
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2011-016 March 24, 2011

SEEC: A Framework for Self-aware
Management of Multicore Resources
Henry Hoffmann, Martina Maggio, Marco D.
Santambrogio, Alberto Leva, and Anant Agarwal

SEEC: A Framework for Self-aware Management of Multicore Resources
Henry Hoffmann1 Martina Maggio1,2 Marco D. Santambrogio1,2 Alberto Leva2

Anant Agarwal1
1Computer Science and Artificial Intelligence Laboratory MIT

{hank, mmaggio, santa, agarwal}@csail.mit.edu
2Dipartimento di Elettronica e Informazione, Politecnico di Milano

{maggio, santambr, leva}@elet.polimi.it

Abstract
This paper presents SEEC, a self-aware programming

model, designed to reduce programming effort in modern
multicore systems. In the SEEC model, application pro-
grammers specify application goals and progress, while
systems programmers separately specify actions system
software and hardware can take to affect an application
(e.g. resource allocation). The SEEC runtime moni-
tors applications and dynamically selects actions to meet
application goals optimally (e.g. meeting performance
while minimizing power consumption). The SEEC run-
time optimizes system behavior for the application rather
than requiring the application programmer to optimize
for the system. This paper presents a detailed discussion
of the SEEC model and runtime as well as several case
studies demonstrating their benefits. SEEC is shown to
optimize performance per Watt for a video encoder, find
optimal resource allocation for an application with com-
plex resource usage, and maintain the goals of multiple
applications in the face of environmental fluctuations.

1 Introduction
Modern computing systems have greatly increased the
burden on application programmers. In addition to ex-
pertise in an application domain, developers must have
the systems knowledge required to design applications
that meet multiple competing goals (e.g. high perfor-
mance and low power) and maintain these goals in fluc-
tuating environments with varying workloads and unre-
liable resources.

To help reduce this burden, we propose a new pro-
gramming model targeting modern multicore processors.
In the SElf-awarE Computing (SEEC) model, illustrated
in Figure 1, application developers use an application
programming interface (API) to indicate the applica-
tion’s goals and current progress, while systems develop-
ers use a dedicated system programming interface (SPI)
to describe the actions (or adaptations) that the system
software and hardware implement. The SEEC runtime
meets application goals optimally using an adaptive con-
trol system, which learns application and system models
online allowing rapid response to environmental fluctua-
tions and ensuring optimal adaptation while avoiding lo-
cal minima.

Figure 1: The SEEC model.

1.1 Example
Consider the development of a video encoder whose
goal is to encode thirty frames per second while min-
imizing power. Furthermore, these goals must be met
even though different videos (and even frames within
one video) differ in their compute demands and these
demands cannot be predicted a priori. In a traditional
system, the application developer must understand the
power and performance tradeoffs of different system
configurations (such as number of cores, clock speed,
and memory usage) and optimize the encoder to meet
performance with minimal power while adapting to both
input and system fluctuations.

In contrast, SEEC’s runtime system observes applica-
tion behavior and optimizes the system for the applica-
tion. Using SEEC, the encoder developer indicates the
goal of thirty frames per second and the current speed of
the encoder. Independently, systems developers specify
actions that affect applications (e.g. allocation of cores,
clock-speed, and memory). SEEC’s runtime decision en-
gine determines a sequence of actions that achieve thirty
frames per second while minimizing power. If an input
becomes more difficult, the encoder does not meet its
goals and SEEC assigns it additional resources. If an in-
put becomes less difficult, the encoder exceeds its goals,
and SEEC will reclaim resources to save power. In ad-
dition, SEEC continuously updates its internal models of
applications and systems, so it can adapt if new resources
become available or if existing resources fail.

1.2 Background
The SEEC programming model builds on previous work
in self-aware computing [23, 26]. Such systems have var-

1

iously been called adaptive, autonomic, self-tuning, self-
optimizing, self-*, etc; and have been implemented in
both software [37] and hardware [2]. Self-aware systems
are characterized by the presence of observe-decide-act
(ODA) loops.

Researchers have explored general approaches where
phases of the ODA loop can be customized [11, 19, 28,
35, 46]. These approaches generally focus on the ap-
plication layer and all customization is done by a de-
veloper working at that layer. For example, Control-
Ware [46] supports customization of observation and ac-
tion at the application level; the application programmer
is responsible for providing both feedback and adapta-
tions. This focus on the application level limits the avail-
able actions to those the application developer knows and
can directly control. Similarly, self-aware implementa-
tions focusing on the system level (e.g. hardware adap-
tation [2, 7, 12]) require that observations and actions
be specified in terms of system parameters and prevents
system level adaptations from using application specified
feedback or simultaneously coordinating the actions of
both applications and system.

In contrast, the SEEC model decouples the specifica-
tion of observation, action, and decision steps by estab-
lishing separate interfaces for these phases. This sep-
aration allows different individuals working at different
layers of the system to concentrate on the most appro-
priate phase for their expertise and reflects the classical
process control paradigm where experts who build actu-
ators (e.g. pumps and valves) need not know about the
system in which they will be used (e.g. a water treatment
plant). Using SEEC, application programmers expect the
system to adapt to meet goals but need not understand
what actions to take or how to implement them, reduc-
ing programmer burden. Similarly, system-level actions
are specified without understanding the feedback mecha-
nism that drives adaptation or having to infer application
performance from low-level metrics. Furthermore, by
receiving direct feedback from applications, the SEEC
runtime system guarantees its decisions have a positive
impact on application goals. In addition, by decoupling
the specification of observation and adaptation, SEEC is
able to coordinate actions to maintain goals for multiple
applications simultaneously, something application-level
self-aware approaches do not support.

1.3 Evaluation
The SEEC model and framework is implemented as a
runtime system and set of libraries for Linux, which we
evaluate in several case studies. To demonstrate the
generality of the approach, we show how the SEEC run-
time can control the PARSEC [6] benchmarks through
resource allocation and we show that such dynamic re-
source management produces fewer performance errors

than static resource allocation. In the next study, the
SEEC runtime optimizes the performance per Watt of a
video encoder across a range of inputs. By dynamically
adapting resource allocation to fluctuations in video in-
put, SEEC is able to outperform an oracle that statically
allocates resources at program launch. Next, SEEC’s
ability to learn system models online is tested by control-
ling an application with a complex relationship between
performance and allocated resources. By using system
and application feedback simultaneously, SEEC is able
to avoid local minima and meet performance require-
ments while reducing total system power by 15%. Fi-
nally, SEEC is used to maintain performance of multiple
applications while responding to an unexpected loss of
compute power. By simultaneously adapting system and
application resources, SEEC is able to maintain applica-
tion goals despite a 33% drop in processor frequency.

1.4 Contributions
This paper makes the following contributions:

• It presents a self-aware programming model where
phases of observe-decide-act loops are specified in-
dependently, each by the developer whose expertise
is most appropriate for the task at hand. This model
separates application and system concerns, allow-
ing the system to optimize itself to meet application
needs.
• It describes a self-aware decision engine based on

a generic, adaptive second-order control system,
capable of adapting applications, system software,
and hardware resources while updating its inter-
nal models online in response to environmental
changes.
• It describes how this general, decoupled approach

to self-aware computing can be used to coordinate
adaptations and maintain the goals of multiple ap-
plications simultaneously.
• It shows the generality of the approach by modify-

ing the PARSEC benchmarks to work in the SEEC
model.
• It evaluates the SEEC model in a number of case

studies, demonstrating SEEC’s ability to optimize
competing goals and respond to varying workloads
and other unforeseen events.

The rest of this paper is organized as follows. Sec-
tion 2 discusses related work. Section 3 describes the
SEEC model and runtime system. Section 4 presents
several case studies evaluating the SEEC framework and
the paper concludes in Section 5.

