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Motivation

MapReduce and DryadLINQ relational algebra operators not suitable
for linear algebra computations

Demand for efficient matrix computations;
I Machine learning
I Graph algorithms (graphs boil down to sparse matrices)

Previous attempts failed to deliver;
I ScaLAPACK [2] too low level (MPI Knowledge required)
I HAMA built on top of MapReduce (still restrictive)
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Key Components of MadLINQ

Simple programming model for matrix computation

New Fine Grained Pipelining (FGP) model

Fault tolerance for FGP

Integration with DryadLINQ [3]
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Tile Algorithms

A tile is a sub-matrix.

Entire matrix is partitioned into a grid of tiles.

This idea is what gives rise to parallelism in matrix computation.

Aim is to maximise cache localisation by exploiting the structured
access of matrix algorithms.
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Computation Example: Cholesky Decomposition

Takes a symmetric positive-definite matrix

Matrix is partitioned into tiles

On the k-th iteration, tile operations employed to factorise;
I diagonally (DPOTRF)
I n − k tiles below (DTRSM)
I trailing tiles to the right (DSYRK and DGEMM)
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Cholesky Decomposition Iteration
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Programming Model

C# constructs, allows DryadLINQ and MadLINQ integration.

Matrix data abstraction in C# encapsulates tile representation.

Programs expressed in a sequential fashion.

Linear algebra library in C#
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Example Application: Collaborative Filtering

How to predict what other movies users will like given their rating of
other movies.

R[i , j ] is user j ’s rating of movie i .

CF Equation

(R · RT ) · R

becomes;

CF MadLINQ Code

Matr i x s i m i l a r i t y = R . Mu l t i p l y (R . Transpose ( ) ) ;
Mat r i x s c o r e s = s i m i l a r i t y . Mu l t i p l y (R ) . Norma l i ze ( ) ;

* Matrix goes from sparse (users haven’t seen most movies) to dense (every user has predicted score for every movie)
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CF: Integration with DryadLINQ

DryadLINQ processes Netflix dataset

This boils down to a MadLINQ Matrix

MadLINQ does transposition, matrix multiplication and normalisation
of R to get scores

DryadLINQ generates top 5 list of movies for each user.
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MadLINQ Architecture
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Directed Acyclic Graph (DAG)

DAG is dynamically expanded through symbolic execution to prevent
explosion (O(n3) for Cholesky Decomposition)

f 1 through f 4 are the tile operators discussed earlier (DPOTRF,
DTRSM, DSYRK and DGEMM resp.)
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FGP & Fault Tolerance

Parallelism fluctuates with matrix computations

Pipelining exploits vertex parallelism by increasing data granularity
(recursively tiling matrices)

Failure handling: Input blocks can be reconstructed from output
blocks.

Dependencies are calculated to reduce recovery cost.
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Optimisations & Configuration

From the authors experience, optimisations were made;
I Prefetching of vertex data for a close to terminating node
I Specifying order of matrix data (column or row first?)
I Auto switching between sparse (compressed) and dense matrices.

Configuration;
I Smaller tiles =⇒ higher parallelism
I Granularity of computation is a block
I Block size determined by number of non-zero elements
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Observations & Applications

Observations;
I Pipelining performs better on larger problems
I Pipeline approach on average 14.4% faster than ScaLAPACK
I ScaLAPACK failed consistently using 32 cores (with no fault tolerance)

Real world applications;
I MadLINQ more efficient than MapReduce
I For Collaborative Filtering (recall (R · RT ) · R) on 20k × 500k matrix

(Netflix challenge). Mahout over Hadoop took over 800 minutes, as
opposed to MadLINQ 16 (albeit Mahout produces results of higher
accuracy)
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Conclusion & Related Work

DAGuE, a similar use of DAG for tiled algorithms but failed to provide
fault tolerance and resource dynamics

Future research ideas;
I Auto-Tiling of matrices for matrix algorithms
I Dynamic Re-Tiling (dynamic changing of tile sizes for graph

algorithms)
I Sparse matrices cause load imbalance. Methods required for handling

these well.

Concludes MadLINQ fills the void that is large scale distributed
matrix and graph processing, using linear algebra.
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Questions
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