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ABSTRACT
Unbounded, unordered, global-scale datasets are increas-
ingly common in day-to-day business (e.g. Web logs, mobile
usage statistics, and sensor networks). At the same time,
consumers of these datasets have evolved sophisticated re-
quirements, such as event-time ordering and windowing by
features of the data themselves, in addition to an insatiable
hunger for faster answers. Meanwhile, practicality dictates
that one can never fully optimize along all dimensions of cor-
rectness, latency, and cost for these types of input. As a re-
sult, data processing practitioners are left with the quandary
of how to reconcile the tensions between these seemingly
competing propositions, often resulting in disparate imple-
mentations and systems.

We propose that a fundamental shift of approach is nec-
essary to deal with these evolved requirements in modern
data processing. We as a field must stop trying to groom un-
bounded datasets into finite pools of information that even-
tually become complete, and instead live and breathe under
the assumption that we will never know if or when we have
seen all of our data, only that new data will arrive, old data
may be retracted, and the only way to make this problem
tractable is via principled abstractions that allow the prac-
titioner the choice of appropriate tradeoffs along the axes of
interest: correctness, latency, and cost.

In this paper, we present one such approach, the Dataflow
Model1, along with a detailed examination of the semantics
it enables, an overview of the core principles that guided its
design, and a validation of the model itself via the real-world
experiences that led to its development.

1We use the term “Dataflow Model” to describe the pro-
cessing model of Google Cloud Dataflow [20], which is based
upon technology from FlumeJava [12] and MillWheel [2].
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1. INTRODUCTION
Modern data processing is a complex and exciting field.

From the scale enabled by MapReduce [16] and its successors
(e.g Hadoop [4], Pig [18], Hive [29], Spark [33]), to the vast
body of work on streaming within the SQL community (e.g.
query systems [1, 14, 15], windowing [22], data streams [24],
time domains [28], semantic models [9]), to the more recent
forays in low-latency processing such as Spark Streaming
[34], MillWheel, and Storm [5], modern consumers of data
wield remarkable amounts of power in shaping and tam-
ing massive-scale disorder into organized structures with far
greater value. Yet, existing models and systems still fall
short in a number of common use cases.

Consider an initial example: a streaming video provider
wants to monetize their content by displaying video ads and
billing advertisers for the amount of advertising watched.
The platform supports online and offline views for content
and ads. The video provider wants to know how much to bill
each advertiser each day, as well as aggregate statistics about
the videos and ads. In addition, they want to efficiently run
offline experiments over large swaths of historical data.

Advertisers/content providers want to know how often
and for how long their videos are being watched, with which
content/ads, and by which demographic groups. They also
want to know how much they are being charged/paid. They
want all of this information as quickly as possible, so that
they can adjust budgets and bids, change targeting, tweak
campaigns, and plan future directions in as close to real
time as possible. Since money is involved, correctness is
paramount.

Though data processing systems are complex by nature,
the video provider wants a programming model that is sim-
ple and flexible. And finally, since the Internet has so greatly
expanded the reach of any business that can be parceled
along its backbone, they also require a system that can han-
dle the diaspora of global scale data.

The information that must be calculated for such a use
case is essentially the time and length of each video viewing,
who viewed it, and with which ad or content it was paired
(i.e. per-user, per-video viewing sessions). Conceptually
this is straightforward, yet existing models and systems all
fall short of meeting the stated requirements.

Batch systems such as MapReduce (and its Hadoop vari-
ants, including Pig and Hive), FlumeJava, and Spark suffer
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from the latency problems inherent with collecting all input
data into a batch before processing it. For many streaming
systems, it is unclear how they would remain fault-tolerant
at scale (Aurora [1], TelegraphCQ [14], Niagara [15], Esper
[17]). Those that provide scalability and fault-tolerance fall
short on expressiveness or correctness vectors. Many lack
the ability to provide exactly-once semantics (Storm, Samza
[7], Pulsar [26]), impacting correctness. Others simply lack
the temporal primitives necessary for windowing2 (Tigon
[11]), or provide windowing semantics that are limited to
tuple- or processing-time-based windows (Spark Streaming
[34], Sonora [32], Trident [5]). Most that provide event-time-
based windowing either rely on ordering (SQLStream [27]),
or have limited window triggering3 semantics in event-time
mode (Stratosphere/Flink [3, 6]). CEDR [8] and Trill [13]
are noteworthy in that they not only provide useful trigger-
ing semantics via punctuations [30, 28], but also provide an
overall incremental model that is quite similar to the one
we propose here; however, their windowing semantics are
insufficient to express sessions, and their periodic punctu-
ations are insufficient for some of the use cases in Section
3.3. MillWheel and Spark Streaming are both sufficiently
scalable, fault-tolerant, and low-latency to act as reason-
able substrates, but lack high-level programming models
that make calculating event-time sessions straightforward.
The only scalable system we are aware of that supports a
high-level notion of unaligned windows4 such as sessions is
Pulsar, but that system fails to provide correctness, as noted
above. Lambda Architecture [25] systems can achieve many
of the desired requirements, but fail on the simplicity axis on
account of having to build and maintain two systems. Sum-
mingbird [10] ameliorates this implementation complexity
by abstracting the underlying batch and streaming systems
behind a single interface, but in doing so imposes limitations
on the types of computation that can be performed, and still
requires double the operational complexity.

