
Utility-Function-Driven Resource Allocation in Autonomic Systems

Gerald Tesauro, Rajarshi Das, and William E. Walsh and Jeffrey O. Kephart
IBM TJ Watson Research Center

19 Skyline Drive, Hawthorne, NY 10532, USA

Abstract
We study autonomic resource allocation among multiple

applications based on optimizing the sum of utility for each
application. We compare two methodologies for estimating
the utility of resources: a queuing-theoretic performance
model and model-free reinforcement learning. We evaluate
them empirically in a distributed prototype data center and
highlight tradeoffs between the two methods.

1. Computing Resource Value
Traditionally, massive overprovisioning of resources has

been used to protect computing systems from spikes in de-
mand. Dynamic resource allocation allows an autonomic
computing system to self-optimize its resource usage and
avoid the inefficiencies of over provisioning. In order to dy-
namically allocate resources among multiple applications,
it is necessary to accurately and automatically compute the
value of resources for each application. To motivate this
problem, consider a realistic, distributed prototype data cen-
ter, described previously in [4]. The data center consists
of multiple, logically separated Application Environments
(AEs), each providing a distinct application service using
a dedicated, but dynamically allocated, pool of servers.
Each environment has its own service-level utility function
Ui(Ti), specifying the utility to the data center (evaluated
on a common scale, such as money) from environment i as
a function of service metrics Ti.

Detailed control within an AE is handled by an asso-
ciated Application Manager (AM). At the higher level, a
global Resource Arbiter allocates resources across differ-
ent AEs. Each AM sends to the arbiter a resource-level
utility function Vi(Ri) that specifies the value to the AE
of obtaining each possible number Ri of servers. Given
the current functions, the Arbiter computes maximizes sys-
temwide serice-level utility as by computing allocation
R∗ = argmaxR ∑i Vi(Ri) s.t. ∑i Ri = R̄, where R̄, where R̄ is
the total number of servers. Each server is allocated as a
whole unit and cannot be be shared among AEs.

Our prototype data center is implemented on a cluster of
identical IBM eServer xSeries 335 machines running Red-
hat Linux. We run two kinds of applications in separate

AEs. The “Trade3” application is a realistic simulation of
an electronic trading platform, which we drive with demand
λ generated by an open-loop Poisson mode with variable
mean adjusted according to [2]. We define Ti as the av-
erage response time τi. The “Batch” application handles a
long-running batch workload and we define Ti = Ri for it.

A key challenge is for the AM to dynamically compute
V (R) for Trade3 in response to changing demand and rele-
vant internal state. A well-established methodology to con-
trolling systems is model-based approach based on queu-
ing theory [1]. In our system, we model a Trade3 AE
with R servers as R parallel M/M/1 queues. To account
for the transient nature of the workload as well as the vari-
ance in the performance of servers due to garbage collection
and thread management in Java, the AM updates the esti-
mated parameters of the model at periodic intervals. With
known τt and Rt in time period t and possible Rt+1 servers
in time period t + 1, we have τ̂t+1 = 1/µ̂t −λt/Rt+1, where
µ̂t = 0.5 µ̂t−1 +(1−0.5) µt and µt = 1/τt +λt/Rt . We intro-
duced the µ to µ̂ smoothing transformation to avoid exces-
sive fluctuations. With these equations, the AM computes
V (Rt) = U(τ̂t) for each possible value of Rt .

In the model-free reinforcement learning (RL) approach,
the Trade3 application manager uses an algorithm known
as Sarsa(0) to learn a value function Q(s,R) estimating the
long-range expected value of an allocation of R servers in
local state s. The learning rule has the form ∆Q(st ,Rt) =
α[Ut + γQ(st+1,Rt+1)−Q(st ,Rt)], where Ut is the imme-
diate “reward” i.e. the instantaneous service-level utility in
the current state, (st+1,Rt+1) denotes the state and number
of servers at time (t +1), the constant γ = 0.5 is a “discount
parameter” expressing the present value of expected future
reward, and α is a “learning rate” parameter which is ini-
tialized to 0.2 and decays over time.

Potentially many sensor readings may be needed to accu-
rately represent the application’s state, but for simplicity we
use only current demand, i.e., st = λt . The Q(s,R) function
is represented as a two-dimensional grid, with demand dis-
cretized into 130 intervals of size 2.5 over the range 0−325.
The number of servers R ranges from 1 to 5, so the total size
of the value function table is 650. The cell values are initial-

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05) 
0-7695-2276-9/05 $ 20.00 IEEE



ized using a simple heuristic which decreases linearly with
demand per server: Q0 = 200−1.2λ/R.

