PowerGraph: Distributed Graph-
Parallel Computation on Natural
Graphs

J. E. Gonzales, Y. Low, H. Gu, D.
Bickson, Carnegie Mellon University

C. Guestrin, University of Washington

Introduction

* New framework for distributed graph
paralleled computation on natural graphs

* Transition from big data to big graphs

] L4 /v
* Graphs are ubiquitous... TURa CRapy,
S

Social Media Science Advertising Web

B £ a 9
vy &©¢ B B8

* Graphs encode relationships between

People Products ldeas
Facts Interests

v Billions of vertices and edges and rich metadata

Graphs are essential for Data-Mining
and Machine Learning

They help us identify influential people and
information

Find communities
Target ads and products
Model complex data dependencies

Problem: Existing distributed graph
computation systems perform poorly

on Natural Graphs

 Example: PageRank on Twitter Follower Graph

Runtime Per Iteration
0 50 100 150 200

40M Users
1.4 Billion

Piccolo _
PowerGraph ¥

Properties of the Natural Graphs

Power-Law Degree Distribution

10", - —— —
| More than 108 vertices
{De—" have one neighbor.
w 10 Y =,
- " .
e Top 1% of vertices are
Q o .
> 10 adjacent to
5 50% of the edges!
R 4 —
Q |
210
£
: >
< 10°
AltaVista WebGraph ——
o | 1.48 Vertices, 6.6B Edges
10 ‘n ¥ 2 . (3] Vo A o 8
10 10 10 10

Degree

Challenges of Natural Graphs

e Sparsity structure of natural graphs presents a
unique challenge to efficient distributed
graph-parallel computation

* Hallmark property: most vertices have
relatively few neighbours while a few have
many neighbours

NUIMDEr or veruces

Power-Law Degree Distribution

1 0 [E .
| | More than 108 vertices

= -
(De— have one neighbor.
10%Y-.

; | ?op 1% of vertices are k
10° adjacent to
50% of the edges!
10° { .
10° Power-Law Degree Distribution

AltaVista WebGraph
o | 1.48 Vertices, 6.68B Edges

W 0 pegee @~ “Star Like” Motif

Properties of the Natural Graphs

e Difficult to Partition

— Power-Law graphs do not have low-cost balanced
cuts

— Traditional graph-partitioning algorithms perform
poorly on Power-Law Graphs

CPU 1 CPU 2

PowerGraph

e Split High-Degree vertices:

Machine 1 Machine 2

=

* Introduction ot new abstraction:
v EQUIVALENCE on Split Vertices ¥

How do we program graph
computation?

Graph-Parallel Abstraction

— A user-defined Vertex-program runs on each
vertex

Pregel

— Graph constrains interact using messages

Graphlab

— Graph constrains interact through shared state

Parallelism: run multiple vertex program at
the same time

PageRank Algorithm

 Example: The popularity of a user depends of
the popularity of her followers, which
depends of the popularity of their followers
R[(]=0.15+ > w,;R[]]

jeNbrs(i)

Rank of user i

Weighted sum of neighbors’ ranks

* Update ranks in parallel
* |terate process until convergence

Pregel PageRank

Receive all the
messages

Update the rank of
the vertex

vold PregelPageRank (Message msqg)
float total = msg.value();
vertex.val = 0.15 + 0.85«total;
foreach(nbr in out_neighbors) :
SendMsg (nbr, wvertex.val/num out_nbrs);

Send new messages
to neighbors

GraphlLab PageRank

Compute sum over
neighbors

vold GraphlabPageRank (Scope scope)
float accum = 0;
foreach (nbr in scope.in_nbrs)
accum += nbr.val / nbr.nout_nbrs();
vertex.val = 0.15 + 0.85 » accum;

Update the rank of
the vertex

Challenges of High-Degree Vertices

* A lot of iterating over our neighborhood
* Pregel: many messages
* GraphlLab: Touches a large number of states