None of these shortcomings are intractable, and systems
in active development will likely overcome them in due time.
But we believe a major shortcoming of all the models and
systems mentioned above (with exception given to CEDR
and Trill), is that they focus on input data (unbounded or
otherwise) as something which will at some point become
complete. We believe this approach is fundamentally flawed
when the realities of today’s enormous, highly disordered
datasets clash with the semantics and timeliness demanded
by consumers. We also believe that any approach that is to
have broad practical value across such a diverse and varied
set of use cases as those that exist today (not to mention
those lingering on the horizon) must provide simple, but
powerful, tools for balancing the amount of correctness, la-
tency, and cost appropriate for the specific use case at hand.
Lastly, we believe it is time to move beyond the prevailing
mindset of an execution engine dictating system semantics;
properly designed and built batch, micro-batch, and stream-
ing systems can all provide equal levels of correctness, and

2By windowing, we mean as defined in Li [22], i.e. slicing
data into finite chunks for processing. More in Section 1.2.
3By triggering, we mean stimulating the output of a specific
window at a grouping operation. More in Section 2.3.
4By unaligned windows, we mean windows which do not
span the entirety of a data source, but instead only a subset
of it, such as per-user windows. This is essentially the frames
idea from Whiteneck [31]. More in Section 1.2.

all three see widespread use in unbounded data processing
today. Abstracted away beneath a model of sufficient gener-
ality and flexibility, we believe the choice of execution engine
can become one based solely on the practical underlying dif-
ferences between them: those of latency and resource cost.

Taken from that perspective, the conceptual contribution
of this paper is a single unified model which:

• Allows for the calculation of event-time5 ordered re-
sults, windowed by features of the data themselves,
over an unbounded, unordered data source, with cor-
rectness, latency, and cost tunable across a broad spec-
trum of combinations.

• Decomposes pipeline implementation across four re-
lated dimensions, providing clarity, composability, and
flexibility:

– What results are being computed.

– Where in event time they are being computed.

– When in processing time they are materialized.

– How earlier results relate to later refinements.

• Separates the logical notion of data processing from
the underlying physical implementation, allowing the
choice of batch, micro-batch, or streaming engine to
become one of simply correctness, latency, and cost.

Concretely, this contribution is enabled by the following:

• A windowing model which supports unaligned event-
time windows, and a simple API for their creation and
use (Section 2.2).

• A triggering model that binds the output times of
results to runtime characteristics of the pipeline, with
a powerful and flexible declarative API for describing
desired triggering semantics (Section 2.3).

• An incremental processing model that integrates
retractions and updates into the windowing and trig-
gering models described above (Section 2.3).

• Scalable implementations of the above atop the
MillWheel streaming engine and the FlumeJava batch
engine, with an external reimplementation for Google
Cloud Dataflow, including an open-source SDK [19]
that is runtime-agnostic (Section 3.1).

• A set of core principles that guided the design of
this model (Section 3.2).

• Brief discussions of our real-world experiences with
massive-scale, unbounded, out-of-order data process-
ing at Google that motivated development of this model
(Section 3.3).

It is lastly worth noting that there is nothing magical
about this model. Things which are computationally im-
practical in existing strongly-consistent batch, micro-batch,
streaming, or Lambda Architecture systems remain so, with
the inherent constraints of CPU, RAM, and disk left stead-
fastly in place. What it does provide is a common framework

5By event times, we mean the times at which events oc-
curred, not when they are processed. More in Section 1.3.
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Figure 1: Common Windowing Patterns

that allows for the relatively simple expression of parallel
computation in a way that is independent of the underly-
ing execution engine, while also providing the ability to dial
in precisely the amount of latency and correctness for any
specific problem domain given the realities of the data and
resources at hand. In that sense, it is a model aimed at ease
of use in building practical, massive-scale data processing
pipelines.

1.1 Unbounded/Bounded vs Streaming/Batch
When describing infinite/finite data sets, we prefer the

terms unbounded/bounded over streaming/batch, because
the latter terms carry with them an implication of the use
of a specific type of execution engine. In reality, unbounded
datasets have been processed using repeated runs of batch
systems since their conception, and well-designed streaming
systems are perfectly capable of processing bounded data.
From the perspective of the model, the distinction of stream-
ing or batch is largely irrelevant, and we thus reserve those
terms exclusively for describing runtime execution engines.

1.2 Windowing
Windowing [22] slices up a dataset into finite chunks for

processing as a group. When dealing with unbounded data,
windowing is required for some operations (to delineate fi-
nite boundaries in most forms of grouping: aggregation,
outer joins, time-bounded operations, etc.), and unneces-
sary for others (filtering, mapping, inner joins, etc.). For
bounded data, windowing is essentially optional, though still
a semantically useful concept in many situations (e.g. back-
filling large scale updates to portions of a previously com-
puted unbounded data source). Windowing is effectively
always time based; while many systems support tuple-based
windowing, this is essentially time-based windowing over a
logical time domain where elements in order have succes-
sively increasing logical timestamps. Windows may be ei-
ther aligned, i.e. applied across all the data for the window
of time in question, or unaligned, i.e. applied across only
specific subsets of the data (e.g. per key) for the given win-
dow of time. Figure 1 highlights three of the major types of
windows encountered when dealing with unbounded data.

Fixed windows (sometimes called tumbling windows) are
defined by a static window size, e.g. hourly windows or daily
windows. They are generally aligned, i.e. every window
applies across all of the data for the corresponding period
of time. For the sake of spreading window completion load
evenly across time, they are sometimes unaligned by phase
shifting the windows for each key by some random value.
Sliding windows are defined by a window size and slide

period, e.g. hourly windows starting every minute. The

period may be less than the size, which means the windows
may overlap. Sliding windows are also typically aligned;
even though the diagram is drawn to give a sense of sliding
motion, all five windows would be applied to all three keys in
the diagram, not just Window 3. Fixed windows are really
a special case of sliding windows where size equals period.

Sessions are windows that capture some period of activ-
ity over a subset of the data, in this case per key. Typically
they are defined by a timeout gap. Any events that occur
within a span of time less than the timeout are grouped
together as a session. Sessions are unaligned windows. For
example, Window 2 applies to Key 1 only, Window 3 to Key
2 only, and Windows 1 and 4 to Key 3 only.

1.3 Time Domains
When processing data which relate to events in time, there

are two inherent domains of time to consider. Though cap-
tured in various places across the literature (particularly
time management [28] and semantic models [9], but also
windowing [22], out-of-order processing [23], punctuations
[30], heartbeats [21], watermarks [2], frames [31]), the de-
tailed examples in section 2.3 will be easier to follow with
the concepts clearly in mind. The two domains of interest
are:

• Event Time, which is the time at which the event
itself actually occurred, i.e. a record of system clock
time (for whatever system generated the event) at the
time of occurrence.

