
Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J. Franklin,
S. Shenker, I. Stoica

Computer Laboratory

Principal Motivation

• MapReduce/Dryad built around acyclic flow of data

• Inefficient at handling iterative computation & data reuse

• Machine Learning Algorithms

• Interactive data mining tools

• Propose a solution for a class of applications that require

• Working sets of data

• scalability and fault tolerance

2

3

Resilient Distributed Datasets

Key Idea

• Leverage distributed memory

• Improve upon specialised frameworks e.g. Haloop, Pregel, etc.

What are RDDs?

• Read-only collection objects

• Partitioned across several nodes

• Reconstructible incase of node failure

• Enables in-memory computation

!
!

4

Resilient Distributed Datasets

Representation of RDDs

• set of partitions

• set of dependencies — lineage

• function to compute RDD from parent RDDs

• metadata on partitioning scheme & data placement

Lineage

• Recompute elements of a partition

• Iterate over parent partitions; use the function in RDD

5

RDDs: Types of Dependencies

Narrow Dependencies

• One-to-one mapping of partitions between parent & child

• Pipelined execution on cluster nodes

• Involve map operation

Wide Dependencies

• Many-to-one mapping between parent & child

• Require data from all parent partitions and shuffle-like operation

• Involve join operation

!
!

6

Resilient Distributed Datasets

Key Differences1

!
Aspect RDDs Dist. Shared Mem.

Reads Coarse or fine grained Fine-grained

Writes Coarse-grained;
immutable consistency

Fine-grained

Behaviour if not
enough RAM

Similar to existing data
flow systems

Poor performance

Fault Recovery Fine grained & low-
overhead using lineage

Requires checkpoints
& rollbacks

7

Resilient Distributed Datasets

Computational Factors

• Cost of storage

• Disk I/O overhead

• Probability of node failure

• Cost of recomputing a partition

Limitations

• Inefficient for asynchronous fine-grained updates

• E.g. incremental web crawler, storage system for a webApp,etc.

8

Spark: Cluster Computing Framework

Introduction

• Implemented in Scala

• Built on top of Mesos (cluster operating system)

• Enables resource sharing with Hadoop MPI

• RDD implementation

• HDFS file objects

• partition-to-block size mapping

9

Spark: RDD representation

Types of RDD constructs

• File in a shared file system e.g. HDFS

• Scala collection object e.g. an array

• Transforming an existing RDD using flatMap()

• Change persistence of an existing RDD

• Cache action: dataset is kept in memory

• Save action: dataset is written to the file system

10

Spark: Dataflow

• Driver program implements control
flow

• Parallel programming abstractions

• RDDs

• parallel operations

• Types of parallel operations

• reduce

• collect

• foreach

11

Spark: Dataflow

Job Scheduling

• RDD lineage graph examined

• DAG of stages is built

• Characteristics of a stage

• as many narrow dependencies

• Wide dependencies require shuffle
operation

• Tasks assigned on data locality

12

Spark: Limitations

• Scheduler failures not tolerated

• re-run the task till stage’s parents available

• else, replicate RDD lineage graph to compute partition

• Checkpointing API application/user dependent

• Replicate Flag to persist

13

Spark: Assessment

Datasets

• User written applications

• ML algorithms: K-means & logistical regression

• 1 TB dataset for interactive queries

Benchmarks

• Hadoop: 0.20.2 stable release

• HadoopBinMem

• converts input data to binary format

• reduces over-head

14

Spark: Assessment

ML Algorithms

• Spark outperforms hadoop by 20x

• Avoided repeated I/O and deserialisation cost

Interactive query dataset

• Spark performed with the response time of 5.5-7s

• Dependent on the page rank implementation

User Applications

• Analytics report execution improved by 40x

• Other apps scale and perform well

!

15

RDDs: Conclusion

• Showed better performance

• Express cluster programming models

• Capture optimisations

• keeping specific data in-memory

• partitioning to minimize communication

• recover from failures efficiently

• Promising paradigm in cluster computing

