### Imperial College London

# Drinking From The Fire Hose: Scalable Stream Processing Systems

#### **Peter Pietzuch**

prp@doc.ic.ac.uk

Large-Scale Distributed Systems Group http://lsds.doc.ic.ac.uk

### The Data Deluge

#### 1200 Exabytes (billion GBs) created in 2010 alone

Increased from 150 Exabytes in 2005

#### Many new sources of data become available

- Sensors, mobile devices
- Web feeds, social networking
- Cameras
- Databases
- Scientific instruments









#### How can we make sense of all data?

- Most data is not interesting
- New data supersedes old data
- Challenge is not only storage but processing

### Sensing and IoT

#### Instrumenting country's transportation infrastructure



#### Many parties interested in data

- Road authorities, traffic planners, emergency services, commuters
- But access not everything:Privacy

#### High-level queries

 "What is the best time/route for my commute through central London between 7-8am?"

### Click Stream Analysis





#### Problem:

Want to provide up-to-date predictions regarding which ads to serve



#### Solution:

Bayesian online learning algorithm ranks adverts according to probability of "click"

### Social Data Mining



Detection and reaction to social cascades

#### Fraud Detection

How to detect identity fraud as it happens?

Illegal use of mobile phone, credit card, etc.

- Offline: avoid aggravating customer
- Online: detect and intervene

Huge volume of call records

More sophisticated forms of fraud

- e.g. insider trading

Supervision of laws and regulations

e.g. Sabanes-Oxley, real-time risk analysis



### **Astronomic Data Processing**



Analysing transient cosmic events: y-ray bursts

### Stream Processing to the Rescue!

Process data streams on-the-fly without storage

#### Stream data rates can be high

High resource requirements for processing (clusters, data centres)

#### Processing stream data has real-time aspect

- Latency of data processing matters
- Must be able to react to events as they occur

### Traditional Databases (Boring)

#### Database Management System (DBMS):

Data relatively static but queries dynamic



- Persistent relations
  - Random access
  - Low update rate
  - Unbounded disk storage
- One-time queries
  - Finite query result
  - Queries exploit (static) indices

### Data Stream Processing System

#### DSPS: Queries static but data dynamic

• Data represented as time-dependant data stream





- Transient streams
  - Sequential access
  - Potentially high rate
  - Bounded main memory
- Continuous queries
  - Produce time-dependant result stream
  - Indexing?

#### Overview

#### Why Stream Processing?

#### **Stream Processing Models**

Streams, windows, operators

#### **Scalable Stream Processing Systems**

- Distributed stream processing
- Stream processing with distributed dataflows

#### **Scalable Stateful Stream Processing**

- Managing state in stream processing
- Elasticity and fault tolerance mechanisms

### Stream Processing

Need to define

1. Data model for streams

2. Processing (query) model for streams

#### **Data Stream**

"A **data stream** is a <u>real-time</u>, <u>continuous</u>, <u>ordered</u> (implicitly by arrival time or explicitly by timestamp) **sequence of items**. It is impossible to control the order in which items arrive, nor is it feasible to locally store a stream in its entirety."

[Golab & Ozsu (SIGMOD 2003)]

#### Relational model for stream structure?

- Can't represent audio/video data
- Can't represent analogue measurements

#### Relational Data Stream Model

#### **Streams** consist of infinite sequence of tuples

- Tuples often have associated time stamp
  - e.g. arrival time, time of reading, ...

#### **Tuples** have fixed relational schema

Set of attributes

```
id = 27182
temp = 24 C
rain = 20mm
```

Sensors(id, temp, rain)

sensor output



Sensors data stream

#### Stream Relational Model



#### Window converts stream to dynamic relation

- Similar to maintaining view
- Use regular relational algebra operators on tuples
- Can combine streams and relations in single query

### Sliding Window I

How many tuples should we process each time?

#### Process tuples in window-sized batches

```
Time-based window with size T at current time t
```

```
[t-T:t] Sensors [Range τ seconds]
[t:t] Sensors [Now]
```

#### Count-based window with size n:

last n tuples Sensors [Rows n]



### Sliding Window II

How often should we evaluate the window?

- 1. Output new result tuples as soon as available
  - Difficult to implement efficiently
- 2. Slide window by s seconds (or m tuples)

Sensors [Slide s seconds]

Sliding window: S < T

**Tumbling window:** S = T



### Continuous Query Language (CQL)

#### Based on SQL with streaming constructs

- Tuple- and time-based windows
- Sampling primitives

```
SELECT temp
FROM Sensors [Range 1 hour]
WHERE temp > 42;
```

```
SELECT *
FROM S1 [Rows 1000],
S2 [Range 2 mins]
WHERE S1.A = S2.A
AND S1.A > 42;
```

Apart from that regular SQL syntax

### Join Processing

#### Naturally supports joins over windows

```
SELECT *
FROM S1, S2
WHERE S1.a = S2.b;
```

#### Only meaningful with window specification for streams

Otherwise requires unbounded state!

```
Sensors(time, id, temp, rain) Faulty(time, id)

SELECT S.id, S.rain

FROM Sensors [Rows 10] as S, Faulty [Range 1 day] as F

WHERE S.rain > 10 AND F.id != S.id;
```

### Converting Relations → Streams

#### Define mapping from relation back to stream

Assumes discrete, monotonically increasing timestamps
 T, T+1, T+2, T+3, ...