• Processing Time, which is the time at which an
event is observed at any given point during processing
within the pipeline, i.e. the current time according
to the system clock. Note that we make no assump-
tions about clock synchronization within a distributed
system.

Event time for a given event essentially never changes,
but processing time changes constantly for each event as it
flows through the pipeline and time marches ever forward.
This is an important distinction when it comes to robustly
analyzing events in the context of when they occurred.

During processing, the realities of the systems in use (com-
munication delays, scheduling algorithms, time spent pro-
cessing, pipeline serialization, etc.) result in an inherent
and dynamically changing amount of skew between the two
domains. Global progress metrics, such as punctuations or
watermarks, provide a good way to visualize this skew. For
our purposes, we’ll consider something like MillWheel’s wa-
termark, which is a lower bound (often heuristically estab-
lished6) on event times that have been processed by the

6For most real-world distributed data sets, the system lacks
sufficient knowledge to establish a 100% correct watermark.
For example, in the video sessions use case, consider offline
views. If someone takes their mobile device into the wilder-
ness, the system has no practical way of knowing when they
might come back to civilization, regain connection, and be-
gin uploading data about video views during that time. As a
result, most watermarks must be heuristically defined based
on limited knowledge available. For structured input sources
that expose metadata regarding unobserved data, such as
log files, we’ve found these heuristics to be remarkably ac-
curate, and thus practically useful as a completion estimate
for many use cases. Furthermore, and importantly, once
a heuristic watermark has been established, it can then be
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Figure 2: Time Domain Skew

pipeline. As we’ve made very clear above, notions of com-
pleteness are generally incompatible with correctness, so we
won’t rely on watermarks as such. They do, however, pro-
vide a useful notion of when the system thinks it likely that
all data up to a given point in event time have been observed,
and thus find application in not only visualizing skew, but
in monitoring overall system health and progress, as well as
making decisions around progress that do not require com-
plete accuracy, such as basic garbage collection policies.

In an ideal world, time domain skew would always be
zero; we would always be processing all events immediately
as they happen. Reality is not so favorable, however, and
often what we end up with looks more like Figure 2. Starting
around 12:00, the watermark starts to skew more away from
real time as the pipeline lags, diving back close to real time
around 12:02, then lagging behind again noticeably by the
time 12:03 rolls around. This dynamic variance in skew
is very common in distributed data processing systems, and
will play a big role in defining what functionality is necessary
for providing correct, repeatable results.

2. DATAFLOW MODEL
In this section, we will define the formal model for the

system and explain why its semantics are general enough
to subsume the standard batch, micro-batch, and streaming
models, as well as the hybrid streaming and batch semantics
of the Lambda Architecture. For code examples, we will use
a simplified variant of the Dataflow Java SDK, which itself
is an evolution of the FlumeJava API.

2.1 Core Primitives
To begin with, let us consider primitives from the classic

batch model. The Dataflow SDK has two core transforms
that operate on the (key, value) pairs flowing through the
system7:

propagated accurately downstream through the rest of the
pipeline (much like a punctuation would), though the overall
metric itself remains a heuristic.
7Without loss of generality, we will treat all elements in the
system as (key, value) pairs, even though a key is not ac-
tually required for certain operations, such as ParDo. Most
of the interesting discussions revolve around GroupByKey,
which does require keys, so assuming they exist is simpler.

• ParDo for generic parallel processing. Each input ele-
ment to be processed (which itself may be a finite col-
lection) is provided to a user-defined function (called
a DoFn in Dataflow), which can yield zero or more out-
put elements per input. For example, consider an op-
eration which expands all prefixes of the input key,
duplicating the value across them:

(fix, 1), (fit, 2)y ParDo(
ExpandPrefixes)

(f, 1), (fi, 1), (fix, 1), (f, 2), (fi, 2), (fit, 2)

• GroupByKey for key-grouping (key, value) pairs.

(f, 1), (fi, 1), (fix, 1), (f, 2), (fi, 2), (fit, 2)y GroupByKey

(f, [1, 2]), (fi, [1, 2]), (fix, [1]), (fit, [2])

The ParDo operation operates element-wise on each input
element, and thus translates naturally to unbounded data.
The GroupByKey operation, on the other hand, collects all
data for a given key before sending them downstream for
reduction. If the input source is unbounded, we have no
way of knowing when it will end. The common solution to
this problem is to window the data.

2.2 Windowing
Systems which support grouping typically redefine their

GroupByKey operation to essentially be GroupByKeyAnd-
Window. Our primary contribution here is support for un-
aligned windows, for which there are two key insights. The
first is that it is simpler to treat all windowing strategies
as unaligned from the perspective of the model, and allow
underlying implementations to apply optimizations relevant
to the aligned cases where applicable. The second is that
windowing can be broken apart into two related operations:

• Set<Window> AssignWindows(T datum), which assigns the
element to zero or more windows. This is essentially
the Bucket Operator from Li [22].

• Set<Window> MergeWindows(Set<Window> windows), which
merges windows at grouping time. This allows data-
driven windows to be constructed over time as data
arrive and are grouped together.

For any given windowing strategy, the two operations are
intimately related; sliding window assignment requires slid-
ing window merging, sessions window assignment requires
sessions window merging, etc.

