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Principal Motivation

• MapReduce/Dryad built around acyclic flow of data 

• Inefficient at handling iterative computation & data reuse 

• Machine Learning Algorithms 

• Interactive data mining tools  

• Propose a solution for a class of applications that require 

• Working sets of data 

• scalability and fault tolerance
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Resilient Distributed Datasets

Key Idea 

• Leverage distributed memory 

• Improve upon specialised frameworks e.g. Haloop, Pregel, etc. 

What are RDDs? 

• Read-only collection objects 

• Partitioned across several nodes 

• Reconstructible incase of node failure 

• Enables in-memory computation 

!
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Resilient Distributed Datasets

Representation of RDDs 

• set of partitions  

• set of dependencies — lineage  

• function to compute RDD from parent RDDs 

• metadata on partitioning scheme & data placement 

Lineage 

• Recompute elements of a partition 

• Iterate over parent partitions; use the function in RDD
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RDDs: Types of Dependencies

Narrow Dependencies 

• One-to-one mapping of partitions between parent & child 

• Pipelined execution on cluster nodes 

• Involve map operation 

Wide Dependencies 

• Many-to-one mapping between parent & child 

• Require data from all parent partitions and shuffle-like operation 

• Involve join operation 

!
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Resilient Distributed Datasets

Key Differences1 

!
Aspect RDDs Dist. Shared Mem.

Reads Coarse or fine grained Fine-grained

Writes Coarse-grained; 
immutable consistency

Fine-grained

Behaviour if not 
enough RAM

Similar to existing data 
flow systems

Poor performance

Fault Recovery Fine grained & low-
overhead using lineage

Requires checkpoints 
& rollbacks
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Resilient Distributed Datasets

Computational Factors 

• Cost of storage 

• Disk I/O overhead 

• Probability of node failure 

• Cost of recomputing a partition  

Limitations 

• Inefficient for asynchronous fine-grained updates 

• E.g. incremental web crawler, storage system for a webApp,etc. 
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Spark: Cluster Computing Framework

Introduction 

• Implemented in Scala 

• Built on top of Mesos (cluster operating system) 

• Enables resource sharing with Hadoop MPI 

• RDD implementation 

• HDFS file objects 

• partition-to-block size mapping
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Spark: RDD representation

Types of RDD constructs 

• File in a shared file system e.g. HDFS 

• Scala collection object e.g. an array 

• Transforming an existing RDD using flatMap() 

• Change persistence of an existing RDD 

• Cache action: dataset is kept in memory 

• Save action: dataset is written to the file system



10

Spark: Dataflow

• Driver program implements control 
flow 

• Parallel programming abstractions 

• RDDs 

• parallel operations 

• Types of parallel operations 

• reduce 

• collect 

• foreach 
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Spark: Dataflow

Job Scheduling 

• RDD lineage graph examined 

• DAG of stages is built 

• Characteristics of a stage 

• as many narrow dependencies 

• Wide dependencies require shuffle 
operation 

• Tasks assigned on data locality
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Spark: Limitations

• Scheduler failures not tolerated 

• re-run the task till stage’s parents available 

• else, replicate RDD lineage graph to compute partition 

• Checkpointing API application/user dependent 

• Replicate Flag to persist
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Spark: Assessment

Datasets 

• User written applications 

• ML algorithms: K-means & logistical regression 

• 1 TB dataset for interactive queries 

Benchmarks 

• Hadoop: 0.20.2 stable release 

• HadoopBinMem 

• converts input data to binary format 

• reduces over-head 
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Spark: Assessment

ML Algorithms 

• Spark outperforms hadoop by 20x 

• Avoided repeated I/O and deserialisation cost 

Interactive query dataset 

• Spark performed with the response time of 5.5-7s 

• Dependent on the page rank implementation 

User Applications 

• Analytics report execution improved by 40x 

• Other apps scale and perform well 

!
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RDDs: Conclusion

• Showed better performance 

• Express cluster programming models  

• Capture optimisations  

• keeping specific data in-memory 

• partitioning to minimize communication 

• recover from failures efficiently 

• Promising paradigm in cluster computing


