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Motivation
Abstractions of parallel computation are 
necessary.

Current Models such as MapReduce, Dryad or 
Pregel are too limiting or inefficient for our 
purposes.



GraphLab Abstraction
GraphLab is:

● Asynchronous: parameter values are not necessarily updated at the same time

● Dynamic: Parameters are not updated equally often

● Serialisable: All parallel executions have an equivalent serial execution (no data 
races)

It was originally developed for the multicore in 
memory setting.



GraphLab Abstraction
GraphLab consists of three main parts:

● The Data Graph
● Update Function
● Sync Function



Data Graph
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● Computation can be 
expressed as an arbitrary 
graph.

● Data is associated either 
with vertices or edges

● The data itself is mutable, 
but the structure of the  
graph is not
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Update Function
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Takes a vertex V and it’s 
surrounding context Sv.

Returns the new values of it’s 
context Sv and a list T of 
vertices that will eventually be 
updated.
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Sync Function
The sync function provides a way to track 
global state.

Each vertex v can publish a global value Sv. 
The sync function performs an associative sum 
over all of these values.



Distributed GraphLab
In order to bring GraphLab to the distributed 
setting, we need a solution for the following:

● Distributing the graph data and balancing 
the computation

● Maintaining consistency across nodes
● Achieving fault tolerance



Distributing Graph Data
We partition the graph into a set of K atoms 
(where K is much greater than the number 
of servers).

Each atom is stored as a separate file and 
contains information about ‘ghosts’, the 
vertices and edges adjacent to the atoms 
boundary

V1

V4

V5

Dv1<->v5

Dv1<->v4

V2

V6

V3

An Atom



Maintaining Consistency
Data races are possible if the contexts 
of update functions overlap.

GraphLab provides two means of 
dealing with this:

● A chromatic engine based on 
graph coloring

● A distributed read/writer lock 
system
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Levels of consistency
Distributed locking supports various levels of consistency.
● Vertex consistency: Obtains a write lock on the vertex and a read lock on 

data belonging to adjacent vertices
● Vertex and edge consistency: Obtains a write lock on the vertex and it’s 

adjacent edges and a read lock on it’s adjacent vertices
● Total consistency: Obtains a write lock on a vertex and it’s adjacent edges 

and vertices

Gives greater performance, as some problems do not 
require total consistency (EG. Pagerank)



Fault Tolerance
In the event of a failure the system can recover to a 
snapshot taken at a previous point.

The snapshot mechanism has to be asynchronous in order 
to avoid suspending execution.

GraphLab implements the Chandy-Lamport algorithm to 
achieve this



Performance
● Achieves 20-60x improvement over Hadoop 

● Competitive with tailored MPI 
implementations

● Error can converge almost two times faster 
than in non-dynamic computation 



Performance
Asynchronous vs 
synchronous performance 
of pagerank

Comparison of scalability on 
Named Entity Recognition 
(First) and The Netflix 
Collaborative Filtering 
(Second)



Conclusion
Powerful abstraction of parallel computation 
brought to the distributed setting

Provides more flexibility than other models, 
constrained only by inability to modify the graph 
structure.