Note that, to support event-time windowing natively, in-
stead of passing (key, value) pairs through the system, we
now pass (key, value, event time, window) 4-tuples. Ele-
ments are provided to the system with event-time times-
tamps (which may also be modified at any point in the
pipeline8), and are initially assigned to a default global win-
dow, covering all of event time, providing semantics that
match the defaults in the standard batch model.
8Note, however, that certain timestamp modification oper-
ations are antagonistic to progress tracking metrics like wa-
termarks; moving a timestamp behind the watermark makes
a given element late with respect to that watermark.
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(k, v1, 12:00, [0,∞)), (k, v2, 12:01, [0,∞))y AssignWindows(
Sliding(2m, 1m))

(k, v1, 12:00, [11:59, 12:01)),
(k, v1, 12:00, [12:00, 12:02)),
(k, v2, 12:01, [12:00, 12:02)),
(k, v2, 12:01, [12:01, 12:03))

Figure 3: Window Assignment

2.2.1 Window Assignment
From the model’s perspective, window assignment creates

a new copy of the element in each of the windows to which
it has been assigned. For example, consider windowing a
dataset by sliding windows of two-minute width and one-
minute period, as shown in Figure 3 (for brevity, timestamps
are given in HH:MM format).

In this case, each of the two (key, value) pairs is dupli-
cated to exist in both of the windows that overlapped the
element’s timestamp. Since windows are associated directly
with the elements to which they belong, this means win-
dow assignment can happen anywhere in the pipeline be-
fore grouping is applied. This is important, as the grouping
operation may be buried somewhere downstream inside a
composite transformation (e.g. Sum.integersPerKey()).

2.2.2 Window Merging
Window merging occurs as part of the GroupByKeyAnd-

Window operation, and is best explained in the context of an
example. We will use session windowing since it is our mo-
tivating use case. Figure 4 shows four example data, three
for k1 and one for k2, as they are windowed by session, with
a 30-minute session timeout. All are initially placed in a
default global window by the system. The sessions imple-
mentation of AssignWindows puts each element into a sin-
gle window that extends 30 minutes beyond its own times-
tamp; this window denotes the range of time into which
later events can fall if they are to be considered part of the
same session. We then begin the GroupByKeyAndWindow
operation, which is really a five-part composite operation:

• DropTimestamps - Drops element timestamps, as
only the window is relevant from here on out9.

• GroupByKey - Groups (value, window) tuples by key.

• MergeWindows - Merges the set of currently buffered
windows for a key. The actual merge logic is defined
by the windowing strategy. In this case, the windows
for v1 and v4 overlap, so the sessions windowing strat-
egy merges them into a single new, larger session, as
indicated in bold.

• GroupAlsoByWindow - For each key, groups values
by window. After merging in the prior step, v1 and
v4 are now in identical windows, and thus are grouped
together at this step.

9If the user needs them later, it is possible to first materialize
them as part of their value.

(k1, v1, 13:02, [0,∞)),
(k2, v2, 13:14, [0,∞)),
(k1, v3, 13:57, [0,∞)),
(k1, v4, 13:20, [0,∞))y AssignWindows(

Sessions(30m))

(k1, v1, 13:02, [13:02, 13:32)),
(k2, v2, 13:14, [13:14, 13:44)),
(k1, v3, 13:57, [13:57, 14:27)),
(k1, v4, 13:20, [13:20, 13:50))y DropT imestamps

(k1, v1, [13:02, 13:32)),
(k2, v2, [13:14, 13:44)),
(k1, v3, [13:57, 14:27)),
(k1, v4, [13:20, 13:50))y GroupByKey

(k1, [(v1, [13:02, 13:32)),
(v3, [13:57, 14:27)),

(v4, [13:20, 13:50))]),
(k2, [(v2, [13:14, 13:44))])y MergeWindows(

Sessions(30m))

(k1, [(v1, [13:02,13:50)),
(v3, [13:57, 14:27)),

(v4, [13:02,13:50))]),
(k2, [(v2, [13:14, 13:44))])y GroupAlsoByWindow

(k1, [([v1,v4], [13:02, 13:50)),
([v3], [13:57, 14:27))]),

(k2, [([v2], [13:14, 13:44))])y ExpandToElements

(k1, [v1, v4],13:50, [13:02, 13:50)),
(k1, [v3],14:27, [13:57, 14:27)),
(k2, [v2],13:44, [13:14, 13:44))

Figure 4: Window Merging

• ExpandToElements - Expands per-key, per-window
groups of values into (key, value, event time, window)
tuples, with new per-window timestamps. In this ex-
ample, we set the timestamp to the end of the window,
but any timestamp greater than or equal to the times-
tamp of the earliest event in the window is valid with
respect to watermark correctness.

2.2.3 API
As a brief example of the use of windowing in practice,

consider the following Cloud Dataflow SDK code to calculate
keyed integer sums:

PCollection<KV<String, Integer>> input = IO.read(...);
PCollection<KV<String, Integer>> output = input
.apply(Sum.integersPerKey());
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To do the same thing, but windowed into sessions with a
30-minute timeout as in Figure 4, one would add a single
Window.into call before initiating the summation:

PCollection<KV<String, Integer>> input = IO.read(...);
PCollection<KV<String, Integer>> output = input
.apply(Window.into(Sessions.withGapDuration(

Duration.standardMinutes(30))))
.apply(Sum.integersPerKey());

2.3 Triggers & Incremental Processing
The ability to build unaligned, event-time windows is an

improvement, but now we have two more shortcomings to
address:

• We need some way of providing support for tuple- and
processing-time-based windows, otherwise we have re-
gressed our windowing semantics relative to other sys-
tems in existence.

• We need some way of knowing when to emit the re-
sults for a window. Since the data are unordered with
respect to event time, we require some other signal to
tell us when the window is done.

The problem of tuple- and processing-time-based windows
we will address in Section 2.4, once we have built up a so-
lution to the window completeness problem. As to window
completeness, an initial inclination for solving it might be
to use some sort of global event-time progress metric, such
as watermarks. However, watermarks themselves have two
major shortcomings with respect to correctness:

• They are sometimes too fast, meaning there may be
late data that arrives behind the watermark. For many
distributed data sources, it is intractable to derive a
completely perfect event time watermark, and thus im-
possible to rely on it solely if we want 100% correctness
in our output data.

• They are sometimes too slow. Because they are a
global progress metric, the watermark can be held
back for the entire pipeline by a single slow datum.
And even for healthy pipelines with little variability in
event-time skew, the baseline level of skew may still be
multiple minutes or more, depending upon the input
source. As a result, using watermarks as the sole sig-
nal for emitting window results is likely to yield higher
latency of overall results than, for example, a compa-
rable Lambda Architecture pipeline.