2 Related Work
A self-aware, adaptive, or autonomic computing system
is able to alter its behavior in some beneficial way with-
out the need for human intervention [20, 23, 26, 37].

2

Table 1: Comparison of several self-aware approaches.
ControlWare [46] Tunability Interface [11] Agilos [28] Choi & Yeung [12] Bitirgen et al. [7] SEEC

Observation Application System System System System Application & System
Decision Control* Classifier Control Hill Climbing Neural Network Adpative Control
Action Application Application Application System System Application & System

Self-aware systems have been implemented in both hard-
ware [2, 7, 12] and software [37]. Some example sys-
tems include those that that manage resource alloca-
tion in multicore chips [7], schedule asymmetric pro-
cessing resources [40, 36], optimize for power [25],
and manage cache allocation online to avoid resource
conflicts[45]. In addition, languages and compilers have
been developed to support adapting application imple-
mentation for performance [43, 3], power [4, 39], or
both [18]. Adaptive techniques have been built to pro-
vide performance [5, 28, 34, 38, 46] and reliability [9]
in web servers. Real-time schedulers have been aug-
mented with adaptive computing [8, 14, 30]. Operat-
ing systems are also a natural fit for self-aware computa-
tion [10, 22, 24, 33].

Researchers have developed several general self-aware
approaches that can be customized without requiring ex-
pertise in adaptive system design. Such systems include:
ControlWare [46], Agilos [28], SWiFT [13], the tun-
ability interface [11], AutoPilot [35], and Active Har-
mony [19]. These approaches focus on customization at
the application level. For example, ControlWare allows
application developers to specify application level feed-
back (such as the latency of a request in a web server) as
well as application level adaptations (such as admission
control for requests). Unfortunately, these approaches do
not allow application level feedback to be linked to sys-
tem level actions performed by the hardware, compiler,
or operating system. In contrast, SEEC allows applica-
tions to specify the feedback to be used for observation,
but does not require application developers to make deci-
sions or specify alternative actions (application develop-
ers can optionally specify application-level actions, see
Section 3.2). Thus, SEEC allows application program-
mers to take advantage of underlying system-level adap-
tations without even knowing they are available.

Other researchers have developed self-aware ap-
proaches to adapt system level actions. Such system-
level approaches include machine learning hardware for
managing a memory controller [21], a neural network ap-
proach to managing on-chip resources in multicores [7],
a hill-climbing technique for managing resources in a
symmetric multithreaded architecture [12], a number of
techniques for adapting the behavior of super-scalar pro-
cessors [2], and several operating systems with adaptive
features [10, 22, 24, 33]. While these approaches al-
low system level adaptations to be performed without in-
put from the application programmer, they suffer from

other drawbacks. First, application performance must
be inferred from either low-level metrics (like perfor-
mance counters [2]) or high-level metrics like total sys-
tem throughput [7], and there is no way for the system
to tell if a specific application is meeting its goals. In
addition, these systems are more difficult to extend. For
example, if a new resource becomes available for allo-
cation a neural network, (e.g. [7]), will have to be re-
designed and reimplemented. In contrast, SEEC allows
systems developers to specify available actions indepen-
dently from the metrics that will be used to evaluate their
effectiveness. In addition, SEEC can combine actions
specified by different developers and learn models for
these new combinations of actions online.

Table 1 highlights the differences between SEEC and
some representative prior efforts. The table includes sev-
eral general approaches for specifying application level
adaptation and several approaches for specifying sys-
tem level adaptation for resource management. For each
project the table shows the level (system or application)
at which observation and actions are specified and the
methodology used to make decisions.

In contrast with systems shown in Table 1, SEEC is a
general approach for resource management allowing ap-
plications to specify how they are to be observed, while
system software and hardware (or, optionally, applica-
tions themselves) specify available actions. Observations
are specified using an interface to indicate application
performance and goals. Actions are specified using a
dedicated interface to indicate available actions (such as
allocation of system resources) along with coarse esti-
mates of their costs and benefits. An adaptive control
system determines the actions to take given current ob-
servations of both the application and the system. Adap-
tive control allows the SEEC runtime system to combine
actions specified by different developers and learn the in-
teractions of these actions online. In addition, the adap-
tive control system allows SEEC to respond quickly to
fluctuations in the underlying environment.

As noted in the table, several approaches to building
self-aware systems use control theory within their de-
cision engines. Hellerstein et al [16] and Karamano-
lis et al [22] have both suggested that control systems
can be used as “off-the-shelf” solutions for managing
the complexity of modern computing systems, especially
multi-tiered web-applications. While these authors note
that existing control solutions can be used, their devel-
opment requires identification of a feedback mechanism

3

Table 2: Roles and Responsibilities in the SEEC model.
Phase Applications Developer Systems Developer SEEC Runtime Infrastructure
Observation Specify application goals and perfor-

mance
- Read goals and performance

Decision - - Determine how much to speed up the
application

Action - Specify actions and a function that
performs actions

Initiate actions based on result of deci-
sion phase

and translation of an existing control model into soft-
ware. This leads to solutions that address a specific com-
puting problem using control theory, but do not general-
ize [29, 34, 41, 42]. In contrast, the SEEC control system
does not solve a specific problem, but provides a gen-
eral control strategy using a widely applicable feedback
mechanism and thus overcomes some limitations of prior
approaches as described in [15]. In addition, SEEC’s
generalized control approach is, itself, adaptive, allow-
ing SEEC to automatically update its decision engine on-
line in response to unforeseen events such as changes in
available resources, workload fluctuations, or even the
emergence of new adaptations.

3 SEEC Framework
There are three distinct roles in the SEEC model: ap-
plication developer, system software developer, and the
SEEC runtime infrastructure. Table 2 shows the re-
sponsibilities of each of these three entities for the three
phases of closed loop execution: observation, decision,
and action. The application developer indicates the ap-
plication’s goals and current progress toward those goals.
The systems developer indicates a set of actions and a
function which implements these actions1. The SEEC
runtime system coordinates actions to meet goals.

SEEC’s runtime maintains goals using the closed loop
system illustrated in Figure 2. As shown in the figure,
SEEC implements three separate adaptation levels (AL
0-2), where AL 1 and 2 are optional. At adaptation level
0, SEEC implements a standard, model-based feedback
control system. Adaptation level 1 augments this basic
system by incorporating an online model of application
behavior, allowing SEEC to quickly detect fluctuations
in both application workload and the underlying comput-
ing infrastructure. Adaptation level 2 further improves
SEEC’s decision making by performing online estima-
tion of the benefits and costs of all actions and sets of
actions. AL 2 allows SEEC to combine actions speci-
fied by different developers and detect changes or errors
in action costs and benefits online; this is done automat-
ically without intervention by the application or system
programmer. Each increase in adaptation level provides
greater flexibility and a (small) increase in overhead.

1For clarity, we distinguish between the role of application and sys-
tems developer, but in practice these can be filled by the same person.

Figure 2: SEEC block diagram.

3.1 Observe
The SEEC model provides an API application program-
mers use to indicate application goals and progress, i.e.,
how the application is to be observed. This API is an
extension of the Application Heartbeats interface [17],
and its key abstraction is a heartbeat. Applications use a
function to emit heartbeats at important intervals, while
additional API calls allow the specification of perfor-
mance goals in terms of a target heart rate or a target
latency between specially tagged heartbeats.

In addition to raw performance data specified as heart-
beats, application programmers can specify several other
properties. Programmers can indicate a sliding window
over which to calculate average heart rate or heartbeat
latency. Using a window serves as a low-pass filter on
heartbeat data and smoothes out both noise and system-
atic variations in performance. This window is speci-
fied at the application level because the application de-
veloper has more knowledge of expected heartbeat vari-
ations than the rest of the system. In addition, application
programmers can inform SEEC of preferred tradeoffs.