Pregel Message Combiners on Fan-IN

e User defines commutative associative
message operations:

&<

G >

g

Machine 1 Machine 2 Machine 1 Machine 2

Pregel Struggles with Fan-OUT

 Fan-OUT: Broadcast sends many copies of the
same message to the same machine

SS
=]

O

Machine 1 Machine 2

GraphLab Ghosting

a Changes to master are
synced to ghosts

Machine 1 Machine 2

G/;
\ (e)
*Ghost &

Machine 1 Machine 2

Fan-IN and Fan-Out performance

10 10
m g 1) ,3'51 Pregel {Piccolo)
6 7 Graphiat & TN Graphiat
- Pregel (Piccolo) IE Y
. ; Y L PowerGraph
¥ *— PowerGraph & N -
P 4- 5 h -
b = L b
~ 2.-__*_ 4 - 2 -’ H'“a--____
— S i
?.E 19 2 2.1 2.2 ? & 1.9 2 2.1 22
i L
(c) Power-law Fan-In Comm. (d) Power-law Fan-Out Comm.

- More high-degree vertices

Graph Partitioning

* Graph parallel abstractions rely on
partitioning:
— Minimize communication

— Balance computation and storage

 Both GraphlLab and Pregel resort to random
partitioning on natural graphs

— They randomly split vertices over machines

Theorem 5.1. If vertices are randomly assigned to p
machines then the expected fraction of edges cut is:

10 Machines => 90% of edges cut

% [lEf{EES Cul] _, 1 5.1) 100 Machines => 99% of edges cut
|E| P '

In Summary

 GraphlLab and Pregel are not well suited for
computation of natural graphs

* Challenges of high-degree vertices
* Low quality partitioning

Main idea of PowerGraph

* GAS decomposition: distribute vertex —
programs

— Move computation to data
— Parallelize high-degree vertices
* Represents three conceptual phases of a
vertex-program:
— Gather
— Apply
— Scatter

PowerGraph Abstraction

* Combines the best features from both Pregel
and Graphlab

— From Graphlab it borrows the data-graph and
shared memory view of computation

— From Pregel it borrows the commutative,
associative gather concept

GAS Decomposition

Gather (Reduce) Apply Scatter
Accumulate information Apply the accumulated Update adjacent edges
about neighborhood value to center vertex and vertices.
User Defined: User Defined: User Defined:

» Gather(@—@®) > L » Apply(D.2) > G » Scatter(@-@) > —

»:, @F, DI, 9 %

. Update Edge Data &
pa'.;i’: I* I s I')E Activate Neighbors

PageRank in PowerGraph

PowerGraph_PageRank(i)

Gather(j 2 1) : return w; * R[j]
sum(a, b) : return a + b;

Apply(1.2) : R[1] =0.15 + =

Scatter(1—2j):
if R[i] changed then trigger j to be recomputed

Example

Machine 1 Machine 2

Master

- Mirroe

\
Mirror f ‘
1“4' rrar

Machine 3 | Machine 4

Scatter

4

New Approach to Partitioning

* Rather than cut edges:

.
%{% CPU 1 CPU 2

* we cut vertices:

‘ Must synchronize
a single vertex

CPU 1 CPU 2

Must synchronize
many edges

New Theorem: For any edge cut we can construct a vertex cut

which requires strictly less communication and storage.

Constructing Vertex-Cuts

* Evenly assign edges to machines

— Minimize machines spanned by each vertex

e Assign each edge as it is loaded

— Touch each edge only once

* Three distributed approaches:
— Random Edge Placement
— Coordinated Greedy Edge Placement
— Oblivious Greedy Edge Placement

Random Edge Placement

Machine 1 Machine 2 Machine 3
o— - —9 \

Balanced Vertex-Cut

o Spans 3 Machines
e Spans 2 Machines
‘ Not cut!