For these reasons, we postulate that watermarks alone
are insufficient. A useful insight in addressing the complete-
ness problem is that the Lambda Architecture effectively
sidesteps the issue: it does not solve the completeness prob-
lem by somehow providing correct answers faster; it simply
provides the best low-latency estimate of a result that the
streaming pipeline can provide, with the promise of eventual
consistency and correctness once the batch pipeline runs10.
If we want to do the same thing from within a single pipeline

10Note that in reality, output from the batch job is only
correct if input data is complete by the time the batch job
runs; if data evolve over time, this must be detected and the
batch jobs re-executed.

(regardless of execution engine), then we will need a way to
provide multiple answers (or panes) for any given window.
We call this feature triggers, since they allow the specifica-
tion of when to trigger the output results for a given window.

In a nutshell, triggers are a mechanism for stimulating the
production of GroupByKeyAndWindow results in response
to internal or external signals. They are complementary
to the windowing model, in that they each affect system
behaviour along a different axis of time:

• Windowing determines where in event time data
are grouped together for processing.

• Triggering determines when in processing time the
results of groupings are emitted as panes.11

Our systems provide predefined trigger implementations
for triggering at completion estimates (e.g. watermarks, in-
cluding percentile watermarks, which provide useful seman-
tics for dealing with stragglers in both batch and streaming
execution engines when you care more about processing a
minimum percentage of the input data quickly than process-
ing every last piece of it), at points in processing time, and in
response to data arriving (counts, bytes, data punctuations,
pattern matching, etc.). We also support composing triggers
into logical combinations (and, or, etc.), loops, sequences,
and other such constructions. In addition, users may define
their own triggers utilizing both the underlying primitives of
the execution runtime (e.g. watermark timers, processing-
time timers, data arrival, composition support) and any
other relevant external signals (data injection requests, ex-
ternal progress metrics, RPC completion callbacks, etc.).
We will look more closely at examples in Section 2.4.

In addition to controlling when results are emitted, the
triggers system provides a way to control how multiple panes
for the same window relate to each other, via three different
refinement modes:

• Discarding: Upon triggering, window contents are
discarded, and later results bear no relation to previ-
ous results. This mode is useful in cases where the
downstream consumer of the data (either internal or
external to the pipeline) expects the values from vari-
ous trigger fires to be independent (e.g. when injecting
into a system that generates a sum of the values in-
jected). It is also the most efficient in terms of amount
of data buffered, though for associative and commu-
tative operations which can be modeled as a Dataflow
Combiner, the efficiency delta will often be minimal. For
our video sessions use case, this is not sufficient, since
it is impractical to require downstream consumers of
our data to stitch together partial sessions.

• Accumulating: Upon triggering, window contents
are left intact in persistent state, and later results be-
come a refinement of previous results. This is use-
ful when the downstream consumer expects to over-
write old values with new ones when receiving multi-
ple results for the same window, and is effectively the
mode used in Lambda Architecture systems, where the

11Specific triggers, such as watermark triggers, make use of
event time in the functionality they provide, but their effects
within the pipeline are still realized in the processing time
axis.
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streaming pipeline produces low-latency results, which
are then overwritten in the future by the results from
the batch pipeline. For video sessions, this might be
sufficient if we are simply calculating sessions and then
immediately writing them to some output source that
supports updates (e.g. a database or key/value store).

• Accumulating & Retracting: Upon triggering, in
addition to the Accumulating semantics, a copy of the
emitted value is also stored in persistent state. When
the window triggers again in the future, a retraction for
the previous value will be emitted first, followed by the
new value as a normal datum12. Retractions are neces-
sary in pipelines with multiple serial GroupByKeyAnd-
Window operations, since the multiple results gener-
ated by a single window over subsequent trigger fires
may end up on separate keys when grouped down-
stream. In that case, the second grouping operation
will generate incorrect results for those keys unless it is
informed via a retraction that the effects of the original
output should be reversed. Dataflow Combiner opera-
tions that are also reversible can support retractions
efficiently via an uncombine method. For video sessions,
this mode is the ideal. If we are performing aggrega-
tions downstream from session creation that depend on
properties of the sessions themselves, for example de-
tecting unpopular ads (such as those which are viewed
for less than five seconds in a majority of sessions),
initial results may be invalidated as inputs evolve over
time, e.g. as a significant number of offline mobile
viewers come back online and upload session data. Re-
tractions provide a way for us to adapt to these types
of changes in complex pipelines with multiple serial
grouping stages.

2.4 Examples
We will now consider a series of examples that highlight

the plurality of useful output patterns supported by the
Dataflow Model. We will look at each example in the con-
text of the integer summation pipeline from Section 2.2.3:

PCollection<KV<String, Integer>> output = input
.apply(Sum.integersPerKey());

Let us assume we have an input source from which we are
observing ten data points, each themselves small integer val-
ues. We will consider them in the context of both bounded
and unbounded data sources. For diagrammatic simplicity,
we will assume all these data are for the same key; in a real
pipeline, the types of operations we describe here would be
happening in parallel for multiple keys. Figure 5 diagrams
how these data relate together along both axes of time we
care about. The X axis plots the data in event time (i.e.
when the events actually occurred), while the Y axis plots
the data in processing time (i.e. when the pipeline observes
them). All examples assume execution on our streaming
engine unless otherwise specified.

