GREEN-MARL: A DSL FOR
EASY AND EFFICIENT GRAPH
ANALYSIS

Sungpack Hong, Hassan Chafi, Eric Sedlar, Kunle Olukotun

K.M.D.M Karunarathna
University Of Cambridge - 17" Nov 2015

Current Issues

Issues with large-scale graph analysis
m Performance
m Implementation

m Capacity

Performance Issues

m RAM latency dominates running time for large graphs

Solution: Solved by exploiting data parallelism

Implementation Issues

m Writing concurrent code is hard

m Race-conditions

m Deadlock

m Efficiency requires deep hardware knowledge

m Couples code to underlying architecture

Solution: A DSL Green-Marl and its compiler

m High level graph analysis language
m Hides underlying complexity
m Exposesalgorithmic concurrency

m Exploits high level domain information for optimisations

Example

1 Procedure Compute BC(

2 G: Graph, BC: Node Prop<Float>(G)) ({

3 G.BC = 0; // initialize BC

4 Foreach(s: G.Nodes) {

5 // define temporary properties

6 Node Prop<Float>(G) Sigma;

7 Node Prop<Float>(G) Delta;

8 s.Sigma = 1; // Initialize Sigma for root

) // Traverse graph in BFS-order from s
10 InBFS (v: G.Nodes From s) (v!=s) {

11 // sum over BFS-parents

12 v.Sigma = Sum(w: v.UpNbrs) {w.Sigma};

13 }

14 // Traverse graph in reverse BFS-order
15 INRBFS (v!=s) {

16 // sum over BFS-children

17 v.Delta = Sum (w:v.DownNbrs) {

18 v.Sigma / w.Sigma * (1+ w.Delta)
19 b

20 v.BC += v.Delta @s; //accumulate BC
21 } } }

Green-Marl Language Design

m Scope of the Language
Based on processing graph properties, mappings from a node/edge to a value
- e.g. the average number of phone calls between two people

m Green-Marlis designed to compute,
* scalar values from a graph and its properties
* new properties for nodes/edges
* selecting subgraphs (instance of above)

Green-Marl Language Design

m Parallelism in Green-marl

Support for parallelism (fork-join style)

 Implicit

G.BC = 0,
 Explicit

Foreach(s: G.Nodes) (s!=t)
* Nested

p_sum *= t.B;

Language Constructs

m Data Types and Collections - DATA
a) Five primitive types (Bool, Int, Long, Float, Double)
b) Defines two graph types (DGraph and UGRaph)

c) Second,thereis a node type and an edge type both of which are always bound to
a graph instance

d) e node properties and edge properties which are bound to a graph but have
base-typesas well

Language Constructs

m Data Types and Collections - COLLECTION
: Set, Order, and Sequence.
a) Elementsin a Set are uniqgue while a Set is unordered.
b) Elementsin an Order are unique while an Order is ordered.

c) Elementsin a Sequence are not unique while a Sequenceis ordered

Language Constructs

m Iterations and Traversals
Foreach (iterator:source(-).range) (filter)

body statement

Language Constructs

m Deferred Assignment
a) Supports bulk synchronous consistency via deferred assignments.

b) Deferred assignments are denoted by <= and followed by a binding symbol

Language Constructs

Reductions
m an expressionform (or in-place from)
m anassignmentform

yt+= t.A;

Compiler

Compiler Overview

User
Application

1
Graph :
Analysis)

1

G By~ Parsing &
reen-Mar :
Checkin
> Code £
: Ve Front-end
! Transform
Back-end
- - Target Transform
Code
Code Gen
Graph Data Structure Green-Marl
(LIB) Compiler

Figure. Overview of Green-Marl DSK-compiler Usage

Compiler

m Architecture Independent Optimizations
e @Group Assignment
* In-place Reduction
e Loop Fusion
* Hoisting Definitions
* Reduction Bound Relaxation
* Flipping Edges

Foreach (t:G.Nodes) (£(t)) Foreach (s:G.Nodes) (g(s))

Foreach(s:t.InNbrs) (g(s)) Becomes Foreach(t:s.OutNbrs) (£ (t))

t.A += s.B;
t.A += s.B;

Compiler

m Architecture Dependent Optimizations
. Set-Graph Loop Fusion
e« Selection of Parallel Regions
Deferred Assignment
. Saving BFS Children