The SEEC model assumes that increasing application
performance generally comes at some cost (e.g., an in-
crease in power consumption). Therefore, SEEC al-
lows application developers to indicate preferred trade-
offs. Currently SEEC supports two tradeoff spaces:
application-level tradeoffs and system-level tradeoffs.
Indicating a preference for one tradeoff over another di-
rects SEEC to exhaust all actions affecting the preferred
tradeoff space before attempting any actions in the sec-
ond. For example, if system-level tradeoffs are preferred,
then the SEEC runtime will only use actions specified at
the application level if the target performance cannot be

4

met by any combination of system-level actions. This in-
terface is extensible so more tradeoffs can be specified as
more tradeoff spaces are explored.

3.2 Act
The SEEC model provides a separate, system program-
mers interface for specifying actions that can be taken
in the system. A set of actions is defined by the fol-
lowing features: an identifier for each action, a function
which implements the corresponding action, and an ar-
ray of the estimated costs and benefits in the tradeoff
space. The performance benefits of an action are listed
as speedups while the tradeoffs are listed as increased
costs. By convention, the action with identifier 0 is con-
sidered to be the one with a speedup of 1 and a cost of
1; the speedup and costs of additional actions are spec-
ified as multipliers. Additionally, the systems developer
specifies whether an action can affect all applications or
a single application; in the case of a single application,
the developer indicates the process identifier of the af-
fected application. Finally, for each action the systems
developer indicates a list (possibly empty) of conflicting
actions. Conflicting actions represent subsets of actions
which cannot be taken at the same time; e.g. allocation
of both five and four cores in an eight core system.

For example, to specify the allocation of cores to a pro-
cess in an eight core system, the developer might specify
eight actions with identifiers i ∈ {0, ..., 7}. To imple-
ment these actions, the developer specifies a function that
takes a process identifier and action identifier i, and then
binds the process to i + 1 cores. The systems developer
provides an estimate of the increase in performance and
power consumption associated with each i. For the core
allocator, the speedup of action i might be i+ 1, i.e. lin-
ear speedup, while the increase in power consumption
will be found by profiling the target architecture. For
each action i, the list of conflicting actions includes all j
such that j+1+i+1 > 8. Finally, the core allocator will
indicate that it can affect any application. In contrast, a
runtime system that adaptively changes an application’s
algorithm (e.g. [18]) will only affect executables linked
against that runtime.

These models of speedup and cost only serve as ini-
tial estimates and the SEEC runtime system can adapt to
even large errors in the values specified by the systems
developer. However, SEEC allows these models to be
specified to provide maximum responsiveness in the case
where the models are accurate. SEEC’s runtime adjust-
ment to errors in the models is handled by the different
adaptation levels and is described in greater detail in the
next section.

SEEC combines n sets of actions A0, ..., An−1 de-
fined by (possibly) different developers using the fol-
lowing procedure. First, SEEC creates a new set of ac-

tions where each action in the set is defined by the n-
tuple < a0

i , a
1
j , ..., a

n−1
k >, and corresponds to taking

the ith action from set A0, the jth action from set A1,
etc. The speedup of each action in the new set is com-
puted as s<a0

i ,...,an−1
k > = sa0

i
× ...× san−1

k
and the cost

is computed similarly. Once the speedup and cost have
been estimated for each combined action, SEEC com-
putes the subset of Pareto-optimal actions. In practice,
focus on the Pareto-optimal actions greatly reduces the
search space of possible actions and maintains optimal-
ity. In some cases SEEC may need to combine some ac-
tions that affect a single application with others that can
affect all applications. In this case, SEEC computes and
maintains a separate set of actions for each application.
Combining actions specified by multiple developers may
result in inaccurate models, and adaptation levels 1 and
2 handle these cases.

3.3 Decide
SEEC’s runtime system dynamically selects actions
specified by system programmers to meet the goals spec-
ified by application programmers. Many features of the
SEEC runtime are customizable and can be tuned for the
particular characteristics of a specific deployment.

As illustrated in Figure 2, SEEC implements a feed-
back control system with multiple adaptation levels
(AL). Each increased level of adaptation adds additional
flexibility at the cost of additional overhead as summa-
rized in Table 3. AL 0 implements a basic, model-based
feedback control system. AL 1 turns this system into an
adaptive controller by adding a dynamic model of ap-
plication performance. AL 2 dynamically updates the
system models of action costs and benefits. If the appli-
cation behavior is well understood, and the system mod-
els are accurate, AL 0 is sufficient for responsive perfor-
mance. If application performance is variable, but the
system model is reliable and without local minima, then
AL 1 will achieve the best performance. If the applica-
tion is variable and the system models are inaccurate, un-
reliable, or vary greatly from application to application,
then AL 2 is the most appropriate.

3.3.1 Adaptation Level 0

In its most basic form, the SEEC runtime system im-
plements a basic, model-based feedback control sys-
tem [16], which complements and generalizes the control
system described in [31]. The controller reads the per-
formance goal gi for application i, collects the heart rate
hi(t) of application i at time t, computes a speedup si(t)
to apply to application i at time t, and then translates that
speedup into a set of actions based on the model pro-
vided by the systems programmer. SEEC uses a generic
second order control system which can be customized

5

Table 3: Characteristics of Adaptation Levels in SEEC.
Adaptation Level 0 Adaptation Level 1 Adaptation Level 2

Models learned online None Application Application & System
Response to Application Workload Variations Slow Fast Fast
Response to Errors/Local Minima in System Models Suboptimal Suboptimal Optimal
Overhead Low Medium High

for a specific system by fine-tuning the tradeoff between
responsiveness and rejection of noise.

SEEC’s controller observes the heartbeat data of all
applications and assumes the heart rate hi(t) of applica-
tion i at time t is

hi(t) =
si(t− 1)
wi(t− 1)

+ δhi (1)

Where wi(t) is the workload of application i. Workload
is defined as the expected time between two subsequent
heartbeats when the system is in the state that provides
the lowest speedup, i.e. when the system takes action 0.
At adaptation level 0, SEEC assumes that the workload is
not time variant and any noise or variation in the system
is modeled with the term δhi, representing an exogenous
disturbance in the measurement of the heartbeat data for
application i.

SEEC’s goal is to eliminate the error ei(t) between the
heart rate goal gi and the observed heart rate hi(t) where
ei(t) = gi − hi(t). SEEC reduces ei(t) by controlling
the speedup si(t) applied to application i at time t. SEEC
employs a generic second order transfer function so users
can customize the transient behavior of the closed loop
system shown in Figure 2. Since SEEC employs a dis-
crete time system, we follow standard practice [27, p17]
and analyze its transient behavior in the Z-domain:

Fi(z) =
(1− p1)(1− p2)

1− z1
z − z1

(z − p1)(z − p2)
(2)

where Fi(z) is the Z-transform of the closed-loop trans-
fer function for application i and {z1, p1, p2} is a set
of customizable parameters which alter the transient be-
havior of the system. The gain of this function is 1, so
ei(t) is guaranteed to reach 0 for all applications. From
Equation 2, the generic SEEC controller is synthesized
following a classical control procedure [27, p281] and
SEEC calculates si(t) as:

si(t) = F · [Asi(t− 1) +B si(t− 2) +
C ei(t)w +Dei(t− 1)w]

A = p1z1 + p2z1 − p1p2 − 1
B = −p2z1 − p1z1 + z1 + p1p2

C = p2 − p1p2 + p1 − 1
D = (p1p2 − p2 − p1 + 1) · z1
F = (z1 − 1)−1

(3)

To customize the generic controller for specific behavior,
the values {z1, p1, p2}must be fixed. For stability, SEEC

requires |p1|, |p2| < 1. Setting z1 = z2 = p1 = 0 elim-
inates transient behavior2 allowing the system to reach
ei(t) = 0 as quickly as possible; however, this formula-
tion is sensitive to noise and changes in δhi will result
in commensurate changes in the applied speedup (see
Equation 1). If p1 ≤ z1 ≤ p2, the heart rate slowly con-
verges to gi. As z1 approaches p1, the system will con-
verge more slowly, but will reject larger disturbances in
the δhi term; i.e., in noisier systems z1 should be closer
to p1.

