
Distributed
GraphLab
A Framework for Machine Learning and Data Mining
in the Cloud

By Maciej Biskupiak for R212

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, J. Hellerstein

Motivation
Abstractions of parallel computation are
necessary.

Current Models such as MapReduce, Dryad or
Pregel are too limiting or inefficient for our
purposes.

GraphLab Abstraction
GraphLab is:

● Asynchronous: parameter values are not necessarily updated at the same time

● Dynamic: Parameters are not updated equally often

● Serialisable: All parallel executions have an equivalent serial execution (no data
races)

It was originally developed for the multicore in
memory setting.

GraphLab Abstraction
GraphLab consists of three main parts:

● The Data Graph
● Update Function
● Sync Function

Data Graph
V1

V2

V4

V6V5

V3

● Computation can be
expressed as an arbitrary
graph.

● Data is associated either
with vertices or edges

● The data itself is mutable,
but the structure of the
graph is not

Dv4<->v3

Dv5<->v6

Dv1<->v5 Dv3<->v6

Dv2<->v3

Dv2<->v4Dv1<->v4

Update Function
V1

V2

V4

V6V5

V3

Dv4<->v3

Dv5<->v6

Dv1<->v5 Dv3<->v6

Dv2<->v3

Dv2<->v4Dv1<->v4

Takes a vertex V and it’s
surrounding context Sv.

Returns the new values of it’s
context Sv and a list T of
vertices that will eventually be
updated.

Vertex to be updated
Context

Sync Function
The sync function provides a way to track
global state.

Each vertex v can publish a global value Sv.
The sync function performs an associative sum
over all of these values.

Distributed GraphLab
In order to bring GraphLab to the distributed
setting, we need a solution for the following:

● Distributing the graph data and balancing
the computation

● Maintaining consistency across nodes
● Achieving fault tolerance

Distributing Graph Data
We partition the graph into a set of K atoms
(where K is much greater than the number
of servers).

Each atom is stored as a separate file and
contains information about ‘ghosts’, the
vertices and edges adjacent to the atoms
boundary

V1

V4

V5

Dv1<->v5

Dv1<->v4

V2

V6

V3

An Atom

Maintaining Consistency
Data races are possible if the contexts
of update functions overlap.

GraphLab provides two means of
dealing with this:

● A chromatic engine based on
graph coloring

● A distributed read/writer lock
system

V1

V2

V4

V6V5

V3

Dv4<->v3

Dv5<->v6

Dv1<->v5 Dv3<->v6

Dv2<->v3

Dv2<->v4Dv1<->v4

Levels of consistency
Distributed locking supports various levels of consistency.
● Vertex consistency: Obtains a write lock on the vertex and a read lock on

data belonging to adjacent vertices
● Vertex and edge consistency: Obtains a write lock on the vertex and it’s

adjacent edges and a read lock on it’s adjacent vertices
● Total consistency: Obtains a write lock on a vertex and it’s adjacent edges

and vertices

Gives greater performance, as some problems do not
require total consistency (EG. Pagerank)

Fault Tolerance
In the event of a failure the system can recover to a
snapshot taken at a previous point.

The snapshot mechanism has to be asynchronous in order
to avoid suspending execution.

GraphLab implements the Chandy-Lamport algorithm to
achieve this

Performance
● Achieves 20-60x improvement over Hadoop

● Competitive with tailored MPI
implementations

● Error can converge almost two times faster
than in non-dynamic computation

Performance
Asynchronous vs
synchronous performance
of pagerank

Comparison of scalability on
Named Entity Recognition
(First) and The Netflix
Collaborative Filtering
(Second)

Conclusion
Powerful abstraction of parallel computation
brought to the distributed setting

Provides more flexibility than other models,
constrained only by inability to modify the graph
structure.

