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Introduction

* New framework for distributed graph
paralleled computation on natural graphs

* Transition from big data to big graphs
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* Graphs encode relationships between
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v Billions of vertices and edges and rich metadata



Graphs are essential for Data-Mining
and Machine Learning

They help us identify influential people and
information

Find communities
Target ads and products
Model complex data dependencies



Problem: Existing distributed graph
computation systems perform poorly

on Natural Graphs

 Example: PageRank on Twitter Follower Graph

Runtime Per Iteration
0 50 100 150 200

40M Users
1.4 Billion

Piccolo _
PowerGraph ¥



Properties of the Natural Graphs

Power-Law Degree Distribution
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Challenges of Natural Graphs

e Sparsity structure of natural graphs presents a
unique challenge to efficient distributed
graph-parallel computation

* Hallmark property: most vertices have
relatively few neighbours while a few have
many neighbours
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Properties of the Natural Graphs

e Difficult to Partition

— Power-Law graphs do not have low-cost balanced
cuts

— Traditional graph-partitioning algorithms perform
poorly on Power-Law Graphs

CPU 1 CPU 2




PowerGraph

e Split High-Degree vertices:

Machine 1 Machine 2

=

* Introduction ot new abstraction:
v EQUIVALENCE on Split Vertices ¥




How do we program graph
computation?

Graph-Parallel Abstraction

— A user-defined Vertex-program runs on each
vertex

Pregel

— Graph constrains interact using messages

Graphlab

— Graph constrains interact through shared state

Parallelism: run multiple vertex program at
the same time



PageRank Algorithm

 Example: The popularity of a user depends of
the popularity of her followers, which
depends of the popularity of their followers
R[(]=0.15+ > w,;R[]]

jeNbrs(i)

Rank of user i

Weighted sum of neighbors’ ranks

* Update ranks in parallel
* |terate process until convergence



Pregel PageRank

Receive all the
messages

Update the rank of
the vertex

vold PregelPageRank (Message msqg)
float total = msg.value();
vertex.val = 0.15 + 0.85«total;
foreach(nbr in out_neighbors) :
SendMsg (nbr, wvertex.val/num out_nbrs);

Send new messages
to neighbors




GraphlLab PageRank

Compute sum over
neighbors

vold GraphlabPageRank (Scope scope)
float accum = 0;
foreach (nbr in scope.in_nbrs)
accum += nbr.val / nbr.nout_nbrs();
vertex.val = 0.15 + 0.85 » accum;

Update the rank of
the vertex




Challenges of High-Degree Vertices

* A lot of iterating over our neighborhood
* Pregel: many messages
* GraphlLab: Touches a large number of states



Pregel Message Combiners on Fan-IN

e User defines commutative associative
message operations:
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Pregel Struggles with Fan-OUT

 Fan-OUT: Broadcast sends many copies of the
same message to the same machine
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GraphLab Ghosting

a Changes to master are
synced to ghosts

Machine 1 Machine 2
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Fan-IN and Fan-Out performance
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Graph Partitioning

* Graph parallel abstractions rely on
partitioning:
— Minimize communication

— Balance computation and storage

 Both GraphlLab and Pregel resort to random
partitioning on natural graphs

— They randomly split vertices over machines

Theorem 5.1. If vertices are randomly assigned to p
machines then the expected fraction of edges cut is:

10 Machines => 90% of edges cut

% [lEf{EES Cul] _, 1 5.1) 100 Machines => 99% of edges cut
|E| P '




In Summary

 GraphlLab and Pregel are not well suited for
computation of natural graphs

* Challenges of high-degree vertices
* Low quality partitioning



Main idea of PowerGraph

* GAS decomposition: distribute vertex —
programs

— Move computation to data
— Parallelize high-degree vertices
* Represents three conceptual phases of a
vertex-program:
— Gather
— Apply
— Scatter



PowerGraph Abstraction

* Combines the best features from both Pregel
and Graphlab

— From Graphlab it borrows the data-graph and
shared memory view of computation

— From Pregel it borrows the commutative,
associative gather concept



GAS Decomposition

Gather (Reduce) Apply Scatter
Accumulate information Apply the accumulated Update adjacent edges
about neighborhood value to center vertex and vertices.
User Defined: User Defined: User Defined:
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PageRank in PowerGraph

PowerGraph_PageRank(i)

Gather(j 2 1) : return w; * R[j]
sum(a, b) : return a + b;

Apply(1.2) : R[1] =0.15 + =

Scatter(1—2j):
if R[i] changed then trigger j to be recomputed



Example
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New Approach to Partitioning

* Rather than cut edges:

.
%{% CPU 1 CPU 2

* we cut vertices:

‘ Must synchronize
a single vertex

CPU 1 CPU 2

Must synchronize
many edges

New Theorem: For any edge cut we can construct a vertex cut

which requires strictly less communication and storage.



