

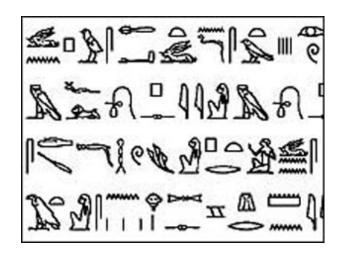
Challenges for Data Driven Systems

Eiko Yoneki

University of Cambridge Computer Laboratory

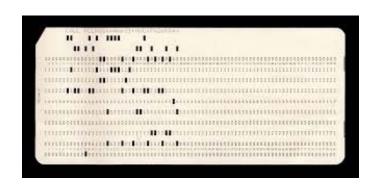
Quick History of Data Management

- 4000 B C Manual recording
- From tablets to papyrus...to paper



1800's - 1940's

- Punched cards (no fault-tolerance)
- Binary data
- 1911: IBM appeared

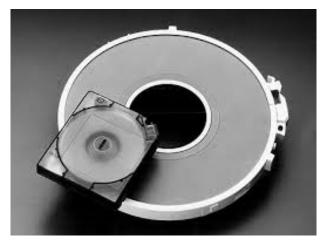


A. Payberah'2014

3

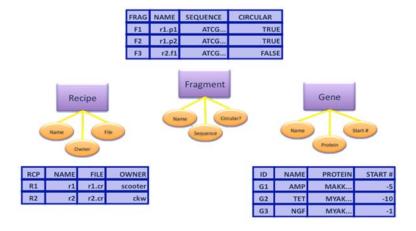
1940's - 1970's

- Magnetic tapes
- Batch transaction processing
- Hierarchical DBMS
- Network DBMS



1980's

- Relational DBMS (tables) and SQL
- ACID (Atomicity Consistency Isolation Durability)
- Client-server computing
- Parallel processing



A. Payberah'2014

5

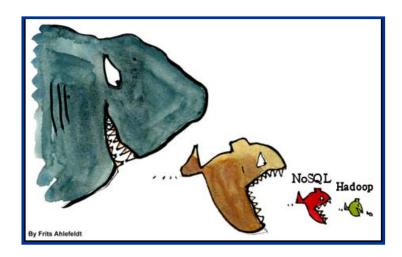
1990's - 2000's

The Internet...

2010's

NoSQL: BASE instead of ACID
 Basic Availability, Soft-state, Eventual consistency

Big Data is emerging!



A. Payberah'2014

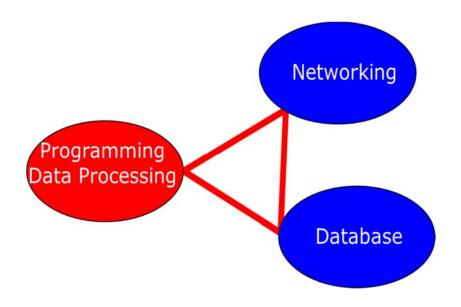
_

Emergence of Big Data

- Increase of Storage Capacity
- Increase of Processing Capacity
- Availability of Data
- Hardware and software technologies can manage ocean of data

Challenge to process Big Data

- Integration of complex data processing with programming, networking and storage
 - → A key vision for future computing



9

Big Data: Technologies

- Cloud (e.g. Infrastructure as a service)
 cf. Multi-core (parallel computing)
- Storage
 - Distributed storage (e.g. Amazon S3)
- Data model/indexing
 - High-performance schema-free database (e.g. NoSQL DB)
- Programming Model
 - Distributed processing (e.g. MapReduce)
- Operations on big data
 - Analytics

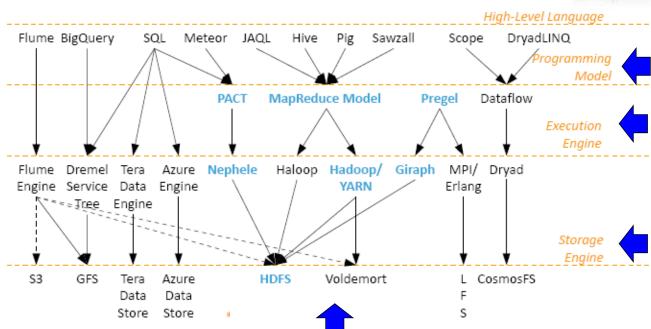
10

Big Data: Technologies

- Storage
 - Distributed storage (e.g. Amazon S3)
- Data model/indexing
 - High-performance schema-free database (e.g. NoSQL DB)
- Programming Model
 - Distributed processing (e.g. MapReduce)
- Operations on big data
 - Analytics Realtime Analytics

11

Distributed Infrastructure



Zookeeper, Chubby

manage

Distributed Infrastructure

- Cloud computing, Web 2.0
- Scalability and fault tolerance

Distributed servers

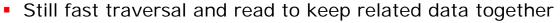
- Amazon EC2, Google App Engine, Elastic, Azure
 - System? OS, customisations
 - Sizing? RAM/CPU based on tiered model
 - Storage? Quantity, type

Distributed storage

- Amazon S3
- Hadoop Distributed File System (HDFS)
- Google File System (GFS), BigTable...

