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Motivation

e Social Networks, like Twitter or Facebook continuously
generate huge quantities of data

e For the analysis to have value the data needs to be
processed in real-time

e Existing frameworks, such as Hadoop or Graphlab are
unable to provide the timeliness guarantees



Key Components

Distributed in-memory graph storage system

Graph engine that supports incremental
graph mining

Snapshot mechanism that produces reliable
and consistent updates periodically

Fault tolerance mechanisms



Kineograph

Ingest nodes take raw data as input
and transform it into a sequenced
transaction

They are also responsible for
transmitting the transactions to the
graph nodes

Graph nodes store data and
perform computations on it
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Figure 1. System overview.



Shapshotting

Kineograph batches operations into small
windows, to ensure good timeliness of
results
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Overview of the computation
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Graph Engine

Familiar vertex centric
approach to computation

Supports both the push Updates from N
(Pregel) and pull (Graphlab)  other vertices,

model _ Init Detect Vertex | Compute New X Change
Has support for dynamic Status Vertex Values Significantly?
computation .

Scheduler does not guarantee
sequential consistency (but no ,
write races can occur) Aggregation Updates

Graph-scale Propagate Y

<

Computation overview



Evaluation: Throughput

How the throughput of the system varies
with the number of ingest nodes

Throughput (tweets per second)
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Evaluation: Timeliness
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Conclusion

e Graph processing framework, designed for
real-time streaming data

e Supports dynamic, incremental graph
computation.

e Evaluation leaves a little to be desired, not
clear if this framework can run for extended
periods of time.






