Naiad: Timely Dataflow

Frank McSherry, Rebecca Isaacs, Michael Isard, and Derek G. Murray, Composable
Incremental and Iterative Data-Parallel Computation with Naiad, MSR-TR-2012-105,

2012,

Derek Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, M.

Abadi: Naiad: A Timely Dataflow System, SOSP, 2013.

http://www.cl.cam.ac.uk/~ey204/teaching/ACS/R212_2013_2014/papers/mcsherry_msrtech_2012.pdf
http://www.cl.cam.ac.uk/~ey204/teaching/ACS/R212_2013_2014/papers/mcsherry_msrtech_2012.pdf
http://www.cl.cam.ac.uk/~ey204/teaching/ACS/R212_2013_2014/papers/mcsherry_msrtech_2012.pdf
http://www.cl.cam.ac.uk/~ey204/teaching/ACS/R212_2013_2014/papers/murray_SOSP_2013.pdf

Distributed Dataflow Programming

map (key, value, context) {
words =value.split(‘ ‘);
foreach (word in words) {
context.write(word, 1);

}
}

reduce (key, values, output) {
output.collect(key, values.length);

Incremental and lterative Processing

Want to avoid
starting from scratch

Incremental and lterative Processing

Need to
introduce
cycles into
task flow.

\ J

Incremental Computation

L= -
e

Figure 2: A sequence of input collections Ag, A;. ...
and the corresponding output collections By.By,....
Each is defined independently as B, = Op(A,).

6A2 682 —>

Figure 3: The same sequence of computations as in
Figure 2, presented as differences from the previous
collections. The outputs still satisfy B, = Op(A,),
but are represented as differences 4B: = B; — B:_1.

wll =

=

t=2

t=3

Input differences

Input collection

Operator state Output differences

Output collection

Distinct
Sy |

A 42 +1
B +1 +1
+1 {A,AB,C} {A,B,C} C +1
A -1 -%
{A,B,C} {A,B,C}
A -1

-% A -1
{B,C} {B,C}

Input differences Operator state Output differences

Input collection Output collection

suwll =

=

t=2

t=3

Distinct
0 0

A +2 A +1
B +1 B +1
+1 {A,AB,C} {A,B,C} C +1
{A,B,C} {A,B,C}
A -1

‘% A -1
{B,C} {B,C}

+2
+1

+1

+1
+1
+1

+1
+1

Synchronous vs Asynchronous
Batching vs. Streaming

(synchronous)

% Requires coordination v No coordination needed
v" Supports aggregation x Aggregation is difficult

Programming Model: Messages

B.SENDBY(edge, message, time)

)))

— —/ N/

C.ONRECV(edge, message, time)

Messages are delivered asynchronously

Programming Model: Notifications
D.NOTIFYAT(time)

)))

dﬁ

N/ ———/ —/

No more messages at time or earlier — D.ONNOTIFY(time)

Notifications support batching

Input differences Operator state Output differences

Input collection Output collection

Distinct
0 0
A +2 A +1
B +1 B +1
o] {A,A,B,C} {A,B,C} C 41

class DistinctCount<S,T> :

{

Vertex<T>

Dictionary<T, Dictionary<$§,int>> counts;
void OnRecv(Edge e, S msg, T time)
{
if (!counts.ContainsKey(time)) {
counts[time] =
this.NotifyAt (time);

if (!counts([time].ContainsKey (msg)) ({
counts([time] [msg] = 0;

this.SendBy (outputl, msg, time);

counts([time] [msg]++;

void OnNotify (T time)
{
foreach (var pair in counts[time])
this.SendBy (output2, pair, time);
counts.Remove (time) ;

new Dictionary<S,int>();

Differential Computation

>

6A; 6B14
A, B4

Figure 4: Differential computation in which multi-
ple independent collections B;; = Op(A;;) are com-
puted. The rounded boxes indicate the differences
that are accumulated to form the collections A,
and Bll.

Revisiting lteration

. (L6 __ (16

Ingress: add
new
dimension

— e - = = -

[
Feedback: Egress: strip
advance [[~""" 1 gy ~--~-~-~° dimension
timestamp
- /

- (1, 6)

Engineering for low latency

e Reduce TCP delayed ACK and retransmit
times

e Use finer grain scheduling timers to reduce
impact of data structure contention

e Reduce impact of garbage collection by
modifying GC parameters and utilising
reusable types.

Evaluation

CDFs for 24 hour windowed SCC of @mention graph.

1

09 ¢+
08
07 }
06
05
04
03

02 1s batch size

10s batch size

01 100s batch size

0 X 1000s batch size

1 1 10

0

fraction of batches processed

100
time to process batch (seconds)

Twitter graph 64 x 8-core 2.1 GHz AMD Opteron

I 472 million nodes 16 GB RAM per server
Eva I U atl O n P
Pa g e Ra n k 1.5 billion edges Gigabit Ethernet

100
0
< Pregel (Naiad)
j=2 ~
o S
= 10 \-----
2 Rt S
o GAS (PowerGraph)

1
0 10 20 30 40 50 60 70

Number of computers

Evaluation

1000 . , ,
o L AR .
£ AR L U L A O A S A I S R A R A LR
< 100 E
g 3
B
c .
§ 10 l
o o -~
o P~ :
Fresh -------- 1sdelay ——
1 1 1 L
30 35 40 45 50

Time from start of trace (s)

Figure 8: Time series of response times for interac-
tive queries on a streaming iterative graph analysis
(§6.4). The computation receives 32,000 tweets/s, and
10 queries/s. “Fresh” shows queries being delayed
behind tweet processing; ““1s delay” shows the bene-
fit of querying stale but consistent data.