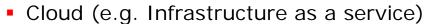
13

Challenges



- Scale out instead scale up
- Avoid naïve hashing for sharding
 - Do not depend on the number of node
 - But difficult add/remove nodes
 - Trade off data locality, consistency, availability, read/write/search speed, latency etc.
- Analytics requires both real time and post fact analytics – and incremental operation

Big Data: Technologies



- Storage
 - Distributed storage (e.g. Amazon S3)
- Data model/indexing
 - High-performance schema-free database (e.g. NoSQL DB)
- Programming Model
 - Distributed processing (e.g. MapReduce)
- Operations on big data
 - Analytics Realtime Analytics

15

Data Model/Indexing

- Support large data
- Fast and flexible access to data
- Operate on distributed infrastructure
- Is SQL Database sufficient?

NoSQL (Schema Free) Database

- NoSQL database
 - Operate on distributed infrastructure
 - Based on key-value pairs (no predefined schema)
 - Fast and flexible
- Pros: Scalable and fast
- Cons: Fewer consistency/concurrency guarantees and weaker queries support
- Implementations
 - MongoDB, CouchDB, Cassandra, Redis, BigTable, Hibase ...

17

Big Data: Technologies

- Storage
 - Distributed storage (e.g. Amazon S3)
- Data model/indexing
 - High-performance schema-free database (e.g. NoSQL DB)
- Programming Model
 - Distributed processing (e.g. MapReduce)
 - Stream processing
- Operations on big data
 - Analytics Realtime Analytics

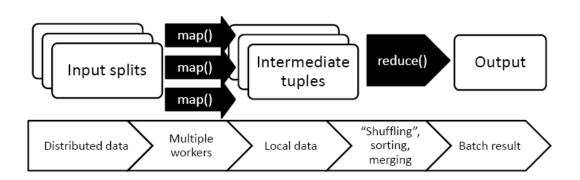
Distributed Processing

- Non standard programming models
 - No traditional parallel programming models (e.g. MPI)
 - e.g. MapReduce
- Data (flow) parallel programming
 - e.g. MapReduce, Dryad/LINQ, NAIAD, Spark

19

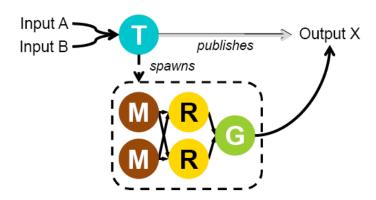
MapReduce

- Target problem needs to be parallelisable
- Split into a set of smaller code (map)
- Next small piece of code executed in parallel
- Results from map operation get synthesised into a result of the original problem (reduce)



CIEL: Dynamic Task Graph

Data-dependent control flow



CIEL: Execution engine for dynamic task
 graphs (D. Murray et al. CIEL: a universal execution engine for distributed data-flow computing, NSDI 2011)

21

Stream Data Processing

- Stream Data Processing
 - Stream: infinite sequence of {tuple, timestamp} pairs
 - Continuous query: result of query in unbounded stream
- Database systems and Data stream systems
 - Database
 - Mostly static data, ad-hoc one-time gueries
 - Store and query
 - Data stream
 - Mostly transient data, continuous queries

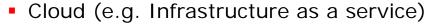
Real-Time Data

- Departure from traditional static web pages
- New time-sensitive data is generated continuously
- Rich connections between entities
- Challenges:
 - High rate of updates
 - Continuous data mining Incremental data processing
 - Data consistency

23

24

Big Data: Technologies



- Distributed storage (e.g. Amazon S3)
- Data model/indexing
 - High-performance schema-free database (e.g. NoSQL DB)
- Programming Model
 - Distributed processing (e.g. MapReduce)
- Operations on big data
 - Analytics

Techniques for Analysis

- Applying these techniques: larger and more diverse datasets can be used to generate more numerous and insightful results than smaller, less diverse ones
 - Classification
 - Cluster analysis
 - Crowd sourcing
 - Data fusion/integration
 - Data mining
 - Ensemble learning
 - Genetic algorithms
 - Machine learning
 - NLP
 - Neural networks
 - Network analysis
 - Optimisation

- Pattern recognition
- Predictive modelling
- Regression
- Sentiment analysis
- Signal processing
- Spatial analysis
- Statistics
- Supervised learning
- Simulation
- Time series analysis
- Unsupervised learning
- Visualisation

25

Typical Operation with Big Data

- Smart sampling of data
 - Reducing data with maintaining statistical properties
- Find similar items
 - Efficient multidimensional indexing
- Incremental updating of models
- Distributed linear algebra → dealing with large sparse matrices
- Plus usual data mining, machine learning and statistics
 - Supervised (e.g. classification, regression)
 - Non-supervised (e.g. clustering..)

