Imperial C0"ege Department of Computing

Drinking From The Fire Hose:
Scalable Stream Processing Systems

prp@doc.ic.ac.uk

Large-Scale Distributed Systems Group
http://Isds.doc.ic.ac.uk

Cambridge MPhil — November 2015

The Data Deluge

1200 Exabytes (billion GBs) created in 2010 alone
— Increased from 150 Exabytes in 2005

Many new sources of data become available
— Sensors, mobile devices
— Web feeds, social networking

— Cameras Q‘)

— Databases %\
— Scientific instruments =

*- How can we make sense of all data ?
— Most data is not interesting
— New data supersedes old data
— Challenge is not only but

Sensing and IoT

Instrumenting country’s transportation infrastructure

MReg earch 1 - Node 3161 St.MattrTews St. (Junction) Many parties intere_:s_ted in f:lata
By : = — Road authorities, traffic
- o s = My
& Ro% Aerial Bird's eye) Q"d %%)‘7‘!"‘(%;.__ | o /"' i planners, emergency
<:]n[:> 8 | & S %%@‘//% SerViceS, commuters
L 4 *’m% e 5 .
,—L EEZHTLJTUM” b%“%f’b\?”%:ﬁ é - BUt access nOt everythlng:
SN

Privacy

Park

High-level queries
— "What is the best

Harvard
~ University

Viet]

e Al) | . time/route for my
’03“ =L Malds CPUQE“’B\’ 1 o §
AT — Fm i commute through central
Nt’vrv & - Grafton o 144
IITVETTA o, o TN London between 7-8am?
3 <X NN A=
5 &/ /G X 3 Gema!\St
ES s S & é: G = (3 E’E) <
& L' & o 4= ES Y)
& S Sopy St / T gL T\
s " S St o 5l \@
é\q e"t'r \’: N) / 5 V5
1 Yard Q}(\& SO NG E\&oad&)
! §
u'l% ég" “t, Q/P - ‘S‘w
of %"a a% & % /Q/ %:‘ -
% K37 4 3 £
Time-EACM \ NP4 Ca/rxt/ dge - 2 §
<

/Y &
(Cambridge) N, A

G fa) | /
. & :’tf Hooper St
z & & | pe

5 § W g,é’c 3
[,p"v(, \/ & Q § 5 c
\ AN St/ SN S /2
A Y 8 S o /&
5§ o\ ¢ $

Click Stream Analysis

OING | Cheap fights Jo) Problem:
29200000 RESULTS Narow by language = Narow by egion = Want to provide up-to-date predictions
Cheap Flights “ regarding which ads to serve

www.Cheapflights.co.uk
Save Up to 78% on Flights Now- Try Cheapflights today.

Cheap Flights from £20
Skyscanner.net/CheapFlights

Find Cheap Flights & Book Today. Prices from only £20 Pre-pI’OCGSS
Cheap Flights from £29
eDreams.co.uk/Cheap_Flight LR
Offer Ends on the 30th: Hurry, Book Now & Save Today! S hare State
Cheap Flight Upto 65% OFF
www.CheapOair.co.uk/Cheap-Flightss <
Fares Just Dropped! Upto 65% Off + Eamn Extra £15 Discount Today. \9_ O _O e
A Parallelize
—
f @
n Aggregate o
o

y E{-1,1} Solution:
Bayesian online learning algorithm

ranks adverts according to probability of
“click”

predict

Social Data Mining

Social Cascad
Detection

Detection and reaction to social cascades

Fraud Detection

How to detect identity fraud as it happens?

Illegal use of mobile phone, credit card, etc.
— Offline: avoid aggravating customer
— Online: detect and intervene

Huge volume of call records

More sophisticated forms of fraud
— e.g. insider trading

Supervision of laws and regulations
— e.g. Sabanes-Oxley, real-time risk analysis

Astronomic Data Processing

C5 ﬁ Large Synoptic Survey
Telescope (LSST)
— Generates 1.28
Petabytes per year
o RVAN

Analysing transient cosmic events: y-ray bursts

Stream Processing to the Rescue!