* Uniquely assigned to one machine
* Balanced cut

Greedy Vertex-Cuts

* Place edges on machines which already have
the vertices in that edge.

* |f more machines have the same vertex, place
edge on less loaded machine

(.‘J.D @
" A

l.'-‘

(v 'H:’
-, \,

Machinel Machine 2

Greedy Vertex-Cuts

* Greedy minimizes the expected number of
machines spanned

* Coordinated
— Requires coordination to place each edge
— Slower: higher quality cuts

* Oblivious

— Approx. greedy objective without coordination
— Faster: lower quality cuts

Partitioning Performance

#Machines

18 o] 1000
. 0
_ 14l F*reduje::?r_;,# 300l
= "o M i
Y Random_.-* 3 600 Coordinated
£ qnl N - 9, I
g ¢ Oblivious o Oblivious
k. : £ 400 Random -
o E =
2 6o Coordinated | &®
/ 200y °
o #
2r] ° "
T— - - - 0 - -
8 16 48 64 16 48 64

32
#Machines

(a) Replication Factor (Twitter) (b) Ingress time (Twitter)

Figure 8: (a,b) Replication factor and runtime of graph ingress
for the Twitter follower network as a function of the number of
machines for random. oblivious, and coordinated vertex-cuts.

Partitioning Performance

| | | BRandom BRand.
20} [Oblivious £ W Obliv.
_ []Coordinated E 0.8} []Coord ||
(]
3 15 e
L o 0.6+
5 2 [|
E= m
E 1{]'] E 0_4_ _
| Ilﬂ II E
v £
5t H 1 02}
H T
0 . H 0 -
Twitter HWood UK LJournal Amazon Coloring 555P ALS PageRank
(a) Actual Replication (b) Effect of Partitioning

Figure 7: (a) The actual replication factor on 32 machines. (b)
The effect of partitioning on runtime.

Other Features

e Supports three execution modes:
— Synchronous: Bulk-Synchronous GAS Phases
— Asynchronous: Interleave GAS Phases

— Asynchronous + Serializable: Neighbouring
vertices do not run simultaneously

e Delta Caching

— Accelerate gather phase by caching partial sums
for each vertex

Implementation and Evaluation

e Technical details:

— Experiments were performed on a 64 node cluster
of Amazon EC2 Linux instances

— Each instance has two quad core Intel Xeon X5570
processor with 23GB RAM and is connected via 10
GigE Ethernet

— PowerGraph was written in C++ and compiled
with GCC 4.5

System Design

* Built on top of
— MPI/TCP-IP
— Pthreads
— HDEFS
e Uses HDFS for Graph input and output

* Fault-tolerance is achieved by check-poining
— Snapshot time <5 sec. for twitter network

Implemented Algorithms

Collaborative Filtering * Graph Analytics

— Alternating Least Squares — PageRank

— Stochastic Gradient — Triangle Counting
Descent — Shortest Path

- SVD — Graph Coloring

— Non-negative MF — K-core Decomposition

Statistical Inference Computer Vision

— Loopy Belief Propagation — Image stitching

— Max-Product Linear

* Language Modeling
— LDA

Programs
— Gibbs Sampling

Results

Smola et al.

Topic Modeling

* English language Wikipedia
— 2.6M Documents, 8.3M Words, S00M Tokens
— Computationally intensive algorithm

Million Tokens Per Second
20 40 60 80 100 120 140 160

100 Yahoo! Machines

Specifically engineered for this task

More results

Triangle Counting on The Twitter Graph

Identify individuals with strong communities.

Counted: 34.8 Billion Triangles

Hadoop EEEEECLUETILED
(WWW’ 11] EEEZERVITINER

64 Machines
1.5 Minutes

PowerGraph

Thank you for your attention!

http://graphlab.org

Some of the slides were taken from the talk

by J. E. Gonzalez, available on the website:

https://www.usenix.org/conference/osdil2/
technical-sessions/presentation/gonzalez

