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Introduction 

• New framework for distributed graph 
paralleled computation on natural graphs 

• Transition from big data to big graphs 



• Graphs are ubiquitous… 

 

 

 

 

 

• Graphs encode relationships between 

People  Products  Ideas 

  Facts   Interests 

 Billions of vertices and edges and rich metadata 



Graphs are essential for Data-Mining 
and Machine Learning 

• They help us identify influential people and 
information 

• Find communities  

• Target ads and products 

• Model complex data dependencies 



Problem: Existing distributed graph 
computation systems perform poorly 

on Natural Graphs 

• Example: PageRank on Twitter Follower Graph 

40M Users 
1.4 Billion 

Links 



Properties of the Natural Graphs 



Challenges of Natural Graphs 

• Sparsity structure of natural graphs presents a 
unique challenge to efficient distributed 
graph-parallel computation 

• Hallmark property: most vertices have 
relatively few neighbours while a few have 
many neighbours 

 





Properties of the Natural Graphs 

• Difficult to Partition 

– Power-Law graphs do not have low-cost balanced 
cuts 

– Traditional graph-partitioning algorithms perform 
poorly on Power-Law Graphs 



PowerGraph 

• Split High-Degree vertices: 

 

 

 

 

• Introduction of new abstraction: 

 EQUIVALENCE on Split Vertices  

 



How do we program graph 
computation? 

• Graph-Parallel Abstraction 

– A user-defined Vertex-program runs on each 
vertex 

• Pregel 

– Graph constrains interact using messages 

• GraphLab 

– Graph constrains interact through shared state 

• Parallelism: run multiple vertex program at 
the same time 



PageRank Algorithm 

• Example: The popularity of a user depends of 
the popularity of her followers, which 
depends of the popularity of their followers 

 

 

 

• Update ranks in parallel 

• Iterate process until convergence 
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Pregel PageRank 

Receive all the 
messages 

Update the rank of 
the vertex 

Send new messages 
to neighbors 



GraphLab PageRank 

Update the rank of 
the vertex 

Compute sum over 
neighbors 



Challenges of High-Degree Vertices 

• A lot of iterating over our neighborhood 

• Pregel: many messages 

• GraphLab: Touches a large number of states 

 



Pregel Message Combiners on Fan-IN 

• User defines commutative associative 
message operations: 

 

 

 

 



Pregel Struggles with Fan-OUT 

• Fan-OUT: Broadcast sends many copies of the 
same message to the same machine 

 



GraphLab Ghosting 

Changes to master are 
synced to ghosts 



Fan-IN and Fan-Out performance 

More high-degree vertices 



Graph Partitioning  

• Graph parallel abstractions rely on 
partitioning: 

– Minimize communication 

– Balance computation and storage 

• Both GraphLab and Pregel resort to random 
partitioning on natural graphs 

– They randomly split vertices over machines 

10 Machines => 90% of edges cut 
100 Machines => 99% of edges cut 



In Summary 

• GraphLab and Pregel are not well suited for 
computation of natural graphs 

• Challenges of high-degree vertices 

• Low quality partitioning 



Main idea of PowerGraph 

• GAS decomposition: distribute vertex – 
programs 
– Move computation to data 

– Parallelize high-degree vertices 

• Represents three conceptual phases of a 
vertex-program: 
– Gather 

– Apply 

– Scatter 

 



PowerGraph Abstraction 

• Combines the best features from both Pregel 
and GraphLab 

– From GraphLab it borrows the data-graph and 
shared memory view of computation  

– From Pregel it borrows the commutative, 
associative gather concept 



GAS Decomposition  

 



PageRank in PowerGraph 

 



Example 



 

New Theorem: For any edge cut we can construct a vertex cut 
which requires strictly less communication and storage. 



Constructing Vertex-Cuts 

• Evenly assign edges to machines 

– Minimize machines spanned by each vertex 

• Assign each edge as it is loaded 

– Touch each edge only once 

• Three distributed approaches: 

– Random Edge Placement 

– Coordinated Greedy Edge Placement 

– Oblivious Greedy Edge Placement 



Random Edge Placement 

 

 

 

 

 

 

 

• Uniquely assigned to one machine 

• Balanced cut 



Greedy Vertex-Cuts 

• Place edges on machines which already have 
the vertices in that edge. 

• If more machines have the same vertex, place 
edge on less loaded machine 



Greedy Vertex-Cuts 

• Greedy minimizes the expected number of 
machines spanned 

• Coordinated 

– Requires coordination to place each edge 

– Slower: higher quality cuts 

• Oblivious 

– Approx. greedy objective without coordination 

– Faster: lower quality cuts 



Partitioning Performance 



Partitioning Performance 

 



Other Features 

• Supports three execution modes: 

– Synchronous: Bulk-Synchronous GAS Phases 

– Asynchronous: Interleave GAS Phases 

– Asynchronous + Serializable: Neighbouring 
vertices do not run simultaneously 

• Delta Caching 

– Accelerate gather phase by caching partial sums 
for each vertex 



Implementation and Evaluation 

• Technical details: 

– Experiments were performed on a 64 node cluster 
of Amazon EC2 Linux instances 

– Each instance has two quad core Intel Xeon X5570 
processor with 23GB RAM and is connected via 10 
GigE Ethernet 

– PowerGraph was written in C++ and compiled 
with GCC 4.5 



System Design 

• Built on top of 

– MPI/TCP-IP 

– Pthreads 

– HDFS 

• Uses HDFS for Graph input and output 

• Fault-tolerance is achieved by check-poining 

– Snapshot time <5 sec. for twitter network 



Implemented Algorithms 



Results 



More results 



Thank you for your attention! 

http://graphlab.org 

Some of the slides were taken from the talk 
by J. E. Gonzalez, available on the website: 
https://www.usenix.org/conference/osdi12/

technical-sessions/presentation/gonzalez 