SEEC translates a set of speedups {si(t)|∀i} deter-
mined by the control system into a set of actions (us-
ing the actions specified by the systems programmer).
SEECs actuator has two challenges: first, it must convert
the continuous speedup signal si(t) into a speedup that
can be realized in the discrete action domain; second, it
must resolve any conflicting actions for different applica-
tions (e.g. assignment of more than the available number
of cores). We describe each of these issues in turn.

For each i, SEEC converts si(t) into a set of actions
using time division output; i.e. by computing two ac-
tions to take over a quantum of τ time units. SEEC first
searches through the set of Pareto-optimal actions (see
Section 3.2) to find an action a with the smallest speedup
sa such that sa ≥ si(t). By focusing on Pareto-optimal
actions, SEEC ensures a is the lowest cost action whose
speedup exceeds the target. Next, SEEC searches the
set of Pareto-optimal actions to find an action b with the
largest speedup such that sb < sa. Given these two ac-
tions, SEEC executes a for τa time units and b for τb time
units where:

τ · si(t) = τa · sa + τb · sb

τ = τa + τb
(4)

When working with multiple applications, the control
system may request speedups whose realization results
in resource conflicts (e.g., in an eight core system, the as-
signment of 5 cores to one application and 4 to another).
SEEC’s actuator resolves conflicting actions using a pri-
ority scheme. Higher priority applications get first choice
amongst any set of actions which govern finite resources.
Once a plan is created for a higher priority application,
those actions are removed from consideration for lower
priority applications. In the example, the higher prior-
ity application would be assigned 5 cores with the other

2In a control-theoretic sense transient behavior cannot be fully elim-
inated, but this formulation makes the transient period as small as pos-
sible.

6

forced to use three and find speedup from an additional
source if available. If applications have the same priority,
SEEC accounts for this by acting as if one is higher for
one time quantum and then acting as if others are higher
for subsequent quanta.

3.3.2 Adaptation Level 1

Adaptation level (AL) 1 extends SEEC’s basic function-
ality with an adaptive control system which estimates ap-
plication workload online. This capability allows SEEC
to rapidly respond to sudden changes in application per-
formance (e.g. an input video becomes more difficult to
encode). In practice, the true workload cannot be mea-
sured online as it requires running the application with
all possible actions set to provide a speedup of 1, which
will likely fail to meet the application’s goals. Therefore,
SEEC views the true workload as a hidden state and es-
timates it using a one dimensional Kalman filter [44].

The true (and hidden) workload for application i at
time t is represented as wi(t) ∈ R and characterized as

wi(t) = wi(t− 1) + δwi

hi(t) =
si(t− 1)
wi(t− 1)

+ δhi
(5)

where δwi and δhi represent noise in the true workload
and heart rate measurement, respectively. Given this
model of true workload, SEEC recursively estimates the
workload for application i at time t as ŵi(t) using the
following Kalman filter formulation:

x̂−i (t) = x̂i(t− 1)
p−i (t) = pi(t− 1) + qi

ki(t) =
p−i (t)si(t− 1)

[si(t)]2p−i (t) + oi

x̂i(t) = x̂−i (t)
+ki(t)[hi(t)− si(t− 1)x̂−i (t)]

pi(t) = [1− ki(t)si(t− 1)]p−i (t)

ŵi(t) =
1

x̂i(t)

(6)

Where qi and oi represent the workload variance and
heart rate variance, respectively. hi(t) is the measured
heartrate for application i at time t and si(t) is the ap-
plied speedup (according to Equation 3). x̂i(t) and
x̂i(t)− represent the a posteriori and a priori estimate of
the inverse of application i’s workload at time t. pi(t)
and p−i (t) represent the a posteriori and a priori estimate
error variance, respectively. ki(t) is the Kalman gain for
the application i at time t[44].

By estimating workload, SEEC can rapidly detect
changes in the difficulty of an application’s input (e.g.
higher complexity frames in a video encoder) and re-
spond by changing resource allocation appropriately.

Thus, adaptation level 1 greatly increases the speed with
which SEEC can adapt to unforeseen changes in the en-
vironment.
wi(t) and si(t) have an inverse relationship in Equa-

tion 1. Therefore, Equation 6 allows SEEC to respond
to changes in both application behavior and system re-
sources, as any error in the speedup models will be per-
ceived (at adaptation level 1) as an error in workload and
compensated accordingly. For example, suppose the ac-
tions available to SEEC are allocation of cores. Further,
suppose an application i is meeting its goals with four
cores until one of the four is powered down (for tempera-
ture reasons). The change in compute power will change
the heart rate hi(t) at time t, which will in turn imme-
diately affect the workload estimate ŵi(t) (Equation 6)
and cause a corresponding change in the applied speedup
si(t+1) (Equation 3). This change in speedup will result
in the allocation of additional cores. If the temperature
cools and all cores are restored, the workload estimator
will return lower values of wi(t) and SEEC will reduce
the allocated cores.

3.3.3 Adaptation Level 2

AL 1 augments SEEC with a powerful adaptation capa-
bility, but it suffers from some short-comings. As dis-
cussed above, at AL 1, SEEC is unable to distinguish
between an error in the application model ŵi(t) and an
error in the speedup models provided by the systems de-
veloper. While AL 1 allows fast adaptation, it can also
suffer from using sub-optimal states. For example, con-
sider a system which allocates cores and an application
which achieves linear speedup for up to 4 cores, but then
achieves no additional speedup due to limits in paral-
lelism. AL 1 cannot distinguish this lack of parallelism
from a change in the application’s workload, so SEEC
might allocate more resources than necessary. AL 2 ad-
dresses this problem by incorporating a system model
that estimates the true costs and benefits of all actions
online on a per application basis. In addition to adding
flexibility, AL 2 allows SEEC to adjust to any errors in
the action models provided by systems developers. The
added flexibility of AL2 comes at a cost of increased
overhead as the SEEC runtime system performs more
computation to learn system models online.

As with the application workload, the true speedup
and cost provided by any given action state is hidden, i.e.,
it cannot be directly measured without serious disruption
to the performance of the running application. Therefore,
SEEC once again employs a Kalman filter to estimate the
true costs and benefits of the available actions3. SEEC

3For space reasons, this presentation focuses on estimation of ben-
efits; a filter to estimate costs is almost identical except it measures the
cost (e.g. power) instead of the benefit (e.g. speedup).

7

computes the expected heart rate of application i at time
t as a function of the action a. This information is rep-
resented as a vector ri(t) ∈ Rn×1, where n is the total
number of available actions, and the ath component of
the vector ri(t, a) ∈ R is the heart rate associated with
action a.

SEEC’s model of the system behavior is:

ri(t) = ri(t− 1) + δri
hi(t) = Ti(t− 1) · ri(t) + δhi

(7)

Where hi(t) is the measured heart rate of application i
at time t and Ti(t) ∈ R1×n. T is constructed such that
the ath component of T is τa/τ , the bth component is
τb/tau, and all other components are 0. τa, τb, and τ are
related to the time quantum and found using Equation 4.

