaraCQ: A scalable continuous query system for internet
databases. In Proc. of the 2000ACM SIGMOD Intl. Conf.
onManagement of Data, pages379–390,May 2000.

[CFPR00] C. Cortes, K. Fisher, D. Pregibon, and A. Rogers.
Hancock: a language for extracting signatures from data
streams. In Proc. of the 2000ACM SIGKDD Intl. Conf. on
KnowledgeDiscoveryand Data Mining, pages9–17,August
2000.

[CGRS00] K. Chakrabarti, M. N. Garofalakis, R. Rastogi, and
K. Shim. Approximatequery processing using wavelets. In
Proc.of the2000Intl. Conf. onVeryLargeData Bases, pages
111–122,September2000.

[CMN99] S.Chaudhuri, R. Motwani, and V. R. Narasayya. On
randomsampling over joins. In Proc.of the 1999ACM SIG-
MOD Intl. Conf. on Management of Data, pages263–274,
June1999.

[DG00] N. G. Duffield and M. Grossglauser. Trajectory sam-
pling for directtraffic observation. In Proc.of the 2000ACM
SIGCOMM, pages271–284,September2000.

[DH00] P. Domingosand G. Hulten. Mining high-speeddata
streams. In Proc. of the 2000ACM SIGKDD Intl. Conf. on
Knowledge Discovery and Data Mining, pages71–80, Au-
gust2000.

[Fin82] S. J. Finkelstein. Common subexpression analysis in
databaseapplications. In Proc. of the 1982ACM SIGMOD
Intl. Conf. on Management of Data, pages235–245, June
1982.

[FRM94] C. Faloutsos,M. Ranganathan, and Y. Manolopou-
los. Fast subsequencematching in time-series databases.In
Proc.of the 1994ACM SIGMOD Intl. Conf. on Management
of Data, pages419–429,May 1994.

[FW98] A. Fiat and G. J. Woeginger. Online Algorithms, The
State of the Art. Springer-Verlag,Berlin, 1998.

[GJM96] A. Gupta, H. V. Jagadish, and I. S.Mumick. Data in-
tegration using self-maintainable views. In Proc.of the 1996
Intl. Conf. on Extending DatabaseTechnology, pages140–
144,March1996.

[GK01] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In Proc. of the 2001
ACM SIGMOD Intl. Conf. on Management of Data, pages
58–66,May 2001.

[GKMS01] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss.Surfingwaveletsonstreams: one-passsummaries
for approximateaggregatequeries. In Proc.of the 2001Intl.
Conf. on VeryLargeData Bases, September2001.

[GKS01] J. Gehrke,F. Korn, and D. Srivastava. On computing
correlatedaggregatesovercontinual datastreams. In Proc.of
the 2001ACM SIGMOD Intl. Conf. onManagement of Data,
pages13–24,May 2001.

[GM95] A. Gupta and I. S. Mumick. Maintenanceof materi-
alized views: Problems, techniques,and applications. IEEE
Data Engineering Bulletin, 18(2):3–18,June1995.

[GM99] P. B. Gibbons and Y. Matias. Synopsisdata structures
for massive data sets. In External Memory Algorithms, DI-
MACSSeriesin DiscreteMathematicsand Theoretical Com-
puter Science, volume50,1999.

[GMLY98] H. Garcia-Molina, W. J. Labio, and J. Yang. Expir-
ing data in a warehouse. In Proc.of the 1998Intl. Conf. on
VeryLargeData Bases, pages500–511,August1998.

[GMMO00] S. Guha, N. Mishra, R. Motwani, and
L. O'Callaghan. Clustering data streams. In Proc. of
the2000Annual Symp. onFoundationsof Computer Science,
pages359–366,November2000.

[GMP97] P. B. Gibbons,Y. Matias,and V. Poosala. Histogram-
basedapproximation of set-valuedquery-answers. In Proc.
of the1997Intl. Conf. onVeryLargeData Bases, pages466–
475,August1997.

