
X-Stream: Edge-centric Graph
Processing using Streaming

Partitions

Amitabha Roy, Ivo Mihailovic,
Willy Zwaenepoel

Context
Approach

Model
Implementation

Results & Conclusion

Pregel & Powergraph: scatter & gather
→ A scatter-gather methodology:

1. scatter(vertex v):

send updates over outgoing edges of v

2. gather(vertex v):

apply updates from inbound edges of v

→ how to scale-up?

Trade-off: Sequential vs Random access

GraphChi: a sequential approach
→ avoids random access using shards

Problems:

1. need graph to be pre-sorted by source vertex
2. vertex-centric
3. requires re-sort of edges by destination vertex for gather step

Context
Approach

Model
Implementation

Results & Conclusion

X-Stream’s Approach
1. retain scatter-gather programming model
2. use an edge-centric implementation
3. stream unordered edge lists

Gains:

1. use sequential (not random) access
2. do not need pre-processing step

scatter-gather: an edge-centric implementation
scatter(edge e):

send update over e

gather(update u):

apply update u to u.destination

Quick Terminology
Fast Storage:

→ caches (in-memory)

→ main-memory (out-of-core)

Slow Storage:

→ main-memory (in-memory)

→ SSD/Disk (out-of-core)

Context
Approach

Model
Implementation

Results & Conclusion

The basic model:

Apply Scatter Apply Gather

input: an unordered
set of directed edges

API: implementations
of scatter/gather for
given edges

Problem: vertices may not fit in fast storage

Problem: vertices may not fit in fast storage
→ Streaming partitions:

- vertex set, V: a subset of the vertices of the graph
- edge list: source is ∈ V
- update list: dest ∈ V

→ How do we use them?

1. scatter/gather iterate over streaming partitions
2. updates need to be shuffled

Context
Approach

Model
Implementation

Results & Conclusion

Stream buffer

Chunck

Index Array (K entries)

Chunck Array

Out-of-core In-memory
→ Folds shuffle into scatter
● run scatter, appending updates to an in-

memory buffer
● when buffer full: run an in-memory

shuffle

→ 2 Stream Buffers

→ Number of partitions

N/K + 5SK <= M

→ Disk I/O

→ Parallel multi-stage shuffler & scatter/gather
● stream independently for each

streaming partition
● work stealing
● group partitions together into a tree for

the shuffler

→ 3 stream buffers

→ Number of partitions

= CPU_cache_size / footprint

Chaos: the extension of X-Stream
→ Scale out to multiple machines in 1 cluster

2 gains:

1. access secondary storage in parallel improves performance
2. increases size of graph that can be handled

Chaos: the extension of X-Stream
→ Steps:

1. simple initial partitioning
2. spread graph data uniformly over all 2nd storage devices
3. work stealing

Assumptions:

1. network machine-to-machine bandwidth > bandwidth of storage device
2. network switch bandwidth > aggregate bandwidth of all storage devices of

cluster

Context
Approach

Model
Implementation

Results & Conclusion

Experiments:
→ Tested on real-world graphs.

Scalability

Comparison

Comparison: Ligra

Comparison: Graphchi

Conclusion & Takeaway
Strengths:

→ Sequential access

→ Scale up & scale out

Weaknesses

→ Limited number of problems it can handle

→ Limited types of graphs it can handle

→ How would you use in a real-world scenario