< Process data streams on-the-fly without storage

Stream data rates can be high
— High resource requirements for processing (clusters, data centres)

Processing stream data has real-time aspect
— Latency of data processing matters
— Must be able to react to events as they occur

Traditional Databases (Boring)

Database Management System (DBMS):
e Data relatively static but queries dynamic

Queries DBMS Results
" e Random access
e e Low update rate
l e Unbounded disk storage
Data e Finite query result

e Queries exploit (static) indices

Data Stream Processing System

DSPS: Queries static but data dynamic
e Data represented as time-dependant data stream

Stream DSPS Results

/\ e Sequential access

e Potentially high rate

Working e Bounded main memory

Storage Queries

e Produce time-dependant
result stream

e Indexing?
10

Overview

Stream Processing Models
— Streams, windows, operators

Scalable Stream Processing Systems
— Distributed stream processing
— Stream processing with distributed dataflows

Scalable Stateful Stream Processing
— Managing state in stream processing
— Elasticity and fault tolerance mechanisms

11

Stream Processing

Need to define
1. Data model for streams

2. Processing (query) model for streams

12

Data Stream

“A data stream is a real-time, continuous, ordered (implicitly
by arrival time or explicitly by timestamp) sequence of items.

It is impossible to control the order in which items arrive, nor is

it feasible to locally store a stream in its entirety.”
[Golab & Ozsu (SIGMOD 2003)]

Relational model for stream structure?
— Can't represent audio/video data
— Can't represent analogue measurements

13

Relational Data Stream Model

Streams consist of infinite sequence of tuples

— Tuples often have associated time stamp
e e.g. arrival time, time of reading, ...

Tuples have fixed relational schema
— Set of attributes

id = 27182
temp =24 C

rain = 20mm Sensors (id, temp, rain)

sensor output

4 5 & b4
id id id id id id id id id id
temp temp temp temp temp temp temp temp temp temp
rain rain rain rain rain rain rain rain rain rain

Sensors data stream

time

14

Stream Relational Model

Window specification

N

Streams Relations

N

Special operators:
Istream, Dstream, Rstream

Any relational
query

Window converts stream to dynamic relation
— Similar to maintaining view
— Use regular relational algebra operators on tuples
— Can combine streams and relations in single query

15

Sliding Window I

How many tuples should we process each time?

Process tuples in window-sized batches

Time-based window with size T at current time t

Count-based window with size n:

Sensors [Now]

Sensors [Rows n]

Sensors [Range Tt seconds]

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

window

now

16

Sliding Window 11

How often should we evaluate the window?

1. Output new result tuples as soon as available
— Difficult to implement efficiently

2. Slide window by s seconds (or m tuples)
Sensors [Slide s seconds]
Sliding window:
Tumbling window:

temp |temp |temp [(temp |[temp |[temp |temp |temp |temp |temp
rain rain rain rain rain rain rain rain rain rain

window

17

Continuous Query Language (CQL)

Based on SQL with streaming constructs
— Tuple- and time-based windows
— Sampling primitives

SELECT *
SELECT temp FROM S1 [Rows 1000],
FROM Sensors [Range 1 hour] S2 [Range 2 mins]
WHERE temp > 42; WHERE S1.A = S2.A

AND S1.A > 42;

Apart from that regular SQL syntax

18

Join Processing

Naturally supports joins over windows

SELECT *
FROM S1, S2
WHERE Sl.a = S2.b;

Only meaningful with window specification for streams
— Otherwise requires unbounded state!

Sensors (time, id, temp, rain) Faulty (time, id)

SELECT S.id, S.rain
FROM Sensors [Rows 10] as S, Faulty [Range 1 day] as F
WHERE S.rain > 10 AND F.id !'= S.id;

19

Converting Relations = Streams

Define mapping from relation back to stream

Assumes discrete, monotonically increasing timestamps
T, T+1, T+2, T+3, ...

Stream of all tuples (r, T) where reR at time 1 but r&R at time -1

Stream of all tuples (r, T) where reR at time 1-1 but r¢R at time T

Stream of all tuples (r, T) where reR attime T

20

Stream Processing Systems

21

General DSPS Architecture

Input
Monitor

IR

Streaming
Inputs

Output
Buffer

Working
Storage
' Q
Summary uery
R EE—_
Storage Processor
: Query *
Static Reposi-
Storage tory
Updates to User
Static Data Queries

L4

Streaming
Outputs

22

Stream Query Execution

Continuous queries are long-running
=» properties of base streams may change

— Tuple distribution, arrival characteristics, query load, available CPU,
memory and disk resources, system conditions, ...

