
PowerGraph: Distributed Graph-
Parallel Computation on Natural

Graphs

J. E. Gonzales, Y. Low, H. Gu, D.
Bickson, Carnegie Mellon University

C. Guestrin, University of Washington

Introduction

• New framework for distributed graph
paralleled computation on natural graphs

• Transition from big data to big graphs

• Graphs are ubiquitous…

• Graphs encode relationships between

People Products Ideas

 Facts Interests

 Billions of vertices and edges and rich metadata

Graphs are essential for Data-Mining
and Machine Learning

• They help us identify influential people and
information

• Find communities

• Target ads and products

• Model complex data dependencies

Problem: Existing distributed graph
computation systems perform poorly

on Natural Graphs

• Example: PageRank on Twitter Follower Graph

40M Users
1.4 Billion

Links

Properties of the Natural Graphs

Challenges of Natural Graphs

• Sparsity structure of natural graphs presents a
unique challenge to efficient distributed
graph-parallel computation

• Hallmark property: most vertices have
relatively few neighbours while a few have
many neighbours

Properties of the Natural Graphs

• Difficult to Partition

– Power-Law graphs do not have low-cost balanced
cuts

– Traditional graph-partitioning algorithms perform
poorly on Power-Law Graphs

PowerGraph

• Split High-Degree vertices:

• Introduction of new abstraction:

 EQUIVALENCE on Split Vertices 

How do we program graph
computation?

• Graph-Parallel Abstraction

– A user-defined Vertex-program runs on each
vertex

• Pregel

– Graph constrains interact using messages

• GraphLab

– Graph constrains interact through shared state

• Parallelism: run multiple vertex program at
the same time

PageRank Algorithm

• Example: The popularity of a user depends of
the popularity of her followers, which
depends of the popularity of their followers

• Update ranks in parallel

• Iterate process until convergence

   
()

0.15 ji

j Nbrs i

R i w R j


  
Rank of user i

Weighted sum of neighbors’ ranks

Pregel PageRank

Receive all the
messages

Update the rank of
the vertex

Send new messages
to neighbors

GraphLab PageRank

Update the rank of
the vertex

Compute sum over
neighbors

Challenges of High-Degree Vertices

• A lot of iterating over our neighborhood

• Pregel: many messages

• GraphLab: Touches a large number of states

Pregel Message Combiners on Fan-IN

• User defines commutative associative
message operations:

Pregel Struggles with Fan-OUT

• Fan-OUT: Broadcast sends many copies of the
same message to the same machine

GraphLab Ghosting

Changes to master are
synced to ghosts

Fan-IN and Fan-Out performance

More high-degree vertices

Graph Partitioning

• Graph parallel abstractions rely on
partitioning:

– Minimize communication

– Balance computation and storage

• Both GraphLab and Pregel resort to random
partitioning on natural graphs

– They randomly split vertices over machines

10 Machines => 90% of edges cut
100 Machines => 99% of edges cut

In Summary

• GraphLab and Pregel are not well suited for
computation of natural graphs

• Challenges of high-degree vertices

• Low quality partitioning

Main idea of PowerGraph

• GAS decomposition: distribute vertex –
programs
– Move computation to data

– Parallelize high-degree vertices

• Represents three conceptual phases of a
vertex-program:
– Gather

– Apply

– Scatter

PowerGraph Abstraction

• Combines the best features from both Pregel
and GraphLab

– From GraphLab it borrows the data-graph and
shared memory view of computation

– From Pregel it borrows the commutative,
associative gather concept

GAS Decomposition

PageRank in PowerGraph

Example

New Theorem: For any edge cut we can construct a vertex cut
which requires strictly less communication and storage.

Constructing Vertex-Cuts

• Evenly assign edges to machines

– Minimize machines spanned by each vertex

• Assign each edge as it is loaded

– Touch each edge only once

• Three distributed approaches:

– Random Edge Placement

– Coordinated Greedy Edge Placement

– Oblivious Greedy Edge Placement

Random Edge Placement

• Uniquely assigned to one machine

• Balanced cut

Greedy Vertex-Cuts

• Place edges on machines which already have
the vertices in that edge.

• If more machines have the same vertex, place
edge on less loaded machine

Greedy Vertex-Cuts

• Greedy minimizes the expected number of
machines spanned

• Coordinated

– Requires coordination to place each edge

– Slower: higher quality cuts

• Oblivious

– Approx. greedy objective without coordination

– Faster: lower quality cuts

Partitioning Performance

Partitioning Performance

Other Features

• Supports three execution modes:

– Synchronous: Bulk-Synchronous GAS Phases

– Asynchronous: Interleave GAS Phases

– Asynchronous + Serializable: Neighbouring
vertices do not run simultaneously

• Delta Caching

– Accelerate gather phase by caching partial sums
for each vertex

Implementation and Evaluation

• Technical details:

– Experiments were performed on a 64 node cluster
of Amazon EC2 Linux instances

– Each instance has two quad core Intel Xeon X5570
processor with 23GB RAM and is connected via 10
GigE Ethernet

– PowerGraph was written in C++ and compiled
with GCC 4.5

System Design

• Built on top of

– MPI/TCP-IP

– Pthreads

– HDFS

• Uses HDFS for Graph input and output

• Fault-tolerance is achieved by check-poining

– Snapshot time <5 sec. for twitter network

Implemented Algorithms

Results

More results

Thank you for your attention!

http://graphlab.org

Some of the slides were taken from the talk
by J. E. Gonzalez, available on the website:
https://www.usenix.org/conference/osdi12/

technical-sessions/presentation/gonzalez