#### Istream(R)

Stream of all tuples (r, τ) where r∈R at time τ but r∉R at time τ-1

#### Dstream(R)

Stream of all tuples (r, τ) where r∈R at time τ-1 but r∉R at time τ

#### Rstream(R)

– Stream of all tuples  $(r, \tau)$  where r∈R at time  $\tau$ 

### **Stream Processing Systems**

### General DSPS Architecture



### Stream Query Execution

#### Continuous queries are long-running

- properties of base streams may change
  - Tuple distribution, arrival characteristics, query load, available CPU, memory and disk resources, system conditions, ...

#### Solution: Use adaptive query plans

- Monitor system conditions
- Re-optimise query plans at run-time

DBMS didn't quite have this problem...

### **Query Plan Execution**

#### Executed query plans include:

- Operators
- Queues between operators
- State/"Synposis" (windows, ...)
- Base streams

```
SELECT *
FROM S1 [Rows 1000],
S2 [Range 2 mins]
WHERE S1.A = S2.A
AND S1.A > 42;
```



#### Challenges

State may get large (e.g. large windows)

### **Operator Scheduling**

#### Need scheduler to invoke operators (for time slice)

Scheduling must be adaptive

#### Different scheduling disciplines possible:

- 1. Round-robin
- 2. Minimise queue length
- 3. Minimise tuple delay
- 4. Combination of the above



### Load Shedding

#### DSMS must handle overload: Tuples arrive faster than processing rate

#### Two options when overloaded:

- **1. Load shedding**: Drop tuples
  - Much research on deciding which tuples to drop: c.f. result correctness and resource relief
  - e.g. sample tuples from stream
- 2. Approximate processing:

  Penlace operators with

Replace operators with approximate processing

Saves resources



## **Scalable Stream Processing**

### Big Data Centres + Big Data

#### Google: 20 data centre locations

- over 1 million servers
- 260 Megawatts(0.01% of global energy)
- 4.2 billion searches per day (2011)
- Exabytes (10<sup>18</sup>) of storage





#### **Assumptions:**

- Scale out and not scale up
  - Commodity servers with local disks
  - Data-parallelism is king
- Software designed for failure

Platforms for stream processing?

### Stream Processing in the Cloud

#### Clouds provide virtually infinite pools of resources

Fast and cheap access to new machines for operators



n virtual machines in cloud data centre

How do you parallelise stream processing across VMs?

#### Google, USENIX OSDI'04

### MapReduce: Distributed Dataflow



Sanjay Ghemawat

Jeff Dean



Data model: (key, value) pairs

#### Two processing functions:

 $map(k_1,v_1) \rightarrow list(k_2,v_2)$ reduce(k<sub>2</sub>, list(v<sub>2</sub>))  $\rightarrow$  list (v<sub>3</sub>)

#### Benefits:

- Simple programming model
- Transparent parallelisation
- Fault-tolerant processing



\$2 billion market revenue (2013)

### MapReduce Execution Model



Map/reduce tasks scheduled across cluster nodes

## Intermediate results persisted to local disks

- Restart failed tasks on another node
- Distributed file systems contains replicated data

But this is a batch processing model...

### Design Space for Big Data Systems



### Spark: Micro-Batching



Idea:

Reduce size of data partitons to produce up-to-date, incremental results

#### Micro-batching for data

- Window-based task semantics
- Parallel recomputation of RDDs

Challenge: Need to control scheduling overhead

### SEEP: Pipelined Dataflows



#### Idea:

Materialise dataflow graph to avoid scheduling overhead

#### Challenges:

- 1. Support for iteration
- 2. Resource allocation of tasks to nodes
- 3. Failure recovery

Cycles in graph for iteration

Dynamic scale out of tasks

Checkpoint-based recovery

### SEEP: Low Latency Processing

#### Dataflow graph for window-based word count

Deployed on 4 nodes (4-core 3.4 Ghz Intel Xeon with 8GB RAM)



# Scalable Stateful Stream Processing

### What about Processing State?

#### Online collaborative filtering:



GBs to TBs in size

### State in Recommender Systems

```
Matrix userItem = new Matrix();
Matrix coOcc = new Matrix();

void addRating(int user, int item, int rating) {
    userItem.setElement(user, item, rating);
    updateCoOccurrence(coOcc, userItem);
}

Vector getRec(int user) {
    Vector userRow = userItem.getRow(user);
    Vector userRec = coOcc.multiply(userRow);
    return userRec;
}
```

#### User-Item matrix (**UI**)

|        | Item-A | Item-B |
|--------|--------|--------|
| User-A | 4      | 5      |
| User-B | 0      | 5      |