SEEC computes an estimate r̂i(t) ∈ Rn×1 of the true
heart rate as a function of action using an n-dimensional
Kalman filter:

r̂−i (t) = r̂i(t− 1)
P−i (t) = Pi(t− 1) +Qi

ui(t) = Ti(t− 1) P−i (t) [Ti(t− 1)]T

Ki(t) = P−i (t)× Ti(t− 1)T×
[ui(t) +Ri]−1

r̂i(t) = r̂−i (t) +Ki(t)×
[hi(t)− Ti(t− 1)r̂−i (t)]

Pi(t) = [I −Ki(t)Ti(t)]P−i (t)

(8)

Where Qi ∈ Rn×n and Ri ∈ R represent the applica-
tion noise covariance and heart rate measurement noise
variance, respectively. hi(t) is the measured heartrate
for application i at time t. r̂i(t) and r̂i(t)− are vectors
representing the a posteriori and a priori estimate of the
application i’s heart rate at time t; the ath element of
each vector is the estimate of the heart rate associated
with action a. Pi(t), P−i (t) ∈ Rn×n represent the a
posteriori and a priori estimate error covariance, respec-
tively. Ki(t) ∈ Rn×1 is the Kalman gain at time t[44].
ui(t) ∈ R is a temporary value used to make the formu-
lae easier to read. We note that Ti(t) has only two non-
zero elements, so all matrix updates are rank-2. Thus the
Kalman filter update for each application isO(1) and can
be implemented efficiently in practice.

Given r̂i(t) as calculated by Equation 8 SEEC es-
timates the speedup associated with each action as
ŝi(t, a) = r̂i(t, a)/r̂i(t, 0) and ŝi(t) ∈ R. Where ŝi(t, a)
represents the speedup SEEC estimates application i will
achieve at time t by taking action a. At adaptation level
2, SEEC substitutes sa = ŝi(t, a) and sb = ŝi(t, a)
when computing a plan for then next time quantum using
Equation 4.

SEEC uses an almost identical Kalman filter formula-
tion to estimate the cost of system actions (omitted for
brevity). Adding the ability to estimate system cost and

benefits online gives SEEC additional flexibility at the
cost of some overhead. At adaptation level 2, SEEC can
detect situations where actions are not benefitting an ap-
plication or where the cost outweighs the benefits, allow-
ing SEEC to recompute the Pareto-optimal actions online
and customize them for an individual application or even
an individual input. AL 2 also allows SEEC to recover
from errors in the system model provided by the sys-
tems programmer, combine two sets of actions specified
by separate systems developers, or adjust if the system
model changes online due to failure or other unforeseen
circumstances.

4 Evaluation
This section describes several experiments that evalu-
ate the generality, applicability, and effectiveness of the
SEEC programming model. We begin by describing
the experimental platform we use to evaluate the model.
Next, SEEC is used to control the performance of all ap-
plications in the PARSEC benchmark suite [6]. Then,
SEEC is used to optimize the performance/Watt of the
x264 video encoder benchmark for 16 input videos, each
with differing compute demands. The next study demon-
strates SEEC’s ability to estimate system models online
by co-optimizing compute and memory resources for a
benchmark that needs the right proportion of both re-
sources. The final case study demonstrates how SEEC
can control multiple applications and coordinate appli-
cation and system level adaptations to maintain perfor-
mance in a fluctuating computing environment. For each
case study, we describe the goals of the application, the
system actions available, and the behavior of the SEEC
runtime system.

4.1 Experimental Platform
All experiments are run on a Dell PowerEdge R410
server with two quad-core Intel Xeon E5530 processors
running Linux 2.6.26. The processors support seven
power states with clock frequencies from 2.394 GHz to
1.596 GHz. The cpufrequtils package enables soft-
ware control of the clock frequency (and thus the power
state). These processors also support simultaneous mul-
tithreading (SMT), or hyperthreads, but we disable this
feature for this paper. This machine has two memory
controllers and we have installed the numa library to
manipulate the processor’s use of memory controllers.
Power is measured by a WattsUp device which samples
and stores power at 1 second intervals [1]. All bench-
mark applications run for significantly more than 1 sec-
ond so the sampling interval should not affect results.
The maximum and minimum measured power ranges
from 220 watts (at full load) to 80 watts (idle), with a typ-
ical idle power consumption of approximately 90 watts.
The SEEC programming model is implemented on this
platform as a set of C libraries and a runtime system.

8

We account for SEEC’s runtime overhead by measur-
ing the time it takes to make a new decision, which re-
quires calculating a speedup, selecting actions, and pos-
sibly updating the application and system models. On
the target platform, AL 0 sustains 39.22 million deci-
sions per second (d/s), AL 1 sustains 18.83 million d/s,
and AL 2 sustains 8.87 million d/s. In practice there are
other overheads, including signaling the heartbeat and
taking the specified actions, but these will be implemen-
tation specific. Given the decision rates measured here,
the SEEC runtime is unlikely to be the bottleneck.

4.2 SEEC and the PARSEC Benchmarks
This case study demonstrates the broad applicability of
SEEC by modifying the PARSEC benchmarks to work
in the SEEC model and controlling their performance
using system specified actions. Each PARSEC bench-
mark is made to emit heartbeats as described in [17]. We
record the performance of each application on our tar-
get platform using all eight cores and the highest CPU
frequency; each benchmark requests a target heart rate
between 45% and 55% of this maximum speed. Each
benchmark is launched with eight threads and the default
inputs for the PARSEC native input set.

Using SEEC’s systems programmer interface, we in-
dependently specify two sets of actions available to the
system. First, we specify one set of seven actions corre-
sponding to changes in processor clock frequency; these
actions are implemented by a callback function which
uses cpufrequtils. Second, we specify a set of eight
actions, each of which assigns the corresponding number
of cores to an application. This set of actions is imple-
mented via a function which changes the processor affin-
ity of all threads in an application. The initial speedup
model for each application is simply linear speedup for
both clock and core changes, i.e., changing either re-
source by some factor changes speedup by the same fac-
tor. The initial power model for each set of actions is
derived by measuring the power of an application that
simply does a busy loop of floating point arithmetic. For
clock frequency changes, we measure power using a sin-
gle core. For core changes, me measure power at the
highest frequency setting.

We measure the SEEC runtime’s ability to maintain
application goals with the specified system actions. We
run each application with SEEC and record its heart rate
at every heartbeat to compute the average of the squares
of the distances between the measured heart rates and the
desired heart rates (i.e., the integral of the squared error,
ISE). For comparison, we run each benchmark without
SEEC, but with a static allocation of half the maximum
clock speed (1.995 GHz) and half the maximum number
of cores (4).

The results of this experiment are shown in Figure 3.

Figure 3: PARSEC with SEEC (lower is better).

The benchmarks (including the average over all bench-
marks) are denoted on the x-axis. The y-axis shows ISE
normalized to the value measured for the static alloca-
tion of half of all CPU resources. Results are shown for
the static allocation of resources and for each of the three
adaptation levels (AL 0, 1, 2). Figure 3 illustrates that
SEEC can control all of the PARSEC applications. On
average, AL 0 reduces the performance error by a factor
of 2.28, while AL 1 and AL 2 reduce error by a factor of
over 2.7. The higher adaptation levels are able to further
reduce error by detecting phases in the application and
adjusting SEEC’s models; e.g. detecting applications
which do not exhibit linear speedup with added cores,
like x264. For 12 of the 13 benchmarks, at least one of
the three adaptation levels provides better control than
static resource allocation. The exception is the facesim
benchmark for which static allocation and all three adap-
tation levels execute without control errors.