RL procedures also require an “exploration” mechanism
to ensure that all value table cells are visited sufficiently
often. We find that a simple rule of having the arbiter occa-
sionally choose (with probability 0.1) a random allocation
suffices to give RL its needed exploration, while incurring
only negligible loss of system utility. To further improve the
valuations of infrequently visited cells, we use soft mono-
tonicity constraints that encourage cell values to be mono-
tone increasing in R and monotone decreasing in D (both
reasonable assumptions in our system).

We note that standard RL convergence proofs do not ap-
ply in our system, as the arbiter’s allocation policy is neither
stationary, nor does it optimize any individual application.
However, good empirical evidence for approximate conver-
gence is found in our experiments. The issue of whether
localized RL converges in such systems is addressed in [3].

2. Results and Discussion
Figure 1(a) compares the performance of RL and queu-

ing model approaches in the standard two-application sce-
nario (Trade3+Batch), using identical demand generation in
each run. Performance is measured over the entire run in
terms of average total system utility earned per arbiter al-
location decision. We also compare with two inferior allo-
cation strategies: “UniRand” does uniform random alloca-
tions; and “Static” denotes the best static allocation (three
servers to Trade3 and two to Batch). Also shown is a dashed
line indicating an analytical upper bound on the best possi-
ble performance that can be obtained in this system using
the observable information.

0

50

100

150

RLQuModelStaticUniRand

A
v
g
.
 
u
t
i
l
.
 
p
e
r
 
a
l
l
o
c
.
 
d
e
c
i
s
i
o
n

2 Applications: Average Utility

Trade3
Batch
Total
Bound

0

50

100

150

200

250

RLQuModelStaticUniRand

3 Applications: Average Utility

Trade3a
Trade3b
Batch
Total
Bound

Figure 1. Results using 2 and 3 applications.

Note that RL performance includes all learning and ex-
ploration penalties, which are not incurred in the other ap-
proaches. The model-based and model-free approaches are
virtually identical, despite their radically different natures,
and both are substantially better than static or random al-
locations. They are also reasonably close to the maximum
performance bound.

We have also studied a more complex scenario contain-
ing three applications: one Batch plus two separate Trade3
environments, each with an independent demand model.
The scenario is more challenging for RL in that there are
now multiple interacting RL modules, each of which in-

duces non-stationarity in the other’s environment. How-
ever, using the same initialization as before, we observe no
qualitative difference in RL training times, apparent con-
vergence, or quality of policy compared to previous re-
sults. Performance results in this scenario are plotted in
Figure 1(b). Once again RL performance is comparable to
the queuing model approach, and both are quite close to the
maximum possible performance. While this does not estab-
lish scalability to an arbitrary number of applications, the
results are encouraging regarding our general methodology.

Whether such success with RL will continue as we ex-
amine progressively more complex systems is of course an
interesting open research question. We fully expect that
nonlinear function approximators, such as neural networks
or support vector machines, will eventually be required to
represent RL value functions. We also expect to need ex-
plicit techniques for obtaining acceptable performance lev-
els during training, and for intelligent exploration of non-
greedy actions. A particularly promising technique, is hy-
brid training, in which the policy decisions in the initial
phases of learning are model-based. This can provide not
only a strong initial policy, but can also provide safety
bounds on exploration.

In addition to performance, we identify at least two ad-
ditional aspects of importance to autonomic computing sys-
tems. One is the amount of systems knowledge required
for success with each method. RL appears to have the ini-
tial edge over queuing models in this regard, and it will be
interesting to see if this persists in subsequent work. Sec-
ondly, there is the issue of brittleness of performance mod-
els and learned value functions under various forms of envi-
ronment or system changes. Certainly some form of system
changes, such as changing the service-level utility function,
will not require any queuing model changes, whereas RL
might need to be retrained from scratch. On the other hand,
certain changes in user behavior may lead to gradual “model
drift” in which the queuing model progressively becomes
less accurate. If this drift is slow, RL might be able to con-
tinually adapt the value estimates so that they maintain their
accuracy as conditions change.

References

[1] D. Menasce, V. Almedia, and L. Dowdy. Performance by
design: Computer Capacity Planning by Example. Prentice
Hall, Upper Saddle River, NJ, 2004.

[2] M. S. Squillante, D. D. Yao, and L. Zhang. Internet traffic:
Periodicity, tail behavior and performance implications. In
E. Gelenbe, editor, System Performance Evaluation: Method-
ologies and Applications. CRC Press, 1999.

[3] G. Tesauro. Decompositional reinforcement learning and
workload management. Submitted for publication, 2005.

[4] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das. Utility
functions in autonomic systems. In 1st IEEE International
Conference on Autonomic Computing, pages 70–77, 2004.

Proceedings of the Second International Conference on Autonomic Computing (ICAC’05) 
0-7695-2276-9/05 $ 20.00 IEEE