Many of the examples will also depend on watermarks,
in which cases we will include them in our diagrams. We
will graph both the ideal watermark and an example actual

12A simple implementation of retraction processing requires
deterministic operations, but non-determinism may be sup-
ported with additional complexity and cost; we have seen
use cases that require this, such as probabilistic modeling.

watermark. The straight dotted line with slope of one rep-
resents the ideal watermark, i.e. if there were no event-time
skew and all events were processed by the system as they
occurred. Given the vagaries of distributed systems, skew is
a common occurrence; this is exemplified by the meandering
path the actual watermark takes in Figure 5, represented by
the darker, dashed line. Note also that the heuristic nature
of this watermark is exemplified by the single “late” datum
with value 9 that appears behind the watermark.
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Figure 5: Example Inputs

If we were to process these data in a classic batch system
using the described summation pipeline, we would wait for
all the data to arrive, group them together into one bundle
(since these data are all for the same key), and sum their val-
ues to arrive at total result of 51. This result is represented
by the darkened rectangle in Figure 6, whose area covers
the ranges of event and processing time included in the sum
(with the top of the rectangle denoting when in processing
time the result was materialized). Since classic batch pro-
cessing is event-time agnostic, the result is contained within
a single global window covering all of event time. And since
outputs are only calculated once all inputs are received, the
result covers all of processing time for the execution.
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Figure 6: Classic Batch Execution

Note the inclusion of watermarks in this diagram. Though
not typically used for classic batch processing, watermarks
would semantically be held at the beginning of time until all
data had been processed, then advanced to infinity. An im-
portant point to note is that one can get identical semantics
to classic batch by running the data through a streaming
system with watermarks progressed in this manner.

Now let us say we want to convert this pipeline to run over
an unbounded data source. In Dataflow, the default trig-
gering semantics are to emit windows when the watermark
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passes them. But when using the global window with an
unbounded input source, we are guaranteed that will never
happen, since the global window covers all of event time. As
such, we will need to either trigger by something other than
the default trigger, or window by something other than the
global window. Otherwise, we will never get any output.

Let us first look at changing the trigger, since this will
allow us to to generate conceptually identical output (a
global per-key sum over all time), but with periodic up-
dates. In this example, we apply a Window.trigger operation
that repeatedly fires on one-minute periodic processing-time
boundaries. We also specify Accumulating mode so that our
global sum will be refined over time (this assumes we have
an output sink into which we can simply overwrite previ-
ous results for the key with new results, e.g. a database or
key/value store). Thus, in Figure 7, we generate updated
global sums once per minute of processing time. Note how
the semi-transparent output rectangles overlap, since Accu-
mulating panes build upon prior results by incorporating
overlapping regions of processing time:

PCollection<KV<String, Integer>> output = input
.apply(Window.trigger(Repeat(AtPeriod(1, MINUTE)))

.accumulating())
.apply(Sum.integersPerKey());
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Figure 7: GlobalWindows, AtPeriod, Accumulating

If we instead wanted to generate the delta in sums once
per minute, we could switch to Discarding mode, as in Fig-
ure 8. Note that this effectively gives the processing-time
windowing semantics provided by many streaming systems.
The output panes no longer overlap, since their results in-
corporate data from independent regions of processing time.

PCollection<KV<String, Integer>> output = input
.apply(Window.trigger(Repeat(AtPeriod(1, MINUTE)))

.discarding())
.apply(Sum.integersPerKey());
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Figure 8: GlobalWindows, AtPeriod, Discarding

Another, more robust way of providing processing-time
windowing semantics is to simply assign arrival time as event
times at data ingress, then use event time windowing. A nice
side effect of using arrival time event times is that the system
has perfect knowledge of the event times in flight, and thus
can provide perfect (i.e. non-heuristic) watermarks, with
no late data. This is an effective and cost-efficient way of
processing unbounded data for use cases where true event
times are not necessary or available.

Before we look more closely at other windowing options,
let us consider one more change to the triggers for this
pipeline. The other common windowing mode we would like
to model is tuple-based windows. We can provide this sort
of functionality by simply changing the trigger to fire after a
certain number of data arrive, say two. In Figure 9, we get
five outputs, each containing the sum of two adjacent (by
processing time) data. More sophisticated tuple-based win-
dowing schemes (e.g. sliding tuple-based windows) require
custom windowing strategies, but are otherwise supported.

PCollection<KV<String, Integer>> output = input
.apply(Window.trigger(Repeat(AtCount(2)))

.discarding())
.apply(Sum.integersPerKey());
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Figure 9: GlobalWindows, AtCount, Discarding

Let us now return to the other option for supporting un-
bounded sources: switching away from global windowing.
To start with, let us window the data into fixed, two-minute
Accumulating windows:

PCollection<KV<String, Integer>> output = input
.apply(Window.into(FixedWindows.of(2, MINUTES)

.accumulating())
.apply(Sum.integersPerKey());

With no trigger strategy specified, the system would use
the default trigger, which is effectively:

PCollection<KV<String, Integer>> output = input
.apply(Window.into(FixedWindows.of(2, MINUTES))

.trigger(Repeat(AtWatermark())))

.accumulating())
.apply(Sum.integersPerKey());

The watermark trigger fires when the watermark passes
the end of the window in question. Both batch and stream-
ing engines implement watermarks, as detailed in Section
3.1. The Repeat call in the trigger is used to handle late
data; should any data arrive after the watermark, they will
instantiate the repeated watermark trigger, which will fire
immediately since the watermark has already passed.

Figures 10−12 each characterize this pipeline on a dif-
ferent type of runtime engine. We will first observe what
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execution of this pipeline would look like on a batch engine.
Given our current implementation, the data source would
have to be a bounded one, so as with the classic batch ex-
ample above, we would wait for all data in the batch to
arrive. We would then process the data in event-time order,
with windows being emitted as the simulated watermark ad-
vances, as in Figure 10:
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Figure 10: FixedWindows, Batch

Now imagine executing a micro-batch engine over this
data source with one minute micro-batches. The system
would gather input data for one minute, process them, and
repeat. Each time, the watermark for the current batch
would start at the beginning of time and advance to the end
of time (technically jumping from the end time of the batch
to the end of time instantaneously, since no data would ex-
ist for that period). We would thus end up with a new
watermark for every micro-batch round, and corresponding
outputs for all windows whose contents had changed since
the last round. This provides a very nice mix of latency and
eventual correctness, as in Figure 11:
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Figure 11: FixedWindows, Micro-Batch

Next, consider this pipeline executed on a streaming en-
gine, as in Figure 12. Most windows are emitted when the
watermark passes them. Note however that the datum with
value 9 is actually late relative to the watermark. For what-
ever reason (mobile input source being offline, network par-
tition, etc.), the system did not realize that datum had not
yet been injected, and thus, having observed the 5, allowed
the watermark to proceed past the point in event time that
would eventually be occupied by the 9. Hence, once the
9 finally arrives, it causes the first window (for event-time

range [12:00, 12:02)) to retrigger with an updated sum:
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Figure 12: FixedWindows, Streaming

This output pattern is nice in that we have roughly one
output per window, with a single refinement in the case of
the late datum. But the overall latency of results is no-
ticeably worse than the micro-batch system, on account of
having to wait for the watermark to advance; this is the case
of watermarks being too slow from Section 2.3.