This study demonstrates several characteristics of the
SEEC model. First, PARSEC consists of a variety of
important multicore benchmarks, and SEEC’s ability to
control these benchmarks shows the framework is appli-
cable to a broad range of applications. Adding Heart-
beats to the PARSEC benchmarks is straightforward re-
quiring each benchmark be augmented with 5-10 lines
of code [17]. Second, this study demonstrates that self-
aware monitoring and controlling of an application’s re-
sources usage does a better job of maintaining perfor-
mance goals than static resource allocation. Third, this
study demonstrates the benefits of using adaptive control
in self-aware systems as both adaptation level 1 and 2
provide better control than adaptation level 0. We note
that for all results SEEC is able to maintain performance
goals without any prior knowledge of the application. In-
stead, SEEC uses only heartbeat data observed during the
application’s execution.

4.3 Optimizing Video Encoding
This case study demonstrates the use of the SEEC model
to perform constrained optimization in a fluctuating en-

9

vironment. Specifically, we use SEEC to help a video
encoder meet its performance goals while minimizing
power consumption for a variety of input videos, each
with differing compute demands. The x264 video en-
coder benchmark from PARSEC is modified to emit
heartbeats as described above, and the encoder requests
a heart rate of thirty frames per second.

For this study, additional modifications are made so
that when the encoder detects a heart rate of less than 25
frames per second it “drops” the current frame, skipping
its encoding and moving to the next frame. For this case
study, we again specify two sets of system actions: clock
frequency changes and core allocation. The initial mod-
els and implementations are as described in the previous
section. We then run the encoder on 16 different input
videos and evaluate SEEC’s ability to maintain the tar-
get performance while minimizing power consumption.
For each input video, the encoder is initially assigned one
core set to the lowest clock speed.

We evaluate SEEC’s ability to maintain performance
by measuring the number of dropped frames for each
input video and recording the fraction of frames which
are encoded (not dropped). We then divide this frac-
tion by the average power consumed during the encod-
ing of this input to create a performance per Watt metric.
This performance metric rewards the system for reach-
ing the target performance, but provides no extra ben-
efit for exceeding the goal, as appropriate for systems
with real-time goals like video encoding. As a point of
comparison we construct an oracle which knows the best
(and worst) static allocation of resources for each spe-
cific input video. The oracle is constructed by explicitly
encoding each video with all 56 possible configurations
of cores and clock speed. We record the best and worst
performance per Watt for each of these static allocations
and compare these values to those produced when the
encoder is under the control of the SEEC runtime which
can dynamically adjust resource allocation.

We note that no single static assignment of resources
is best for all inputs. For example, with blue sky.yuv the
best static assignment of resources is 3 cores at maxi-
mum clock speed, while for ducks take off 1080p.yuv,
the best static assignment is 6 cores at maximum clock
speed. The fact that there is no single static assignment
that is best for all inputs shows the difficulty of this opti-
mization problem. Furthermore, this is a common prob-
lem for video encoders as they will routinely be con-
fronted with previously unseen inputs.

Figure 4 shows the results of this case study for each
of SEEC’s three adaptation levels. The x-axis shows each
input (with the average over all inputs shown at the end).
The y-axis shows the performance per Watt for each in-
put normalized to the best static assignment. For each
input, the first bar represents the worst static assignment,

Figure 4: x264 performance per Watt (higher is better).

the middle bar represents the oracle, or best static assign-
ment, and the last three bars represents the performance
per Watt for x264 run with each of SEEC’s three adapta-
tion levels.

Figure 4 illustrates the benefits of the SEEC approach,
and especially the higher adaptation levels. At AL 0,
SEEC achieves, on average, about 80% of the perfor-
mance/Watt of the static oracle. While this is a good
figure, AL 0 is limited in the speed with which it can
adapt to changes in the video inputs. Changes in the in-
put difficulty can be modeled by changes in the value of
the workload in Equations 1 and 3. Adaptation level 0
assumes workload is fixed so the speed of its adaptation
is limited.

In contrast, adaptation level 1 actively estimates the
true value of the workload online using Equation 6. This
adaptation allows AL 1 to outperform the static oracle
by a small amount (about 1%) on average. By estimat-
ing application workload online, SEEC is able to tailor
resource allocation for inputs whose needs vary during
execution. For example, the middle section of the PAR-
SEC native input is easier to encode than the beginning
and the end. During this section, AL 1 of the SEEC run-
time system detects an increase in performance and is
able to reduce the amount of resources assigned to the
encoder while still meeting its goal.

At AL 2, SEEC achieves about 95% of the static or-
acle, slightly under-performing AL 1. This difference
in performance comes from two factors. First, AL 2
executes more computation, which negatively impacts
power consumption without directly increasing encoder
performance. Second, in practice the Kalman filter used
in AL 2 takes longer to converge than that used in AL 1.

The video encoder on our target platform is CPU
bound; adding additional resources always adds speedup.
The true value of adaptation level 2 becomes apparent
when working with more difficult optimization prob-
lems, especially ones where adding resources can slow-
down the application. We examine one such application

10

in the next section.
The results with the video encoder show several prop-

erties of the SEEC framework. First, they demonstrate
how SEEC reduces programmer burden The video pro-
grammer only has to use the Heartbeat interface to de-
clare goals and performance and the SEEC runtime sys-
tem optimizes the behavior of the program, even tailoring
that behavior to specific inputs. With static resource allo-
cation schemes, the video programmer is responsible for
profiling and understanding resource management within
the system. Additionally, this study shows the optimality
of the SEEC framework. Even though no single static
assignment is best for all videos, the SEEC runtime is
able to adapt its behavior to find an assignment that is
close to or better than the best static assignment for each
input. Finally, this experiment shows the adaptability of
the SEEC framework as videos with multiple regions of
differing needs can be allocated the optimal amount of
resources for each region.

4.4 Estimating Models Online
This case study demonstrates SEEC’s ability to estimate
true system models online, even in the case of applica-
tions which have complicated responses to resource allo-
cation and where different systems developers specified
different sets of actions. Specifically, this study explores
SEEC’s ability to dynamically allocate resources to meet
the needs of the STREAM benchmark [32].

While the STREAM benchmark itself is quite sim-
ple, it has an interesting response to resource alloca-
tion. STREAM is typically thought of as a mem-
ory bound benchmark, but it needs sufficient computa-
tional resources before its performance becomes mem-
ory limited. For example, on our test platform running
STREAM with a single core and two memory controllers
is slower than running it using a single core and a single
memory controller. As a further example, at 1.6 GHz and
two memory controllers, 4 cores achieve higher perfor-
mance than 5, 6, or 7, but eight is again faster. Overall,
there are many such local minima, where adding addi-
tional resources slows down the application. This study
explores SEEC’s ability to avoid these local minima.

For this study, we modify the STREAM benchmark
to emit heartbeats. STREAM has an outer loop which
repeatedly runs several different tests, and we place the
heartbeat signal in this outer loop. We use several dif-
ferent goals for this case study. To establish these goals,
we first measured STREAM’s performance running on
our system with every possible configuration of cores,
clock speed and memory controllers, 112 possible states
(8 cores, 7 clock speeds, 2 memory controllers). We
then established four separate goals for the application:
Min, equivalent to the performance achieved with one
core and one memory controller at the lowest speed; Me-

Table 4: ISE for STREAM.
Min Median Max Max+

AL 0 0.00034 0.012 0.32 39.27
AL 1 0.00034 0.0036 0.096 37.33
AL 2 0.00031 0.0063 0.78 43.70

dian, the median value of all performance measurements;
Max, equivalent to the highest observed performance;
and Max+, equivalent to twice Max and unachievable on
the target machine.