[Gra90] Goetz Graefe. Encapsulationof parallelism in the vol-
cano query processing system. In Proc. of the 1990 ACM
SIGMOD Intl. Conf. on Management of Data, pages102–
111,May 1990.

[Gra93] G. Graefe. Query evaluation techniques for large
databases.ACM Computing Surveys, 25(2):73–170,1993.

[HF / 00] J. M. Hellerstein, M. J. Franklin, etal. Adaptivequery
processing: Technology in evolution. IEEE Data Engineer-
ing Bulletin, 23(2):7–18,June2000.

[HH99] P. J. Haasand J. M. Hellerstein. Ripple joinsfor online
aggregation. In Proc.of the 1999ACM SIGMOD Intl. Conf.
on Management of Data, pages287–298,June1999.

[HHW97] J. M. Hellerstein, P. J. Haas, and H. Wang. Online
aggregation. In Proc.of the 1997ACM SIGMOD Intl. Conf.
on Management of Data, pages171–182,May 1997.

[Hid99] C. Hidber. Online association rule mining. In Proc.of
the 1999ACM SIGMOD Intl. Conf. onManagement of Data,
pages145–156,June1999.

[HRR98] M. R. Henzinger, P. Raghavan, and S. Rajagopalan.
Computing on data streams. Technical Report TR-1998-
011, Compaq Systems Research Center, Palo Alto, Califor-
nia, May 1998.

[HSD01] G. Hulten, L. Spencer, and P. Domingos. Mining
time-changing data streams. In Proc. of the 2001 ACM
SIGKDD Intl. Conf. onKnowledgeDiscoveryand Data Min-
ing, August2001. (To appear).

[IFF/ 99] Z. G. Ives,D. Florescu, M. Friedman, A. Y. Levy,
and D. S.Weld. An adaptivequery executionsystemfor data

integration. In Proc. of the 1999ACM SIGMOD Intl. Conf.
onManagement of Data, pages299–310,June1999.

[IP99] Y. E. Ioannidis and V. Poosala. Histogram-basedap-
proximation of set-valued query-answers. In Proc. of the
1999Intl. Conf. on Very LargeData Bases, pages174–185,
September1999.

[JMS95] H. V. Jagadish, I. S. Mumick, and A. Silberschatz.
View maintenance issues for the Chronicle data model. In
Proc.of the1995ACM Symp. onPrinciplesof DatabaseSys-
tems, pages113–124,May 1995.

[KGM95] B. Kao and H. Garcia-Molina. An overview of real-
time database systems. In S. H. Son, editor, Advancesin
Real-Time Systems, pages463–486.Prentice Hall, 1995.

[LPT99] L. Liu, C. Pu, and W. Tang. Continual queriesfor in-
ternet scale event-driven information delivery. IEEE Trans.
on Knowledge and Data Engineering, 11(4):583–590, Au-
gust1999.

[MF01] S. Madden and M. J. Franklin. Fjording the
stream: An architecture for queries over streaming sen-
sor data. Technical report, June 2001. Available at
http://www.cs.berkeley.edu/ 0 franklin/Papers/fjords0601.pdf.

[MRL99] G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Randomsampling techniquesfor spaceefficient online com-
putation of order statistics of large datasets. In Proc. of the
1999 ACM SIGMOD Intl. Conf. on Management of Data,
pages251–262,June1999.

[MVW 00] Y. Matias, J. S. Vitter, and M. Wang. Dynamic
maintenance of wavelet-basedhistograms. In Proc. of the
2000Intl. Conf. on Very LargeData Bases, pages101–110,
September2000.

[NACP01] B. Nguyen,S.Abiteboul, G. Cobena, and M. Preda.
Monitoring XML dataonthe web. In Proc.of the 2001ACM
SIGMOD Intl. Conf. on Management of Data, pages437–
448,May 2001.