Do we need new Algorithms?

- Can't always store all data
 - Online/streaming algorithms
- Memory vs. disk becomes critical
 - Algorithms with limited passes
- N² is impossible
 - Approximate algorithms

27

Easy Cases

- Sorting
 - Google 1 trillion items (1PB) sorted in 6 Hours
- Searching
 - Hashing and distributed search
 - → Random split of data to feed M/R operation
- BUT Not all algorithms are parallelisable

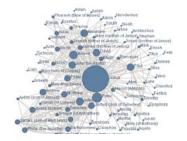
More Complex Case: Stream Data

- Have we seen x before?
- Rolling average of previous K items
- Hot list–most frequent items seen so far
 - Probability start tracking new item
- Querying data streams
 - Continuous Query

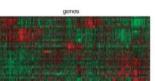
29

Big Graph Data

Bipartite graph of appearing phrases in documents



Social Networks

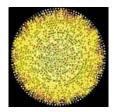


Gene expression data

Airline Graph



Internet Map [lumeta.com]



Protein Interactions [genomebiology.com]

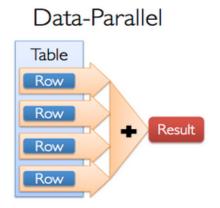
How to Process Big Graph Data?

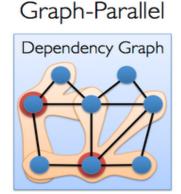
- Data-Parallel (MapReduce, DryadLINQ)
 - Partitioned across several machines and replicated
 - No efficient random access to data
 - Graph algorithms are not fully parallelisable
- Parallel DB
 - Tabular format providing ACID properties
 - Allow data to be partitioned and processed in parallel
 - Graph does not map well to tabular format
- Moden NoSQL
 - Allow flexible structure (e.g. graph)
 - Trinity, Neo4J, HyperGraphDB
 - In-memory graph store for improving latency (e.g. Redis, Scalable Hyperlink Store (SHS))

31

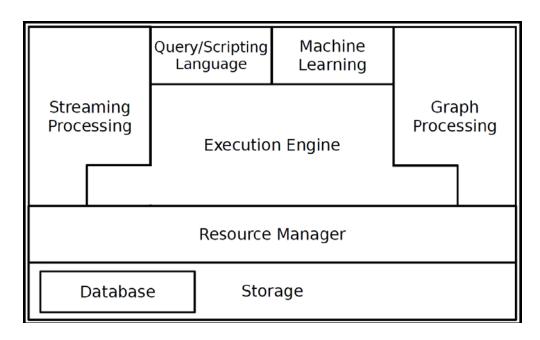
Big Graph Data Processing

- MapReduce is ill-suited for graph processing
 - Many iterations are needed
 - Intermediate results at every iteration harm performance
- Graph specific data parallel
 - Vertex-based iterative computation model
 - Iterative algorithms common in ML and graph analysis





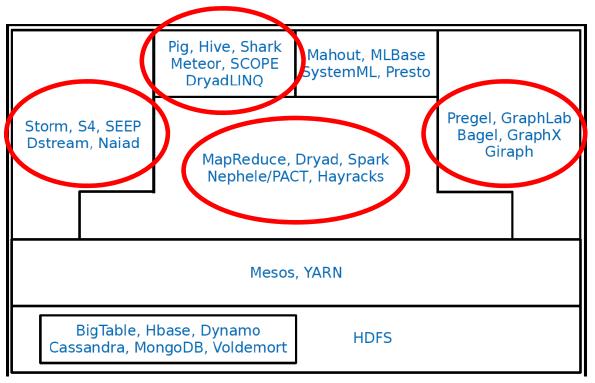
Big Data Analytics Stack



A. Payberah'2014

33

Big Data Analytics Stack



Topic Areas

Session 1: Introduction

Session 2: Programming in Data Centric Environment

Session 3: Processing Models of Large-Scale Graph Data

Session 4: Map/Reduce Hands-on Tutorial with EC2

Session 5: Optimisation in Graph Data Processing

+ Guest lecture

Session 6: Stream Data Processing + Guest lecture

Session 7: Scheduling Irregular Tasks

Session 8: Project study presentation

35

Summary

R212 course web page:

www.cl.cam.ac.uk/~ey204/teaching/ACS/R212_2014_2015

Enjoy the course!