For this case study we make three sets of actions avail-
able to SEEC: the core and clock speed actions used
in previous sections and a set of two actions which as-
sign memory controllers to the application. We imple-
ment these actions by changing the binding of pages to
memory controllers using the numa interface. The ini-
tial model provided to SEEC assumes that the speed in-
creases linearly with the number of memory controllers.
We create the model for power by running a separate
memory bound application (which repeatedly copies a 1
GB array) and measuring the power consumption using
all eight cores at the maximum clock speed and varying
the number of memory controllers.

As described in Section 3.2, SEEC’s runtime will cre-
ate an initial model by combining actions from each of
the three sets. For this case study, the initial model is op-
timistic in two respects. First, it assumes linear speedup
for all resources. For example, it assumes that doubling
the number of memory controllers and the number of
cores will quadruple the speed of the application, which
is not the case. Second, SEEC’s initial model has no local
minima, which again is not the case in this instance. This
case study evaluates SEEC’s ability to overcome these
limitations.

For each performance target, we start the STREAM
application with the minimum amount of resources, so
the SEEC runtime will be responsible for determining
the optimal allocation of resources to meet the target.
For the first three targets, all adaptation levels converge
to the desired value as shown by the ISE scores in Ta-
ble 4. For the last target, SEEC cannot reach it using
the available actions, but all adaptation levels converge
to the maximum performance. We evaluate SEEC’s abil-
ity to adjust its models online by measuring both the
power consumption of the system and the speed of con-
vergence for each of the four performance goals. The
power consumption data is shown in Figure 5(a) while
the convergence time data is shown in Figure 5(b). In
both figures, the performance target is shown on the x-
axis, while power and convergence time are shown on the
y-axes. Power is measured in Watts and represents the
full system power, including the overhead of running the
SEEC system. Convergence time is the amount of time
required for the application to achieve at least 95% of its
target performance and is measured in units of SEEC’s

11

(a) Power (lower is better).

(b) Convergence Time (lower is better).

Figure 5: SEEC controlling STREAM.

scheduling quanta.
Figures 5(a) and 5(b) show the tradeoffs available at

different adaptation levels. The fastest convergence time
is consistently achieved by AL 1; however, this adapta-
tion level over-provisions resources (using all cores at the
highest clock speed and both memory controllers), thus
it consumes more power than necessary to meet the Max
and Max+ performance targets. In contrast, AL 2 has
a slower convergence time, but saves power. By updat-
ing its system models online using Equation 8, AL 2 is
able to determine the true speedups associated with com-
binations of actions. Thus, AL 2 avoids both local min-
ima and over-provisioning of resources. For example, the
maximum performance is achieved using all eight cores
and both memory controllers. With that resource allo-
cation, additional clock speed increases power consump-
tion without increasing performance. Only AL 2 is able
to detect this condition and avoid increasing the clock
speed; AL 2 saves over 30 Watts of total system power
for the Max+ target compared to AL 1. Of course this
power savings comes at an increase in convergence time

compared to AL 1.
This case study demonstrates SEEC’s ability to esti-

mate the true values of the system models online. At AL
2, SEEC is able to combine models for different sets of
actions while still achieving optimal resource allocation.
In practice, there is a tradeoff between the responsive-
ness of the system and the optimality of SEEC’s decision
engine. By using different, optional adaptation levels,
SEEC allows this tradeoff to be customized as desired.

4.5 Managing Multiple Applications
In the final case study, the SEEC runtime system main-
tains the goals of multiple applications as the underly-
ing hardware fluctuates. In addition, the SEEC runtime
manages actions specified at both the system and applica-
tion level. Specifically, this case study uses the bodytrack
and x264 applications from PARSEC. Both are modified
to emit heartbeats and both are deployed with an initial
goal of half the maximum performance achievable using
all system resources.

In this case there are two sets of actions available to
the SEEC runtime. The first is changes to the num-
ber of cores assigned to each application as described in
previous sections. Additionally, SEEC can alter x264’s
encoding algorithm. Using the systems programming
interface, x264 is modified to specify 560 possible ac-
tions that alter the way it finds temporal redundancy be-
tween frames [18]. These actions increase speed at a
cost of reduced video encoding quality. In this case, the
SEEC runtime must create two separate models. The
first captures bodytrack’s response to cores, while the
second captures x264’s response to both core and algo-
rithm changes. Additionally, x264 requests that SEEC
favor system-level adaptations rather than application-
level ones i.e. SEEC will only change x264’s algorithm if
it cannot meet x264’s goals with the maximum compute
resources.

We deploy both applications and the SEEC runtime
system (using AL 1) with the processor set to 2.396 GHz.
bodytrack is given a higher priority than x264. Then,
10% of the way through bodytrack’s execution, we lower
the processor speed to 1.596 GHz. The sudden change
in frequency simulates a power cap or thermal throttling
event and forces SEEC to adapt and manage a conflicting
request for compute resources.

Figures 6(a) and 6(b) illustrate the behavior of SEEC
in this scenario, where Figure 6(a) depicts bodytrack’s
response and Figure 6(b) shows that of x264. Both fig-
ures show performance (normalized to the average per-
formance recorded for the application using four cores)
on the left y-axis and the number of cores allocated to
each application on the right y-axis. Time (measured
in heartbeats) is shown on the x-axis. The time where
frequency changes is shown by the solid vertical line in

12

(a) bodytrack

(b) x264

Figure 6: SEEC responding to clock speed changes.

each graph. For each application performance is shown
for the baseline system with no clock frequency changes
(“Baseline”), the system with clock frequency changes
but no adaptation (“No adapt”), and SEEC adapting to
clock frequency changes.

Figure 6(a) shows that SEEC maintains bodytrack’s
performance despite the loss in compute power. SEEC
observes the performance loss as a reduction in heart rate
and begins to deallocate cores from the lower priority
x264 and assign them to bodytrack. As shown in the
figure, without SEEC bodytrack would only achieve 65%
of its desired performance, but with SEEC bodytrack is
able to meet its goals.

Figure 6(b) shows that SEEC sacrifices x264’s perfor-
mance to meet the needs of bodytrack. SEEC deallocates
cores from x264 but compensates for this loss by alter-
ing x264’s algorithm. By managing both application and
system level adaptations SEEC is able to resolve resource
conflicts and meet both application’s goals. We note that
if x264 had been the higher priority application, SEEC
would not have changed its algorithm because x264 re-
quests system-level adaptations before application-level

ones. In this case, SEEC would have assigned x264 more
processors and bodytrack would not have met its goals.

This final case study demonstrates several aspects of
SEEC. First, it shows how the SEEC runtime system
can control multiple applications. Second, it shows how
SEEC can simultaneously manage and coordinate ac-
tions specified at both the system and application level.
Finally, it shows how SEEC can automatically adapt to
fluctuations in the environment, in this case a sudden and
unexpected change in processor speed. This behavior
is possible because SEEC directly observes application
performance and goals. We note that SEEC does not
detect the clock frequency change directly, but instead
detects a change in the applications’ heart rates. Thus
SEEC can respond to any change that alters the perfor-
mance of the component applications.

5 Conclusion
This paper has presented the SEEC framework for self-
aware computing. SEEC enables a new computational
model where applications specify their goals, system
software specifies possible actions, and the SEEC run-
time dynamically selects actions to meet application
goals. SEEC has three distinguishing features: 1) it de-
couples the concerns of application programmers from
systems programmers while providing a unified frame-
work for both, 2) it directly incorporates application
goals, and 3) it uses a general, adaptive control-theoretic
decision engine that is easily customized for specific
needs. We have implemented several self-aware systems
in the SEEC model and found it predictably achieves
application-specified goals. Furthermore, the SEEC
model is easily extended to a wide range of systems oper-
ating on different mechanisms. Finally, by observing and
re-evaluating its decisions online, SEEC is able to adapt
its own behavior. This flexibility to change decisions and
take new actions allows SEEC to minimize power con-
sumption while maintaining performance as well as re-
spond to changes in the available compute resources. By
predictably managing resource usage and responding to
unforeseen events, we believe the SEEC model can re-
duce some of the application programmer’s burden when
working with modern multicore systems.