Solution: Use adaptive query plans
— Monitor system conditions
— Re-optimise query plans at run-time

DBMS didn’t quite have this problem...

23

Query Plan Execution

Executed query plans include:
— Operators
— Queues between operators
— State/"Synposis” (windows, ...)
— Base streams

SELECT *
FROM S1 [Rows 1000], _
S2 [Range 2 mins] e

WHERE S1.A = S2.A
AND S1.A > 42;

Challenges
— State may get large (e.g. large windows)

synopsis
3

q;

seq
window

q,

select

e
s
9,

synopsis

4

seq
window

a,

synopsis
2

24

Operator Scheduling

Need scheduler to invoke operators (for time slice)
— Scheduling must be adaptive

e

Different scheduling disciplines possible: @

1. Round-robin

2. Minimise queue length
3. Minimise tuple delay
4

. Combination of the above InIPSL - --SV”Z"“S
a3
9y

95

synopsis | seq seq _ synopsis
1 window window 2

q; q,

25

Load Shedding

DSMS must handle overload:

Tuples arrive faster than processing rate

Two options when overloaded:

1. Load shedding: Drop tuples

e Much research on deciding which
tuples to drop: c.f. result correctness

and resource relief
e e.g. sample tuples from stream

2. Approximate processing:
Replace operators with
approximate processing

e Saves resources

synopsis

1

synopsis synhopsis
3 4

synopsis

2

26

Scalable Stream Processing

27

Big Data Centres + Big Data

Google: 20 data centre locations

— over 1 million servers

— 260 Megawatts
(0.01% of global energy)

— 4.2 billion searches per day (2011)
— Exabytes (1018) of storage

Assumptions:
— Scale out and not scale up

e Commodity servers with local disks
e Data-parallelism is king
— Software designed for failure

Platforms for stream processing?

28

Stream Processing in the Cloud

Clouds provide virtually infinite pools of resources
— Fast and cheap access to new machines for operators

Streams Results

n virtual machines in cloud data centre

*- How do you parallelise stream processing across VMs?

29

Google,

USENIX MapReduce: Distributed Dataflow

OSDI'04

3

2
Sanja ff
Ghemawat Dean

reduce

t
R
1

shuffle M

map

~@-

1-@-U
-©- [

~©- [

Jud

partitioned data on
distributed file system

Data model: (key, value) pairs

Two processing functions:
map(ky,vi) = list(ky,v»)
reduce(k,, list(v,)) = list (vs3)

Benefits:
— Simple
— Transparent
processing

GTEEbED

$2 billion market revenue (2013)

30

MapReduce Execution Model

Map/reduce tasks
across cluster nodes

Intermediate results to
local disks
— Restart failed tasks on another node

— Distributed file systems contains
replicated data

N But this is a batch processing
m model...

31

Data amount

EBs

PBs

TBs

GBs

Design Space for Big Data Systems

Volume and Velocity

Algorithmic complexity
— Arbitrary data transformation
— Iterative algorithms

— Large state as part of
computation

Hard fo
all algo-
rithms

Hard for

complex
algorithms

Existing
systems

days hours mins secs millisecs

Latency 32

Berkeley,

ACM SOSP'13 Spark: Micro-Batching

Idea:
Reduce size of data partitons
to produce up-to-date,

1
Q Q incremental results
1

Micro-batching for data
— Window-based task semantics

— Parallel recomputation of RDDs

Tt
CR CR Challenge:

Need to control scheduling
overhead

e @

RDD as
discretised
stream

[@kl

33

reons SEEP: Pipelined Dataflows

Idea:
dataflow graph to avoid
scheduling overhead

Challenges:
1. Support for iteration
2. Resource allocation of tasks to nodes
3. Failure recovery

in graph for iteration

of tasks

34

SEEP: Low Latency Processing

Dataflow graph for

— Deployed on 4 nodes (4-core 3.4 Ghz Intel Xeon with 8GB RAM)
4\3 250] ————
(d)p) E] X O
% 200 | E E}E] E]
o :
9 .
8 150 F —+){6 _____ V p— S pp————— % \:;
= I o /
I 100 (d K YAk ShA Hewonne ZEEEEEEEEE K- - - - X
= _ /' Naiad-HighThrouahput -&-
S 50 -
o2 / Streaming Spark --x--
O Naiad-LowLatency --%-
s 0 SRR . e S M A S
= 10 100 1000 10000

Window size (ms)

Scalable Stateful Stream
Processing

36

What about Processing State?

