Naiad: Timely Dataflow

Frank McSherry, Rebecca Isaacs, Michael Isard, and Derek G. Murray, Composable Incremental and Iterative Data-Parallel Computation with Naiad, MSR-TR-2012-105, 2012.

Derek Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, M. Abadi: Naiad: A Timely Dataflow System, SOSP, 2013.

Distributed Dataflow Programming

```
map (key, value, context) {
   words =value.split(' ');
   foreach (word in words) {
     context.write(word, 1);
   }
}
```


Incremental and Iterative Processing

Incremental and Iterative Processing

Incremental Computation

Figure 2: A sequence of input collections A_0, A_1, \ldots and the corresponding output collections B_0, B_1, \ldots Each is defined independently as $B_t = Op(A_t)$.

Figure 3: The same sequence of computations as in Figure 2, presented as differences from the previous collections. The outputs still satisfy $B_t = Op(A_t)$, but are represented as differences $\delta B_t = B_t - B_{t-1}$.

Synchronous vs Asynchronous

Batching

(synchronous)

(asynchronous)

- **x** Requires coordination
- ✓ Supports aggregation

- ✓ No coordination needed
- **★** Aggregation is difficult

Programming Model: Messages

Messages are delivered asynchronously

Programming Model: Notifications

Notifications support batching

```
Dictionary<T, Dictionary<S, int>> counts;
                                                        void OnRecv (Edge e, S msg, T time)
                                                           if (!counts.ContainsKey(time)) {
                                                             counts[time] = new Dictionary<S, int>();
                                                             this.NotifyAt(time);
Input differences
                                     Output differences
                    Operator state
           Input collection
                             Output collection
                                                          if (!counts[time].ContainsKey(msq)) {
                     Distinct
  Α
       +2
                                               +1
                     Distinct
       +1
  В
                                               +1
                                         В
                      S<sub>1</sub>
             \{A,A,B,C\}
                                {A,B,C}
        +1
                                               +1
                                         C
```

```
counts[time][msq] = 0;
    this.SendBy(output1, msg, time);
 counts[time][msq]++;
void OnNotify(T time)
 foreach (var pair in counts[time])
    this.SendBy(output2, pair, time);
```

counts.Remove(time);

class DistinctCount<S,T> : Vertex<T>

Differential Computation

Figure 4: Differential computation in which multiple independent collections $B_{ij} = Op(A_{ij})$ are computed. The rounded boxes indicate the differences that are accumulated to form the collections A_{11} and B_{11} .

Revisiting Iteration

Engineering for low latency

- Reduce TCP delayed ACK and retransmit times
- Use finer grain scheduling timers to reduce impact of data structure contention
- Reduce impact of garbage collection by modifying GC parameters and utilising reusable types.

Evaluation

CDFs for 24 hour windowed SCC of @mention graph.

Evaluation

PageRank

Twitter graph 42 million nodes 1.5 billion edges 64 × 8-core 2.1 GHz AMD Opteron 16 GB RAM per server Gigabit Ethernet

Evaluation

Figure 8: Time series of response times for interactive queries on a streaming iterative graph analysis (§6.4). The computation receives 32,000 tweets/s, and 10 queries/s. "Fresh" shows queries being delayed behind tweet processing; "1 s delay" shows the benefit of querying stale but consistent data.