Resilient Distributed
Datasets: A Fault-Tolerant
Abstraction for In-Memory
Cluster Computing

Outline

Context

Resilient Distributed Datasets

Spark

Evaluation

Context.

MapReduce

Input Data [- Tuples Tuples 5 & Output Data
On Disk On Disk On Disk On Disk On Disk

MapReduce

Tuples Tuples Tuples M (,put Data

Input Data

On Disk On Disk On Disk On Disk On Disk

o 4
Google oS
a

P re ge I LR L LT

Channefs Vert;ces

(prm:esses)
Output files ; {

Distributed Shared Memory

Istribute
Distributed in- Storage
memory state read/w'%\ / d

chks Graph
A->B,C
B 0 B->D

Resilient Distributed
Datasets (RDD).

Structure of RDDs

Partition 1

Partition 2

Partition 3

Structure of RDDs

Partition 1

Partition 2

Partition 3

Stable
Storage

Partition 1

Partition 2

Partition 3

Structure of RDDs

map/filter

Partition 1

Partition 1

Partition 2 Partition 2

Partition 3

Partition 3

Structure of RDDs

groupByKey

Partition 1

Partition 2

Spark.

Spark example

lines = spark.textFile("hdfs://..."
errors = lines.filter(_.startsWith("ERROR"

errors.persist

// Count errors mentioning MySQL:
errors.filter(_.contains("MySQL"
.count // Nothing computed until now

// Return the time fields of errors mentioning
// HDFS as an array (assuming time 1is field
// number 3 in a tab-separated format):
errors.filter(_.contains("HDFS"

.map(_.split("\t'

.collect

Scheduling

- -

e —

Figure 5: Example of how Spark computes job stages. Boxes
with solid outlines are RDDs. Partitions are shaded rectangles,
in black if they are already in memory. To run an action on RDD
G, we build build stages at wide dependencies and pipeline nar-
row transformations inside each stage. In this case, stage 1’s
output RDD is already in RAM, so we run stage 2 and then 3.

Evaluation.

Spark claims to be up to 20x faster than Hadoop in iterative applications

300 - " Hadoop 300 | K ®Hadoop
HadoopBinMem . HadoopBinMem
=250 1 < B Spark 5250 1S Spark
o i 0 | - N
+ 150 T i = 150 = =
5 100 - . ~o g 100 - o -
£ 5 | © II = 50 - =
O ™
0 - a- : 0 - : :
25 50 100 25 50 100
Number of machines Number of machines
(a) Logistic Regression (b) K-Means

Figure 8: Running times for iterations after the first in Hadoop, HadoopBinMem, and
Spark. The jobs all processed 100 GB.

(logistic regression using 100 GB)

184

116

25

15

" Hadoop

HadoopBinMem
¥ Spark
50 100

Number of machines

Figure 8

100
80 -
60 -

- o

-

=
L .

40
20

8.1

68.8

29.7

0% 25% 50% 75% 100%

Percent of dataset in memory

Figure 12
(logistic regression using 100 GB
on 25 nodes)

No Failure
®Failure in the 6th lteration

~—

0
I E B8 o
6 7 8 9

lteration

Iteratrion time (
o ®O M
O O oo
I, 1O

N . 57
O EEE 53
© HEEN 59

8 3
3 4

Figure 11: Iteration times for k-means in presence of a failure.
One machine was killed at the start of the 6th iteration, resulting
in partial reconstruction of an RDD using lineage.

—

1

Spark promises a lot,
but the evidence
presented here is
insufficient.

(but it could live up to their claims)