Update with new ratings

#### Co-Occurrence matrix (CO)

|        | Item-A | Item-B |
|--------|--------|--------|
| Item-A | 1      | 1      |
| Item-B | 1      | 2      |

Multiply for recommendation

User-

### Challenge 1: Elastic Data-Parallel Processing

#### Typical stream processing workloads are bursty





**High** + **bursty** input rates → Detect **bottleneck** + **parallelise** 

### Challenge 2: Fault-Tolerant Processing



**Large scale** deployment → Handle node **failures** 

#### Failure is a common occurrence

- Active fault-tolerance requires 2x resources
- Passive fault-tolerance leads to long recovery times

### State Complicates Things...

#### 1. Dynamic scale out impacts state



#### 2. Recovery from failures



### Current Approaches for Stateful Processing

# **Stateless** stream processing systems (eg Yahoo S4, Twitter Storm, ...)

- Developers manage state
- Typically combine with external system to store state (eg Cassandra)
- Design complexity



## **Relational** stream processing systems (eg Borealis, Stream)

- State is window over stream
- No support for arbitrary state
- Hard to realise complex ML algorithms



#### Idea: State as First Class Citizen

 Expose operator state as external entity so that it can be managed by stream processing system



Operators have direct access to state

System manages state

### Stateful Stream Processing



#### **Operators** can maintain **arbitrary state**

#### **State management primitives** to:

- Backup and recover state
- Partition state

#### Integrated mechanism for scale out and failure recovery

Operator recovery and scale out equivalent from state perspective

### **Example: Streaming Recommender Application**



#### What is State?



#### **Processing state**

 Item 1 Item 2

 User A
 2
 5

 User B
 4
 1



#### **Routing state**

**Dynamic data flow graph:**Based on data, A → B or A → C



#### **Buffer state**

Data Data Data ts1 ts2 ts3 ts4



### State Management Primitives



- Makes state available to system
- Attaches last processed tuple timestamp

- Moves copy of state from one operator to another







- Splits state to scale out an operator

### State Primitives: Backup and Restore



#### **State Primitives: Partition**

Processing state modeled as (key, value) dictionary

#### **State partitioned** according to **key** *k* of tuples

Same key used to partition streams



### Failure Recovery and Scale Out



#### Two cases:

- Operator B **fails** → **Recover**
- Operator B becomes **bottleneck** → **Scale out**

### Recovering Failed Operators

Periodically, stateful operators checkpoint and back up state to designated upstream backup node



State restored and unprocessed tuples replayed from buffer

### Scaling Out Stateful Operators

Finally, upstream operators replay unprocessed tuples to update checkpointed state



of operator to be parallelised

### SEEP Stream Processing System

#### Experimental stateful stream processing platform

#### Implements dynamic scale out and recovery

- Detect failed or overloaded operators
- Have fast access to new VMs



### **Detecting Bottlenecks**



### VM Pool for Adding Operators

**Problem:** Allocating new VMs takes minutes...



### **Evaluation**

### SEEP: Scalability on Amazon EC2

#### Linear Road Benchmark [VLDB'04]

- Network of toll roads of size L
- Input rate increases over time
- Dataflow graph with 5 operators; SLA: results < 5 secs</li>



## SEEP deployed on Amazon EC2

 Scales to 60 VMs (small instances with 2GB RAM)

#### Achieves L=350

 L=512 highest reported result in literature [VLDB'12]



#### Performance of SEEP

#### Logistic regression

- Deployed on Amazon EC2 ("m1.xlarge" VMs with 4 vCPUs and 16 GB RAM)
- 100 GB dataset



### Overhead of Checkpointing



Tradeoff between latency and recovery time

#### Related Work

#### Scalable stream processing systems

Twitter Storm, Yahoo S4, Nokia Dempsey, Apache Samza
 Exploit operator parallelism mainly for stateless queries

#### Distributed dataflow systems

MapReduce, Dryad, Spark, Apache Flink, Naiad, SEEP
 Shared nothing data-parallel processing on clusters

#### Elasticity in stream processing

- StreamCloud [TPDS'12]
   Dynamic scale out/in for subset of relational stream operators
- Esc [ICCC'11]
   Dynamic support for stateless scale out

#### Resource-efficient fault tolerance models

- Active Replication at (almost) no cost [SRDS'11]
   Use under-utilized machines to run operator replicas
- Discretized Streams [HotCloud'12]
   Data is checkpointed and recovered in parallel in event of failure

### Summary

#### **Stream processing** grows in importance

- Handling the data deluge
- Enables real-time response and decision making

#### Principled models to express stream processing semantics

- Window-based declarative query languages
- What is the right programming model for machine learning?

#### Stateful distributed dataflows for stream processing

- High stream rates require data-parallel processing
- Fault-tolerant support for state important for many algorithms
- Convergence of batch and stream processing

### Thank You! Any Questions?



Peter Pietzuch <prp@doc.ic.ac.uk> http://lsds.doc.ic.ac.uk