
Naiad
a timely dataflow model

What’s it hoping to achieve?
1. high throughput

2. low latency

3. incremental computation

Why?
→ So much data!

Problems with other, contemporary dataflow systems:

1. Too specific (e.g. Map-Reduce, Hadoop)
2. Batch-based systems
3. Graph-based systems
4. Stream processing systems

An Example: Streaming via Twitter

Twitter
Tweets

MAX tweet for a
given CC

User
Queries

@values
Connected
Components

#values

A new computational model: timely dataflow

→ structured loops

→ stateful dataflow vertices

→ notifications for vertices

IN OUT

Notifications for Vertices
Vertex methods:

v.OnRecv(e:Edge, m:Message, t:Timestamp)

v.OnNotify(t:Timestamp)

System-provided methods:

this.SendBy(e:Edge, m:Message, t:Timestamp)

this.NotifyAt(t:Timestamp)

An Example Program

void OnRecv(Edge e, int m,
Time t):
if (isPrime(m))

this.SendBy(out, m, t)

Dictionary<Time, Int> dict = ...
void OnRecv(Edge e, int m, Time t):

dict[t] = dict[t] + m
this.NotifyAt(t)

void onNotify(Time t) :
this.sendBy(out, state[t], t)

Structured Loops & Stateful Vertices

IN OUT

loop context

I

F

E

Timestamps: (e ∊ ℕ, <c1...ck> in Nk)

IN OUT

loop context

I

F

E

(e, <c1...ck>) → (e, <c1,...,ck,0>)
(e, <c1...ck+1>) → (e, <c1,...,ck>)

(e, <c1...ck>) → (e, <c1...ck+1>)

Timestamps: (e ∊ ℕ, <c1...ck> in Nk)

IN OUT

loop context

I

F

E

(e, <c1...ck>) → (e, <c1...ck,0>)
(e, <c1...ck+1>) → (e, <c1...ck>)

(e, <c1...ck>) → (e, <c1...ck+1>)

{t1 = (x1, c1)} � {t2 = (x2, c2)} ⇔ x1 � x2 & c1 � c2

A Single-Threaded scheduler
Pointstamp : (t ∊ Timestamp, l ∊ Edge ∪ Vertex)

- could-result-in: (t1,l1) ≤ (t2,l2) ⇔ Φ[l1,l2](t1) ≤ t2

1. maintains a set of active pointstamps
2. maintains an occurrence count
3. maintains a precursor count

A Single-Threaded scheduler: in action

1. A pointstamp P becomes active
a. initialize precursor count to number of existing active pointstamps that could-result-in P
b. increment precursor count of any pointstamp P could-result-in

2. A pointstamp P leaves the active set (occurrence count = 0)
a. decrement precursor count of any pointstamp P could-result-in

3. A pointstamp P reaches the frontier of active pointstamps (precursor count = 0)
a. scheduler can deliver any notification originating from P

A Single-Threaded scheduler: in action

1. A pointstamp P becomes active
a. initialize precursor count to number of existing active pointstamps that could-result-in P
b. increment precursor count of any pointstamp P could-result-in

2. A pointstamp P leaves the active set (occurrence count = 0)
a. decrement precursor count of any pointstamp P could-result-in

3. A pointstamp P reaches the frontier of active pointstamps (precursor count = 0)
a. scheduler can deliver any notification originating from P

IN OUT

loop context

I

F

E

Distributed Implementation

Worker
Process

TCP/IP Network

Progress
tracking protocol

Data parallelism: how do we achieve it?

Worker

Worker

Logical Graph:

Physical Graph:

Distributed Progress Tracking
For each active pointstamp, a worker maintains its version of the global state:

- a local occurrence count
- a local precursor count
- a local frontier

Distributed Progress Tracking
For each active pointstamp, a worker maintains its version of the global state:

- a local occurrence count
- a local precursor count
- a local frontier

Optimisations:

1. projected pointstamps
2. use a local buffer
3. use UDP packets for updates before sending via TCP
4. threads can be woken either by a broadcast or unicast notifcation

Results: Throughput

Benchmark: construct a cyclic dataflow network which repeatedly performs an all-
to-all data exchange

1. linear scaling

2. not ideal

Results: Latency
Benchmark: construct a simple cyclic graph in which vertices request/receive
completeness notifications

- median time: 753 us

Caveat: Micro-stragglers

1. Networking: TCP over Ethernet
2. Data structure contention
3. Garbage Collection

Results: PageRank using Twitter

Results: Incremental computation
Benchmark: in a continually arriving stream of tweets, extract hashtags and
mentions of other users to determine the most popular hashtag for a given user.

Setup:

1. two inputs for the stream of tweets and requests
a. fed into an incremental computation

2. introduce 32,000 tweets per second
3. add a new query every 100 ms

Strengths
1. Generality

2. Simplicity

3. Incremental computation for iterations

4. Fine-grained control over partitioning

Weaknesses (on my opinion)
1. Do not test latency and throughput together

2. Though, using Naiad can achieve some substantial improvements, this
depends on implementation

3. Use lines of code to measure simplicity

4. Stragglers

Limitations
1. Naiad is specifically designed for problems in which the working set fits in the

total RAM of the cluster

2. Fault tolerance

Takeaway & Impact
timely-dataflow computational model is powerful because of:

1. Incremental and iterative computation

2. A general, lightweight, framework for data-parallel applications that focusses
on a wide domain (e.g. not just loops) while offering low-latency and high
throughput

