Resilient Distributed
Datasets: A Fault-Tolerant
Abstraction for In-Memory
Cluster Computing
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Spark example

lines = spark.textFile( "hdfs://..."
errors = lines.filter( _.startsWith( "ERROR"

errors.persist

// Count errors mentioning MySQL:
errors.filter( _.contains( "MySQL"
.count // Nothing computed until now

// Return the time fields of errors mentioning
// HDFS as an array (assuming time 1is field
// number 3 in a tab-separated format):
errors.filter( _.contains( "HDFS"

.map( _.split( "\t'

.collect
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Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.




Evaluation.




Spark claims to be up to 20x faster than Hadoop in iterative applications
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Figure 8: Running times for iterations after the first in Hadoop, HadoopBinMem, and
Spark. The jobs all processed 100 GB.
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Figure 11: Iteration times for k-means in presence of a failure.
One machine was killed at the start of the 6th iteration, resulting
in partial reconstruction of an RDD using lineage.
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Spark promises a lot,
but the evidence
presented here is
insufficient.

(but it could live up to their claims)