Online collaborative filtering:

Dataflow graph

User A
Lser - Recommend:
Item: “iPad” “iPhone”
Rating: 5
Customer activity Up-to-dated i
' recommendations
on website , \
User-item Item 1 Item 2
tri User A 2 5
matrix User B 4 X

GBs to TBs in size

State in Recommender Systems

User-Item matrix (UI)
Item-A | Item-B

Matrix userItem = new Matrix();\

Matrix coOcc = new Matrix();

void addRating(int user, int item, int rating) { User-A 4 5
userItem.setElement(user, item, rating);
updateCoOccurrence(coOcc, userltem); User-B 0 5
¥ Update with
new ratings

Vector getRec(int user) {
Vector userRow = userItem.getRow(user);
Vector userRec = coOcc.multiply(userRow);
return userRec;

}

_ /

Co-Occurrence matrix (CO)

Item-A | Item-B
User- |12 Item-A 1 1
B
Item-B 1 2
Multiply for
recommendation

38

Challenge 1: Elastic Data-Parallel Processing

Typical stream processing workloads are bursty

100%

80%

ion

Utilisat
N
o
2

20%

0%

e e e

60% -

)

|

",

09/07 09/08 09/09 09/10 09/11 09/12 09/13

100%
500/0 w ‘
—
Oo/o B B e e e p m
N 0O O O A ™M
OO O r -

Courtesy of MSRC

High + bursty input rates = Detect bottleneck + parallelise

39

Challenge 2: Fault-Tolerant Processing

T =

Large scale deployment = Handle node failures

Failure is a common occurrence
— Active fault-tolerance requires 2x resources
— Passive fault-tolerance leads to long recovery times

40

State Complicates Things...

1. Dynamic scale out impacts state

A
EA;

2. Recovery from failures

A
X Loss of state
after node
(A

failure

Partitioning
of state

N

41

Current Approaches for Stateful Processing

Stateless stream processing Relational stream processing

systems (eg Yahoo S4, Twitter systems (eg Borealis, Stream)
Storm, ...) — State is window over stream
— Developers manage state — No support for arbitrary state
— Typically combine with external — Hard to realise complex ML
system to store state (eg algorithms
Cassandra)

— Design complexity

temp temp temp temp temp
rain rain rain rain rain

window

42

Idea: State as First Class Citizen

o Expose operator state as external entity so that it can be
managed by stream processing system

A
o

Operators have direct access to state

System manages state

43

Imperial,

acmsevonis otateful Stream Processing

e
\Q

Operators can maintain arbitrary state

State management primitives to:
— Backup and recover state
— Partition state

Integrated mechanism for and
— Operator recovery and scale out equivalent from state perspective

Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter Pietzuch, "Integrating Scale Out and Fault
Tolerance in Stream Processing using Operator State Management”, ACM International Conference on Management of
Data (SIGMOD’13), June 2013

Example: Streaming Recommender Application

User: "BB” R
Item: “iPad” Q__) RUs.e‘l":PhBB)
Rating: 5 et bl

45

What is State?

A Processing state 7| Routing state . Buffer state

Item 1 Item 2 Dynamic data flow graph: Data| Data Data @ Data
UserA 2 5 Based on data, A BorA=> C tsl = ts2 @ ts3 ts4

User B 4 1

46

State Management Primitives

Checkpoint

- Makes state available to system
- Attaches last processed tuple timestamp

A Backup
- Moves copy of state from

one operator to another
Restore A

Partition

Q Q - Splits state to scale out an operator

47

State Primitives: Backup and Restore

Backup Checkpoint

D. Data
t t2)

3 gt Data Data
t4 t3 t2 t1

D

48

State Primitives: Partition

Processing state modeled as (key, value) dictionary

State partitioned according to key k of tuples
— Same key used to partition streams

userld 0-n usarld 0-x
O A)s
userld x-n
A) -

49

Failure Recovery and Scale Out

P

——&

Two cases:
- Operator B fails =& Recover
- Operator B becomes bottleneck = Scale out