If we want lower latency via multiple partial results for all
of our windows, we can add in some additional, processing-
time-based triggers to provide us with regular updates until
the watermark actually passes, as in Figure 13. This yields
somewhat better latency than the micro-batch pipeline, since
data are accumulated in windows as they arrive instead of
being processed in small batches. Given strongly-consistent
micro-batch and streaming engines, the choice between them
(as well as the choice of micro-batch size) really becomes just
a matter of latency versus cost, which is exactly one of the
goals we set out to achieve with this model.

PCollection<KV<String, Integer>> output = input
.apply(Window.into(FixedWindows.of(2, MINUTES))

.trigger(SequenceOf(
RepeatUntil(
AtPeriod(1, MINUTE),
AtWatermark()),

Repeat(AtWatermark())))
.accumulating())

.apply(Sum.integersPerKey());
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Figure 13: FixedWindows, Streaming, Partial

As one final exercise, let us update our example to satisfy
the video sessions requirements (modulo the use of summa-
tion as the aggregation operation, which we will maintain
for diagrammatic consistency; switching to another aggre-
gation would be trivial), by updating to session windowing
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with a one minute timeout and enabling retractions. This
highlights the composability provided by breaking the model
into four pieces (what you are computing, where in event
time you are computing it, when in processing time you are
observing the answers, and how those answers relate to later
refinements), and also illustrates the power of reverting pre-
vious values which otherwise might be left uncorrelated to
the value offered as replacement.

PCollection<KV<String, Integer>> output = input
.apply(Window.into(Sessions.withGapDuration(1, MINUTE))

.trigger(SequenceOf(
RepeatUntil(
AtPeriod(1, MINUTE),
AtWatermark()),

Repeat(AtWatermark())))
.accumulatingAndRetracting())

.apply(Sum.integersPerKey());
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Figure 14: Sessions, Retracting

In this example, we output initial singleton sessions for
values 5 and 7 at the first one-minute processing-time bound-
ary. At the second minute boundary, we output a third ses-
sion with value 10, built up from the values 3, 4, and 3.
When the value of 8 is finally observed, it joins the two ses-
sions with values 7 and 10. As the watermark passes the
end of this new combined session, retractions for the 7 and
10 sessions are emitted, as well as a normal datum for the
new session with value 25. Similarly, when the 9 arrives
(late), it joins the session with value 5 to the session with
value 25. The repeated watermark trigger then immediately
emits retractions for the 5 and the 25, followed by a com-
bined session of value 39. A similar dance occurs for the
values 3, 8, and 1, ultimately ending with a retraction for
an initial 3 session, followed by a combined session of 12.

3. IMPLEMENTATION & DESIGN

3.1 Implementation
We have implemented this model internally in FlumeJava,

with MillWheel used as the underlying execution engine for
streaming mode; additionally, an external reimplementation
for Cloud Dataflow is largely complete at the time of writing.
Due to prior characterization of those internal systems in the
literature, as well as Cloud Dataflow being publicly avail-
able, details of the implementations themselves are elided
here for the sake of brevity. One interesting note is that the
core windowing and triggering code is quite general, and a
significant portion of it is shared across batch and stream-
ing implementations; that system itself is worthy of a more
detailed analysis in future work.

3.2 Design Principles
Though much of our design was motivated by the real-

world experiences detailed in Section 3.3 below, it was also
guided by a core set of principles that we believed our model
should embody:

• Never rely on any notion of completeness.

• Be flexible, to accommodate the diversity of known use
cases, and those to come in the future.

• Not only make sense, but also add value, in the context
of each of the envisioned execution engines.

• Encourage clarity of implementation.

• Support robust analysis of data in the context in which
they occurred.

While the experiences below informed specific features of
the model, these principles informed the overall shape and
character of it, and we believe ultimately led to a more com-
prehensive and general result.

3.3 Motivating Experiences
As we designed the Dataflow Model, we took into consid-

eration our real-world experiences with FlumeJava and Mill-
Wheel over the years. Things which worked well, we made
sure to capture in the model; things which worked less well
motivated changes in approach. Here are brief summaries
of some of these experiences that influenced our design.

3.3.1 Large Scale Backfills & The Lambda
Architecture: Unified Model

A number of teams run log joining pipelines on MillWheel.
One particularly large log join pipeline runs in streaming
mode on MillWheel by default, but has a separate Flume-
Java batch implementation used for large scale backfills. A
much nicer setup would be to have a single implementation
written in a unified model that could run in both stream-
ing and batch mode without modification. This became
the initial motivating use case for unification across batch,
micro-batch, and streaming engines, and was highlighted in
Figures 10−12.

Another motivation for the unified model came from an
experience with the Lambda Architecture. Though most
data processing use cases at Google are handled exclusively
by a batch or streaming system, one MillWheel customer ran
their streaming pipeline in weak consistency mode, with a
nightly MapReduce to generate truth. They found that cus-
tomers stopped trusting the weakly consistent results over
time, and as a result reimplemented their system around
strong consistency so they could provide reliable, low la-
tency results. This experience further motivated the desire
to support fluid choice amongst execution engines.