[PG99] V. Poosala and V. Ganti. Fast approximate answers to
aggregate querieson a data cube. In Proc. of the 1999Intl.
Conf. on Scientific and Statistical Database Management,
pages24–33,July 1999.

[QGMW96] D. Quass,A. Gupta, I. S.Mumick, and J. Widom.
Making views self-maintainable for data warehousing. In
Proc.of the 1996Intl. Conf. on Parallel and Distributed In-
formationSystems, pages158–169,December1996.

[Sel88] T. K. Sellis. Multiple-query optimization. ACM Trans.
onDatabaseSystems, 13(1):23–52,1988.

[SLR94] P. Seshadri, M. Livny, and R. Ramakrishnan. Se-
quencequery processing. In Proc. of the 1994 ACM SIG-
MOD Intl. Conf. on Management of Data, pages430–441,
May 1994.

[SPAM91] U. Schreier, H. Pirahesh, R. Agrawal, and C. Mo-
han. Alert: An architecturefor transforming apassiveDBMS
into an activeDBMS. In Proc.of the1991Intl. Conf. onVery
LargeData Bases, pages469–478,September1991.

[STD / 00] J. Shanmugasundaram,K. Tufte, D. J. DeWitt, J. F.
Naughton, and D. Maier. Architecting a network query en-
gine for producing partial results. In Proc. of the 2000Intl.

Workshop on the Web and Databases, pages 17–22, May
2000.

[Sul96] M. Sullivan. Tribeca: A stream databasemanagerfor
network traffic analysis. In Proc. of the 1996Intl. Conf. on
VeryLargeData Bases, page594,September1996.

[Tan96] A. S.Tanenbaum. Computer Networks. Prentice Hall,
UpperSaddle River, New Jersey, 1996.

[Tea99] Times-Ten Team. In-memory data management for
consumertransactions: TheTimes-Tenapproach. In Proc.of
the 1999ACM SIGMOD Intl. Conf. onManagement of Data,
pages528–529,June1999.

[TGNO92] D. B. Terry, D. Goldberg, D. Nichols, and B. M.
Oki. Continuous queries over append-only databases. In
Proc.of the 1992ACM SIGMOD Intl. Conf. on Management
of Data, pages321–330,June1992.

[Tra] Traderbot home page.http://www.traderbot.com.

[UF01] T. UrhanandM. J. Franklin. Dynamic pipelineschedul-
ing for improving interactive performance of online queries.
In Proc. of the 2001 Intl. Conf. on Very Large Data Bases,
September2001.

[UW97] J.D.Ullman andJ. Widom. AFirst Coursein Database
Systems. Prentice Hall, Upper Saddle River, New Jersey,
1997.

[Vit85] J. S. Vitter. Random sampling with a reservoir. ACM
Trans.onMathematical Software, 11(1):37–57,March1985.

[VW99] J. S. Vitter and M. Wang. Approximate computation
of multidimensional aggregatesof sparsedatausing wavelets.
In Proc.of the 1999ACM SIGMOD Intl. Conf. on Manage-
ment of Data, pages193–204,June1999.

[WA91] A. N. Wilschut and P. M. G. Apers.Dataflow query ex-
ecution in a parallel main-memory environment. In Proc.of
the 1991Intl. Conf. on Parallel and Distributed Information
Systems, pages68–77,December1991.

[WC96] J. Widomand S.Ceri. ActiveDatabaseSystems: Trig-
gersand Rulesfor AdvancedDatabaseProcessing. Morgan
Kaufmann, San Francisco,California, 1996.

[XPA99] XML path language (XPath) version 1.0,
November 1999. W3C Recommendation available at
http://www.w3.org/TR/xpath.

[YSJ/ 00] B. Yi, N. Sidiropoulos, T. Johnson, H. V. Jagadish,
C. Faloutsos, and A. Bilir is. Online data mining for co-
evolving time sequences. In Proc. of the 2000 Intl. Conf.
on Data Engineering, pages13–22,March2000.

