SPADE: The System S Declarative
Stream Processing Engine (2008)

Willilam Jones

Background - The rise of streams

e Inthe last 10 years, stream processing has become

prevalent.
e (Came out of the demand of real time data analysis.

e Instead of static data, streams are continuous real-time

data sources.

Background - What is System S

e SPADE runs on System S, necessary to understand
what this is first.

e System S is a distributed stream processing
middleware, developed by IBM.

e Abstracts away commonly seen distributed computing
Issues. e.g. Placement and scheduling, distributed job
management, failure-recovery, and security.

System S continued

e User inputs a data-flow graph of processing
elements (PEs) connected by streams
containing stream data objects (SDOs).

e Includes all important input stream(s)

source(s) and output stream(s) sink(s).

Problem for inexperienced programmers...

e System S offers INQ, a simple DSL where users can
pose simple ‘inquiries’ to their streams.
e This automatically generates data-flow graphs

consisting of existing PEs - quite inflexible.

... Customisation only available to experienced
programmers

e For custom data-flow graphs and PEs, the user needs to write C++
or Java code to interact with the PE APls.

e They need to specify PE behaviour in terms of input and output
port, configuration files to specify topology of data-flow graph etc...

This is a headache.

Where SPADE fits In

Users: Little/No Expertisa Users: Knowledgeable in Declarative Querying Users: Experts in Programming

Describe the application
using a toolkit of stream

processing operators g s _
s @ e
----- -—-—- &

High level Inquiry
E.g.”Estimate the
customer satisfaction”

Program PEs
Connact tham

====:.llll
===E:.llll =.|=.. am» CR BB
«en B «n

"G
syour s i

User interacts with an User interacts with a User interacts with
Inteligent Systam Hgh-level Language a Programming API

INQ SPADE PE AP

Figure 1: System S from an application developer’s perspective

Introducing SPADE

SPADE solves this problem by providing a declarative
intermediate language.

Basic building block objects are streams.

Able to specify arbitrary data-flow graphs, and compose

streams with them operators and stream adaptors.

SPADE - further details

e (Code is compiled automatically and generates code
running natively on System S.

e Performance is optimised automatically.

Example operators

Functor

o filtering, projection, mapping etc...

Aggregate

o summarization of incoming tuples

Join

o correlating two streams.

Also possible to create udops (user defined operations)

Operators are partitioned amongst PEs

In a way to minimise inter-PE
communication, but also ensure
PEs are within capacity.

Hard to do deterministically,
especially for user-defined
operations.

They describe a statistical
learning approach. They compile
SPADE code twice, first to collect
statistics, then to optimise
operator partitions for
performance based on these
statistics.

PE1

a8
\'
ey o]

Figure 4: Example operator to PE mapping

Example SPADE application

Functor Aggregate Functor
, Sink
— Pass trades and Compute moving average Compute VWAP
= - compute volume™price (for each symbol) “ —
Functor Join Functor ‘
Read inout > | Write results
from wgo m) > | |IESH D m to DB2 DSE

Pass quotes Compute bargain index Drop zero indexes

Figure 5: Bargain Index computation for all stock symbols

Calculating the bargaining index using real time financial data.

Criticisms

e Details of statistical learning not clear. IBM restricting
information?

e Doesn't explicitly compare performance with native
code written for System S. Doesn’t even attempt to
quantify these optimisations.

e Doesn'’t give a clear evaluation with other stream
processing platform (if any exist).

e No example code written in SPADE.

