MapReduce:
Simplified Data Processing on Large Clusters

Motivation: Large scale data processing

We want to:

Extract data from large datasets
Run on big clusters of computers
Be easy to program
Solution: MapReduce

A new programming model: Map & Reduce

Provides:

- Automatic parallelization and distribution
- Fault tolerance
- I/O scheduling
- Status and monitoring
map (in_key, in_value) → list(out_key, intermediate_value)
(you, 1)
(are, 1)
(in, 1)
(Cambridge, 1)

(I, 1)
(like, 1)
(Cambridge, 1)

(we, 1)
(live, 1)
(in, 1)
(Cambridge, 1)
Partition

(you, 1) → (you, 1)
(are, 1) → (are, 1)
(in, 1) → (in, 1)
(Cambridge, 1) → (in, 1)

(I, 1)
(like, 1)
(Cambridge, 1)

(we, 1)
(live, 1)
(in, 1)
(Cambridge, 1)
reduce (out_key, list(intermediate_value)) -> list(out_value)
User Program

File 1

File 2

File 3

Input files
A diagram illustrates the flow of a program involving a user program, a master, and workers. The user program forks a master, which then assigns map and reduce tasks to worker processes. Each worker is connected to an input file.

- **User Program**
- **Master**
- **Workers**
 - Worker 1: File 1
 - Worker 2: File 2
 - Worker 3: File 3

The diagram also includes a dotted line indicating the fork process from the user program to the master.
Input files

M splits

Map phase

Intermediate files (on local disks)
Input files

M splits

Map phase

Intermediate files (on local disks)

Reduce phase
Fine task granularity

M so that data is between 16MB and 64MB
R is small multiple of workers
E.g. $M = 200,000$, $R = 5,000$ on $2,000$ workers

Advantages:
- dynamic load balancing
- fault tolerance
Fault tolerance

Workers:
- Detect failure via periodic heartbeat
- Re-execute completed and in-progress *map* tasks
- Re-execute in progress *reduce* tasks
- Task completion committed through master

Master:
- Not handled - failure unlikely
Refinements

Locality optimization
Backup tasks
Ordering guarantees
Combiner function
Skipping bad records
Local execution
Performance

Tests run on 1800 machines:
 Dual 2GHz Intel Xeon processors
 with Hyper-Threading enabled
 4GB of memory
 Two 160GB IDE disks
 Gigabit Ethernet link

2 Benchmarks:
 MR_Grep \(10^{10} \times 100\) byte entries, 92k matches
 MR_Sort \(10^{10} \times 100\) byte entries
MR_Grep

150 seconds run (startup overhead of ~60 seconds)
MR_Sort

Normal execution No backup tasks 200 tasks killed

Input (MB/s) Input (MB/s) Input (MB/s)

Shuffle (MB/s) Shuffle (MB/s) Shuffle (MB/s)

Output (MB/s) Output (MB/s) Output (MB/s)

Seconds Seconds Seconds

Done: 839 s Done: 1235 s Done: 886 s
Experience

Rewrite of the indexing system for Google web search
Large scale machine learning
Clustering for Google News
Data extraction for Google Zeitgeist
Large scale graph computations
Conclusions

MapReduce:
 useful abstraction
 simplifies large-scale computations
 easy to use

However:
 expensive for small applications
 long startup time (~1 min)
 chaining of map-reduce phases?