Constructing Vertex-Cuts

* Evenly assign edges to machines

— Minimize machines spanned by each vertex

e Assign each edge as it is loaded

— Touch each edge only once

* Three distributed approaches:
— Random Edge Placement
— Coordinated Greedy Edge Placement
— Oblivious Greedy Edge Placement



Random Edge Placement

Machine 1 Machine 2 Machine 3
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Balanced Vertex-Cut

o Spans 3 Machines
e Spans 2 Machines
‘ Not cut!

* Uniquely assigned to one machine
* Balanced cut



Greedy Vertex-Cuts

* Place edges on machines which already have
the vertices in that edge.

* |f more machines have the same vertex, place
edge on less loaded machine
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Greedy Vertex-Cuts

* Greedy minimizes the expected number of
machines spanned

* Coordinated
— Requires coordination to place each edge
— Slower: higher quality cuts

* Oblivious

— Approx. greedy objective without coordination
— Faster: lower quality cuts



Partitioning Performance
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Figure 8: (a,b) Replication factor and runtime of graph ingress
for the Twitter follower network as a function of the number of
machines for random. oblivious, and coordinated vertex-cuts.



Partitioning Performance

| | | BRandom BRand.
20} [Oblivious £ W Obliv.
_ [ ]Coordinated E 0.8} []Coord ||
(]
3 15 e
L o 0.6+
5 2 [ |
E= m
E 1{]' ] E 0_4_ _
| Ilﬂ II E
v £
5t H 1 02}
H T
0 . H 0 -
Twitter HWood UK LJournal Amazon Coloring 555P  ALS PageRank
(a) Actual Replication (b) Effect of Partitioning

Figure 7: (a) The actual replication factor on 32 machines. (b)
The effect of partitioning on runtime.



Other Features

e Supports three execution modes:
— Synchronous: Bulk-Synchronous GAS Phases
— Asynchronous: Interleave GAS Phases

— Asynchronous + Serializable: Neighbouring
vertices do not run simultaneously

e Delta Caching

— Accelerate gather phase by caching partial sums
for each vertex



Implementation and Evaluation

e Technical details:

— Experiments were performed on a 64 node cluster
of Amazon EC2 Linux instances

— Each instance has two quad core Intel Xeon X5570
processor with 23GB RAM and is connected via 10
GigE Ethernet

— PowerGraph was written in C++ and compiled
with GCC 4.5



System Design

* Built on top of
— MPI/TCP-IP
— Pthreads
— HDEFS
e Uses HDFS for Graph input and output

* Fault-tolerance is achieved by check-poining
— Snapshot time <5 sec. for twitter network



Implemented Algorithms

Collaborative Filtering * Graph Analytics

— Alternating Least Squares — PageRank

— Stochastic Gradient — Triangle Counting
Descent — Shortest Path

- SVD — Graph Coloring

— Non-negative MF — K-core Decomposition

Statistical Inference  Computer Vision

— Loopy Belief Propagation — Image stitching

— Max-Product Linear

* Language Modeling
— LDA

Programs
— Gibbs Sampling




Results

Smola et al.

Topic Modeling

* English language Wikipedia
— 2.6M Documents, 8.3M Words, S00M Tokens
— Computationally intensive algorithm

Million Tokens Per Second
20 40 60 80 100 120 140 160

100 Yahoo! Machines

Specifically engineered for this task




More results

Triangle Counting on The Twitter Graph

Identify individuals with strong communities.

Counted: 34.8 Billion Triangles
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64 Machines
1.5 Minutes

PowerGraph




Thank you for your attention!

http://graphlab.org

Some of the slides were taken from the talk

by J. E. Gonzalez, available on the website:

https://www.usenix.org/conference/osdil2/
technical-sessions/presentation/gonzalez