3.3.2 Unaligned Windows: Sessions
From the outset, we knew we needed to support sessions;

this in fact is the main contribution of our windowing model
over existing models. Sessions are an extremely important
use case within Google (and were in fact one of the reasons
MillWheel was created), and are used across a number of
product areas, including search, ads, analytics, social, and
YouTube. Pretty much anyone that cares about correlating
bursts of otherwise disjoint user activity over a period of
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time does so by calculating sessions. Thus, support for ses-
sions became paramount in our design. As shown in Figure
14, generating sessions in the Dataflow Model is trivial.

3.3.3 Billing: Triggers, Accumulation, & Retraction
Two teams with billing pipelines built on MillWheel ex-

perienced issues that motivated parts of the model. Recom-
mended practice at the time was to use the watermark as a
completion metric, with ad hoc logic to deal with late data
or changes in source data. Lacking a principled system for
updates and retractions, a team that processed resource uti-
lization statistics ended up leaving our platform to build a
custom solution (the model for which ended being quite sim-
ilar to the one we developed concurrently). Another billing
team had significant issues with watermark lags caused by
stragglers in their input. These shortcomings became major
motivators in our design, and influenced the shift of focus
from one of targeting completeness to one of adaptability
over time. The results were twofold: triggers, which allow
the concise and flexible specification of when results are ma-
terialized, as evidenced by the variety of output patterns
possible over the same data set in Figures 7−14; and incre-
mental processing support via accumulation (Figures 7 and
8) and retractions (Figure 14).

3.3.4 Statistics Calculation: Watermark Triggers
Many MillWheel pipelines calculate aggregate statistics

(e.g. latency averages). For them, 100% accuracy is not
required, but having a largely complete view of their data
in a reasonable amount of time is. Given the high level of
accuracy we achieve with watermarks for structured input
sources like log files, such customers find watermarks very
effective in triggering a single, highly-accurate aggregate per
window. Watermark triggers are highlighted in Figure 12.

A number of abuse detection pipelines run on MillWheel.
Abuse detection is another example of a use case where pro-
cessing a majority of the data quickly is much more useful
than processing 100% of the data more slowly. As such,
they are heavy users of MillWheel’s percentile watermarks,
and were a strong motivating case for being able to support
percentile watermark triggers in the model.

Relatedly, a pain point with batch processing jobs is strag-
glers that create a long tail in execution time. While dy-
namic rebalancing can help with this issue, FlumeJava has
a custom feature that allows for early termination of a job
based on overall progress. One of the benefits of the unified
model for batch mode is that this sort of early termination
criteria is now naturally expressible using the standard trig-
gers mechanism, rather than requiring a custom feature.

3.3.5 Recommendations: Processing Time Triggers
Another pipeline that we considered built trees of user ac-

tivity (essentially session trees) across a large Google prop-
erty. These trees were then used to build recommendations
tailored to users’ interests. The pipeline was noteworthy in
that it used processing-time timers to drive its output. This
was due to the fact that, for their system, having regularly
updated, partial views on the data was much more valuable
than waiting until mostly complete views were ready once
the watermark passed the end of the session. It also meant
that lags in watermark progress due to a small amount
of slow data would not affect timeliness of output for the

rest of the data. This pipeline thus motivated inclusion of
processing-time triggers shown in Figures 7 and 8.

3.3.6 Anomaly Detection:
Data-Driven & Composite Triggers

In the MillWheel paper, we described an anomaly de-
tection pipeline used to track trends in Google web search
queries. When developing triggers, their diff detection sys-
tem motivated data-driven triggers. These differs observe
the stream of queries and calculate statistical estimates of
whether a spike exists or not. When they believe a spike is
happening, they emit a start record, and when they believe
it has ceased, they emit a stop. Though you could drive
the differ output with something periodic like Trill’s punc-
tuations, for anomaly detection you ideally want output as
soon as you are confident you have discovered an anomaly;
the use of punctuations essentially transforms the stream-
ing system into micro-batch, introducing additional latency.
While practical for a number of use cases, it ultimately is
not an ideal fit for this one, thus motivating support for
custom data-driven triggers. It was also a motivating case
for trigger composition, because in reality, the system runs
multiple differs at once, multiplexing the output of them ac-
cording to a well-defined set of logic. The AtCount trigger
used in Figure 9 exemplified data-driven triggers; figures
10−14 utilized composite triggers.

4. CONCLUSIONS
The future of data processing is unbounded data. Though

bounded data will always have an important and useful
place, it is semantically subsumed by its unbounded counter-
part. Furthermore, the proliferation of unbounded data sets
across modern business is staggering. At the same time,
consumers of processed data grow savvier by the day, de-
manding powerful constructs like event-time ordering and
unaligned windows. The models and systems that exist to-
day serve as an excellent foundation on which to build the
data processing tools of tomorrow, but we firmly believe
that a shift in overall mindset is necessary to enable those
tools to comprehensively address the needs of consumers of
unbounded data.

Based on our many years of experience with real-world,
massive-scale, unbounded data processing within Google, we
believe the model presented here is a good step in that direc-
tion. It supports the unaligned, event-time-ordered windows
modern data consumers require. It provides flexible trigger-
ing and integrated accumulation and retraction, refocusing
the approach from one of finding completeness in data to
one of adapting to the ever present changes manifest in real-
world datasets. It abstracts away the distinction of batch vs.
micro-batch vs. streaming, allowing pipeline builders a more
fluid choice between them, while shielding them from the
system-specific constructs that inevitably creep into models
targeted at a single underlying system. Its overall flexibility
allows pipeline builders to appropriately balance the dimen-
sions of correctness, latency, and cost to fit their use case,
which is critical given the diversity of needs in existence.
And lastly, it clarifies pipeline implementations by separat-
ing the notions of what results are being computed, where
in event time they are being computed, when in processing
time they are materialized, and how earlier results relate to
later refinements. We hope others will find this model useful
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as we all continue to push forward the state of the art in this
fascinating, remarkably complex field.
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