50

Recovering Failed Operators

Periodically, stateful, operators,checkpoint and back u
state to de@@%j? §§ Eﬂ?c &Iy

State restored and unprocessed tuples replayed from buffer
51

Scaling Out Stateful Operators

Finally, upstream operators replay unprocessed
tuples to update checkpointed state

For scale out, backup node already has state
of operator to be parallelised

52

SEEP Stream Processing System

Experimental stateful stream processing platform

Implements dynamic scale out and recovery
— Detect failed or overloaded operators
— Have fast access to new VMs

queries EC2 r stats
scale out bottleneck detector
coordinator
*— faults
UB+C fault

coordinator detector

53

Detecting Bottlenecks

O

\ /7
\ o / /
\35 /0 II //
CPU \\ / // 300/0
utilisation '\ I’ Ry
report Y, / // Bottleneck
1
\\ / //
| 7
\\ / //
L4 35% 859%06 30%
Bottleneck ‘ Q
detector ~~—

Local infrastructure
view

54

VM Pool for Adding Operators

Problem: Allocating new VMs takes minutes...

Monitoring
information

\ 4

-I/

Bottleneck
detector

VM2

Bottleneck detected

Decision to scale-out

Select pre-provisioned VM
(order of secs)

VM1

(dynamic pool size)

Add new VM to pool

provider

Provision VM from cloud
(order of mins)

55

Evaluation

56

SEEP: Scalability on Amazon EC2

— Network of toll roads of

— Input rate increases over time
— Dataflow graph with 5 operators; SLA: results < 5 secs

SEEP deployed
on

— Scales to 60 VMs
(small instances
with 2GB RAM)

Achieves

— L=512 highest
reported result in
literature [VLDB12]

Tuples/s (x100K)

7

(@)

|

Throughput (tuples/s) ——
Input rate (tuples/s) —¥—
Num. of VMS

|

60
- 55
50

45
40
35
30
25
20
15
- 10
<+ 5

0

0 500

1000 1500
Time (seconds)

2000

57

Number of VMs

Throughput (GB/s)

Performance of SEEP

— Deployed on Amazon EC2 ("m1.xlarge” VMs with 4 vCPUs and 16 GB RAM)
— 100 GB dataset

60
50 |
40 |
30
20
10

O]]]]
25 50 75 100

Number of nodes

58

Overhead of Checkpointing

Recovery Time (seconds)

O P N W H U1 O N 00O O
|

\ | \
Recovery time ——
Latency _

l I l l | |

*- Tradeoff between latency and recovery time

5 10 15 20 25 30
Checkpointing Interval (seconds)

600

500

400

300

200

100

Latency (ms)

59

Related Work

Scalable stream processing systems

— Twitter Storm, Yahoo S4, Nokia Dempsey, Apache Samza
Exploit operator parallelism mainly for stateless queries

Distributed dataflow systems

— MapReduce, Dryad, Spark, Apache Flink, Naiad, SEEP
Shared nothing data-parallel processing on clusters

Elasticity in stream processing

— StreamCloud [Trps'12]
Dynamic scale out/in for subset of relational stream operators

— ESC [1ccc11]
Dynamic support for stateless scale out

Resource-efficient fault tolerance models
— Active Replication at (almost) no cost [srpsii]
Use under-utilized machines to run operator replicas
— Discretized Streams [HotCloud'12]
Data is checkpointed and recovered in parallel in event of failure

60

Summary

grows in importance
Handling the data deluge
Enables real-time response and decision making

to express stream processing semantics

Window-based declarative query languages
What is the right programming model for machine learning?

for stream processing
High stream rates require data-parallel processing
Fault-tolerant support for state important for many algorithms
Convergence of batch and stream processing

61

Thank You! Any Questions?

~
QUESTIONS

Peter Pietzuch

<prp@doc.ic.ac.uk>
http://Isds.doc.ic.ac.uk

62