References
[1] Wattsup .net meter. http://www.wattsupmeters.com/.

[2] D. H. Albonesi, R. Balasubramonian, S. G. Dropsho,
S. Dwarkadas, E. G. Friedman, M. C. Huang, V. Kursun,
G. Magklis, M. L. Scott, G. Semeraro, P. Bose, A. Buyukto-
sunoglu, P. W. Cook, and S. E. Schuster. Dynamically tuning
processor resources with adaptive processing. Computer, 36:49–
58, December 2003.

[3] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edel-
man, and S. Amarasinghe. PetaBricks: A language and compiler
for algorithmic choice. In PLDI, 2009.

13

[4] W. Baek and T. Chilimbi. Green: A framework for supporting
energy-conscious programming using controlled approximation.
In PLDI, June 2010.

[5] M. Ben-Yehuda, D. Breitgand, M. Factor, H. Kolodner,
V. Kravtsov, and D. Pelleg. Nap: a building block for remedi-
ating performance bottlenecks via black box network analysis. In
ICAC, 2009.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC bench-
mark suite: Characterization and architectural implications. In
PACT, Oct 2008.

[7] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated manage-
ment of multiple interacting resources in chip multiprocessors: A
machine learning approach. In MICRO, 2008.

[8] A. Block, B. Brandenburg, J. H. Anderson, and S. Quint. An
adaptive framework for multiprocessor real-time system. In
ECRTS, 2008.

[9] G. Candea, E. Kiciman, S. Zhang, P. Keyani, and A. Fox. Jagr:
An autonomous self-recovering application server. AMS, 0, 2003.

[10] C. Cascaval, E. Duesterwald, P. F. Sweeney, and R. W. Wis-
niewski. Performance and environment monitoring for contin-
uous program optimization. IBM J. Res. Dev., 50(2/3):239–248,
2006.

[11] F. Chang and V. Karamcheti. Automatic configuration and run-
time adaptation of distributed applications. In HPDC, 2000.

[12] S. Choi and D. Yeung. Learning-based smt processor resource
distribution via hill-climbing. In ISCA, 2006.

[13] A. Goel, D. Steere, C. Pu, and J. Walpole. Swift: A feedback
control and dynamic reconfiguration toolkit. In 2nd USENIX Win-
dows NT Symposium, 1998.

[14] C.-J. Hamann, M. Roitzsch, L. Reuther, J. Wolter, and H. Hartig.
Probabilistic admission control to govern real-time systems under
overload. In ECRTS, 2007.

[15] J. L. Hellerstein. Why feedback implementations fail: the impor-
tance of systematic testing. In FeBID, 2010.

[16] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback
Control of Computing Systems. John Wiley & Sons, 2004.

[17] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and
A. Agarwal. Application heartbeats: a generic interface for spec-
ifying program performance and goals in autonomous computing
environments. In ICAC, 2010.

[18] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agar-
wal, and M. Rinard. Dynamic knobs for responsive power-aware
computing. In ASPLOS, 2011.

[19] J. Hollingsworth and P. Keleher. Prediction and adaptation in
active harmony. In HPDC, 1998.

[20] IBM Inc. IBM autonomic computing website. http://www.
research.ibm.com/autonomic/, 2009.

[21] E. Ipek, O. Mutlu, J. F. Martnez, and R. Caruana. Self-optimizing
memory controllers: A reinforcement learning approach. In
ISCA, 2008.

[22] C. Karamanolis, M. Karlsson, and X. Zhu. Designing control-
lable computer systems. In HotOS, Berkeley, CA, USA, 2005.

[23] J. O. Kephart and D. M. Chess. The vision of autonomic comput-
ing. Computer, 36:41–50, January 2003.

[24] O. Krieger, M. Auslander, B. Rosenburg, R. W. J. W., Xenidis,
D. D. Silva, M. Ostrowski, J. Appavoo, M. Butrico, M. Mergen,
A. Waterland, and V. Uhlig. K42: Building a complete operating
system. In EuroSys, 2006.

[25] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen.
Processor power reduction via single-isa heterogeneous multi-
core architectures. Computer Architecture Letters, 2(1):2–2, Jan-
Dec 2003.

[26] R. Laddaga. Guest editor’s introduction: Creating robust soft-
ware through self-adaptation. IEEE Intelligent Systems, 14:26–
29, May 1999.

[27] W. Levine. The control handbook. CRC Press, 2005.

[28] B. Li and K. Nahrstedt. A control-based middleware framework
for quality-of-service adaptations. IEEE Journal on Selected Ar-
eas in Communications, 17(9):1632 –1650, Sept. 1999.

[29] C. Lu, Y. Lu, T. Abdelzaher, J. Stankovic, and S. Son. Feed-
back control architecture and design methodology for service de-
lay guarantees in web servers. IEEE TPDS, 17(9):1014–1027,
September 2006.

[30] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Design and eval-
uation of a feedback control edf scheduling algorithm. In RTSS,
1999.

[31] M. Maggio, H. Hoffmann, M. D. Santambrogio, A. Agarwal, and
A. Leva. Controlling software applications via resource alloca-
tion within the heartbeats framework. In CDC, 2010.

[32] J. D. McCalpin. Memory bandwidth and machine balance in cur-
rent high performance computers. IEEE TCCA Newsletter, pages
19–25, Dec. 1995.

[33] S. Oberthür, C. Böke, and B. Griese. Dynamic online reconfig-
uration for customizable and self-optimizing operating systems.
In EMSOFT, 2005.

[34] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem. Adaptive control of virtualized re-
sources in utility computing environments. In EuroSys, 2007.

[35] R. Ribler, J. Vetter, H. Simitci, and D. Reed. Autopilot: adaptive
control of distributed applications. In HPDC, 1998.

[36] J. C. Saez, M. Prieto, A. Fedorova, and S. Blagodurov. A compre-
hensive scheduler for asymmetric multicore systems. In EuroSys,
2010.

[37] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape
and research challenges. ACM Trans. Auton. Adapt. Syst., 4(2):1–
42, 2009.

[38] L. Sha, X. Liu, U. Y. Lu, and T. Abdelzaher. Queueing model
based network server performance control. In RTSS, 2002.

[39] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D. Cor-
ner, and E. D. Berger. Eon: a language and runtime system for
perpetual systems. In SenSys, 2007.

[40] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt. Ac-
celerating critical section execution with asymmetric multi-core
architectures. In ASPLOS, 2009.

[41] Q. Sun, G. Dai, and W. Pan. LPV model and its application in
web server performance control. In ICCSSE, 2008.

[42] M. Tanelli, D. Ardagna, and M. Lovera. LPV model identification
for power management of web service systems. In MSC, 2008.

[43] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Amato,
and L. Rauchwerger. A framework for adaptive algorithm selec-
tion in STAPL. In PPoPP, 2005.

[44] G. Welch and G. Bishop. An introduction to the kalman filter.
Technical Report TR 95-041, UNC Chapel Hill, Department of
Computer Science.

[45] R. West, P. Zaroo, C. A. Waldspurger, and X. Zhang. Online
cache modeling for commodity multicore processors. In PACT,
2010.

[46] R. Zhang, C. Lu, T. Abdelzaher, and J. Stankovic. Controlware:
A middleware architecture for feedback control of software per-
formance. In ICDCS. IEEE computer society, 2002.

14

