Elixir
A System for Synthesizing Concurrent
Graph Programs

B UNIVERSITY OF
¥ CAMBRIDGE

Motivation

* Performance of standard graph algorithms
dependent on:
* Graph topology (diameter)
* Scheduling
 Architecture (SIMD/MIMD)

* Elixir: high-level tool to generate optimal
implementations

2 UNIVERSITY OF

QY CAMBRIDGE

Specification

* Typed graph definition

* Operators with shape and value constraints
define updates on subgraphs

e Statements: foreach, for i..range, iterate
* Scheduling operators restrict order

2 UNIVERSITY OF

¥ CAMBRIDGE

mitDist | nodes(node a, dist d) | —

| d = 1f (a ==source) 0 else oo]

relaxEdge = | nodes(node a, dist ad)
nodes(node b, dist bd)
edges(src a, dst b, wtw)
ad + w < bd]
| bd =ad + w |

init = foreach initDist
sssp = iterate relaxEdge > sched
main = init ; sssp

2 UNIVERSITY OF

'A‘;‘"‘.‘;‘

¥ CAMBRIDGE

Algorithms in Elixir

Algorithm

Schedule specification

Dijkstra

sched = metric ad > group b

Bellman-Ford

NUM_NODES : unsigned int

/I override sssp

sssp = for 1=1..(NUM_NODES —1)
step

step = foreach relaxEdge

213 UNIVERSITY OF

&P CAMBRIDGE

Scheduling operators

* Metric

— Define online priorities

* Group

— Co-schedule edges from same source
* Fuse
* Unroll
 Ordered/unordered

AL UNIVERSITY OF

¥ CAMBRIDGE

Example: unroll and group

3
o—0
1

A

2 UNIVERSITY OF

5 ";..;x

Example: unroll and group

2 UNIVERSITY OF

5 ";..;x

Synthesis

* Translated to C++, predefined graph types

* Worklists hold potential matching subgraphs
* Dynamic scheduling in OpenMP
 Enumerative exploration approach

— Tests a predefined set of combinations of unroll,
grouping

2 UNIVERSITY OF

¥ CAMBRIDGE

Matching subgraphs 1/2

dist=ad dist=bd

assume (ad + w < bd)
new_bd = ad + w

assert !(ad + w < new_bd)

2.8 UNIVERSITY OF
¥ CAMBRIDGE

10

Matching subgraphs 2/2

dist=ad dist=bd dist=dd

ORRCLe0

“@“ UNIVERSITY OF
% CAMBRIDGE

11

Evaluation 1/2

OO —

600 —

500 —

oo —

Time (ms)
|
Ffﬂw 4

200 —

100 —

Algorithim

Lonestar
w5
vE2

w53

Akai-al 28

dswT

=

]
tﬁi—"'ﬂ-l'l-q-—.n_‘-.-.- s - =il

58 UNIVERSITY OF
¥ CAMBRIDGE

16 20 24
Threads

12

Evaluation 2/2

1400 -

1200

1000 -

Q

£ 800
600 A
400 -

200 4 . «°

B UNIVERSITY OF

.‘."...

@9 CAMBRIDGE

Variant

13

A Graph G...

Definition 3.1 (Graph). ' A graph G = (V& E® Au®)
where V© < Nodes are the graph nodes, E© C VCE x V&
are the graph edges, and At : ((Attrs x V) — Vals) U
((Attrs x V€ x V&) — Vals) associates values with nodes
and edges. We denote the set of all graphs by Graph.

ri
" veV-,v=pz,)
A!!F(atir} = u(Upd™(y)). and Arrf{{a.,:r:l.} =1,

VP lé: {p(z) |z e VE) Att(a,v) else.
EP = {(u(z),p(y) | (z,y) € EF}
AﬁD '-J":r {(ﬂ.._.AffG(ﬂ-z u)}* [:E]?Affg(b, v, U".)} | IL?_,L 1'} e Eﬂ.
a,beAnrs, uc VP, (v,w) € ED} w(Upd™(y)), wu = #{Iu;‘rl; = p(Ty)

Atf' (a,u,v) = v
(a,u,v) and Att" (0, 24, 70) = 12

Att(a,u,v) else

Definition 3.2 (Pattern). A pattern P = (VP EY AP) is
a connected graph over variables. Specifically, V' < Vars
are the pattern nodes, E¥ C VF xV'F are the pattern edges,
and Att" : (Anrs x VP) — Vars U (Aurs x VP < VP) -
Vars associates a distinct variable (not in VY) with each
node and edge. We call the latter set of variables attribute

2 UNIVERSITY OF . P P
variables. We refer ro (V'', E*) as the shape of the partern.
¥ CAMBRIDGE (V= B7) Jihe p

Conclusion

* “Does not rely on expert knowledge”
* High up-front effort to learn specification
* Bloated formalism

e Can beat hand-written implementations
through intricate load-balancing

* No dynamic graphs supported

2.8 UNIVERSITY OF

&P CAMBRIDGE

15