InBFS(v:G.Nodes; s) { ... //forward }
InRBFS { // reverse-order traverse
Foreach(t: v.DownNbrs) ({
DO_THING (t) ;
}}

Becomes
Cprepare_edge_marker(); // O(E) array\ /for (e = edges ..) {
fo? (e = edges ...) { if (edge marker[e] ==1) {
index t t = ...node(e); index t t = ...node(e);
if (isNextLevel (t)) { DO THING (t) ;
edge marker[e] = 1; 1 1} -

\} } J -

Compiler

m Code Generation

Graph and Neighborhood Iteration
Efficient DFS and BFS traversals
Small BFS Instance Optimization
Reduction on Properties
Reduction on Scalars

Experiments

Conductance
Vetex Cover
PageRank
SCC (Kosaraju)

42
71
58
80

10
25
15
15

[9] (C OpenMp)
[9] (C OpenMp)
[9] (C OpenMp)
[2] (C++, sequential)

(

[3] (Java, sequential)

Table. Graph algorithms used in the experiments and their Lines-of-Code(LOC) when
implemented in Green-Marl and in a general purpose language.

Experiments

1g pReed wp 1g Reed up . —n
17 ¢ 1 17 e
16 1 16 T 1
15 - 15 oo 1
14 ¢ e 14 | bt
- _____——_"_ _-___E:] B ._I.-"I 8_.—-—"“' = 7
12 B 3 12 t 1
11 ::___:;_E 7 11 ,..;;r-f‘:/ ,
10 Va7 aatrs 1 10 A P
2r S ey It 7 R]
5t & [- 5t A e 1
7r f AT i 7r i ’ 1
g [*‘""‘I"'r' | _ I g [i 1
- P . SRR :
al ’g‘ SNAP —+—] al F SNAP —+—]
31 GreenMarl —=— 3 b GreenMarl ——
2t ‘i? * NoFlipBe —&— A 2 %® A NoFlipBe —&—
(1) i ‘NoSaveCh,NoFlipBe —— 1 é - ¥ NoSaveCh,NoFlipBe —+— 1
0O 2 4 6 8§ 10 12 14 16 0O 2 4 6 § 10 12 14 16
Num threads Num threads
(a) RMAT (b) Uniform

Figure. Speed-up of Betweenness Centrality. Speed-up is over the SNAP library [9] version
running on a single-thread. NoFlipBE and NoSaveCh means disabling the Flipping Edges (Section
3.3 Architecture Independent Optimizations) and Saving BFS Children (Section 3.5 Code
Generation) optimizations respectively.

Experiments

o Speed up 1 j . : g Speed up . : : :
7.5t SNAP —+— d 7.5} SNAP —+— i
7+ GreenMarl ——] ! GreenMarl —e— i
6.5 F MolM —8— . 6.5 F MolM —a—
6 FNolLM, NaSRDC —%— 1 & FNolM, MNoSREDC —#— 1
5.5 F R st | 5.5 — L
5 F T e 5 F & 4
4.5 | A=Y 4.5 | e i
ol . e] 20l gy]
3.5 F -~ . 3.5 F R
3 1 3t §
2.5 . 2.5 F .
gl S 1 2 F .
1.5/ 1 1.5 ¢ 4
1t f K 1 ¢ E
0.9 b g ————— T 0.5 —— . |
0 ' . ' . : 0 ' : ; '
0 2 4 b6 g 10 12 14 16 o 2 4 6 8 10 12 14 16
Mum threacds Mum threads
(a) RMAT (b) Uniform

Figure. Speed-up of Conductance. Speed-up is over the SNAPlibrary [9] version running on a
single-thread. NoLM and NoSRDCmeans disabling theLoop Fusion(Section 3.3 Architecture
Independent Optimizations) andReduction onScalars(Section 3.5 Code Generation)
optimizations, respectively.

Future Works

m Solutions for Capacity Issue

m Comments block to green Marl

m Combining with Graph Lab as back end.(machine learning type)
m generate code for alternative architectures(Clusters, GPU).

m Green Marl as internal DSL.

Pros

 Easierto write graph algorithms
* Algorithms perform better
* Don’t need to rewrite entire application

« (Code is portable across platforms

Critical Evaluation

Assumes graph is immutable during the analysis

Thank you..

