Green-Marl: A DSL for Easy
and Efficient Graph Analysis

Hong, Chafi, Sedlar and Olukotun

Reviewed by Neil Satra (ns532)



OpenMP imp

ementation

B vertex_betweenness_centrality.c 829 lines (701 with data), 21.5 kB

Co~NOOTUVMHWNME

#ginclude "graph_defs.h"

#include "graph_metrics.h"

#include "utils.h"
#include "sprng.h"

void vertex_betweenness_centrality_parBFS(graph_t* G, double* BC, long numSrcs) {

attr_id_t *s; Y

plist_t* P; /b
double* sig; e
attr_id_t* d; £

double* del; Y

attr_id_t *in_degree,

attr_id_t* pListMem;
#if RANDSRCS

attr_id_t* Srcs;
#endif

stack of vertices in the order of non-decreasing
distance from s. Also used to implicitly

represent the BFS queue */

predecessors of a vertex v on shortest paths from s */
No. of shortest paths */

Length of the shortest path between every pair */
dependency of vertices */

*numEdges, *pSums;

attr_id_t *start, *end;

long MAX_NUM_PHASES;



Green-Marl implementation

| Procedure Compute_BC (

2 G: Graph, BC: Node_Prop<Float>(G)) {

3 G.BC = 0; // initialize BC

4 Foreach(s: G.Nodes) |

5 // define temporary properties

6 Node_Prop<Float> (G) Sigma;

7 Node_Prop<Float> (G) Delta;

8 s.Sigma = 1; // Initialize Sigma for root
9 // Traverse graph in BFS-order from s

10 InBFS (v: G.Nodes From s) (v!=s) |

11 // sum over BFS-parents

12 v.Sigma = Sum(w: v.UpNbrs) {(w.Sigma};
13 }

14 // Traverse graph in reverse BFS-order
15 InRBFS (v!=s) {

16 // sum over BFS-children

17 v.Delta = Sum (w:v.DownNbrs) {

18 v.Sigma / w.Sigma * (1+ w.Delta)
19 }i
20 v.BC += v.Delta @s; //accumulate BC

(g
—_

} ¥ @



Green-Marl needs way fewer Lines of Code

900
800
700
600
500
400
300
200

100

0
OpenMP Green-Marl



Green-Marl is a Domain Specific Language

For Graph analysis algorithms
With Intuitive high-level constructs

Which Expose data-level parallelism inherent in the algorithm



High level constructs

o Graphs, nodes, edges
o Neighbours (in, out, up and down)

o Breadth-First and Depth-first search



In goes Green-Marl code

Target Target
Independent Dependent
Optimisation Optimisation

Code
Generation

Parsing and

Checking

Out comes C++/0OpenMP code



Objection: Performance

18

apeed up
SNAP ]
GreenMarl
NoFlipBe
‘NoSaveCh, NoFlipBe

SrMNWANT-JOOW

Num threads

(a) RMAT

O 2 4 6 8 10 12 14 16

18
17

16
15

O MNWLEC-J00WD

speed up
GreenMarl .
NoFlipBe —8— -
:NoSaveCh, NoFlipBe —#— -
0 2 4 6 88 10 12 14 16
Num threads
(b) Uniform



Objection: New Language

o Can interleave with C++ code
o Tutorial on Github

o Detailed language specs available online



Objection: Adoption

o Production ready — actively maintained on Github

o Built-in support for Giraph (in sequel to this paper)



In goes Green-Marl code

Target Target
Independent Dependent
Optimisation Optimisation

Code
Generation

Parsing and

Checking

Out comes C++/0OpenMP code



Objection: Adoption

o Production ready — actively maintained on Github
o Built-in support for Giraph (in sequel to this paper)
o Oracle adoption in their graph analytic framework, Oracle PGX

o No lock in



Advantages

o Easier to write graph algorithms*
o Algorithms perform better
o Don’t need to rewrite entire application

o Code is portable across platforms



F e

PRy W A N @ o=

O UM == UMD NG L B LNLN LN LA = LN

Well Evaluated

SNAP —+— ?_E SNAP —+—
LGreenMarl —e— 7 breenMarl —e—
- NolM —a— 6.5 } NolM —a—
= MolM, NoSRDL —=— - & FNolM, NoSRDC —s— 1
- e :;:_;I 5.5 | 3
2 —#
- 4.5 | -
4 k I
3.5 ¢
3k
2.5 F
-
1.5 |
0.5 | '
g e i = - - TITTTE
i i i i i M i T ﬂ i i i i i 1 i _T
0 2 4 6 8 10 12 14 16 0 2 4 & 8 10 12 14 16

Num threads Num threads

(a) RMAT (b) Uniform

o Tested on Random and

Power-law graphs

o Individual

optimisations tested



Weakness

Graph is immutable during the analysis



Summary

o Write graph analysis portion of software in Green-Marl|
o Get human-readable output in target language

o With automatic optimisations

Reviewed by Neil Satra
ns532@cam.ac.uk



