
SPADE: The System S Declarative
Stream Processing Engine (2008)

William Jones

Background - The rise of streams
● In the last 10 years, stream processing has become

prevalent.

● Came out of the demand of real time data analysis.

● Instead of static data, streams are continuous real-time

data sources.

Background - What is System S
● SPADE runs on System S, necessary to understand

what this is first.
● System S is a distributed stream processing

middleware, developed by IBM.
● Abstracts away commonly seen distributed computing

issues. e.g. Placement and scheduling, distributed job
management, failure-recovery, and security.

System S continued

● User inputs a data-flow graph of processing

elements (PEs) connected by streams

containing stream data objects (SDOs).

● Includes all important input stream(s)

source(s) and output stream(s) sink(s).

Problem for inexperienced programmers...

● System S offers INQ, a simple DSL where users can

pose simple ‘inquiries’ to their streams.

● This automatically generates data-flow graphs

consisting of existing PEs - quite inflexible.

… Customisation only available to experienced
programmers

● For custom data-flow graphs and PEs, the user needs to write C++

or Java code to interact with the PE APIs.

● They need to specify PE behaviour in terms of input and output

port, configuration files to specify topology of data-flow graph etc…

This is a headache.

Where SPADE fits in

Introducing SPADE
● SPADE solves this problem by providing a declarative

intermediate language.

● Basic building block objects are streams.

● Able to specify arbitrary data-flow graphs, and compose

streams with them operators and stream adaptors.

SPADE - further details
● Code is compiled automatically and generates code

running natively on System S.

● Performance is optimised automatically.

Example operators
● Functor

○ filtering, projection, mapping etc...
● Aggregate

○ summarization of incoming tuples
● Join

○ correlating two streams.
● Also possible to create udops (user defined operations)

Operators are partitioned amongst PEs

● In a way to minimise inter-PE
communication, but also ensure
PEs are within capacity.

● Hard to do deterministically,
especially for user-defined
operations.

● They describe a statistical
learning approach. They compile
SPADE code twice, first to collect
statistics, then to optimise
operator partitions for
performance based on these
statistics.

Example SPADE application

Calculating the bargaining index using real time financial data.

● Details of statistical learning not clear. IBM restricting
information?

● Doesn’t explicitly compare performance with native
code written for System S. Doesn’t even attempt to
quantify these optimisations.

● Doesn’t give a clear evaluation with other stream
processing platform (if any exist).

● No example code written in SPADE.

Criticisms

