
Qilin: Exploiting Parallelism on Heterogeneous Multiprocessors
with Adaptive Mapping

Chi-Keung Luk
SSG Software Pathfinding and Innovation

Intel Corporation, Hudson, MA
Email: chi-keung.luk@intel.com

Sunpyo Hong Hyesoon Kim
School of Computer Science

Georgia Institute of Technology, Atlanta, GA
Email: hyesoon@cc.gatech.edu

Abstract
Heterogeneous multiprocessors are growingly important in the
multi-core era due to their potential for high performance and en-
ergy efficiency. In order for software to fully realize this potential,
the step that maps computations to processing elements must be
as automated as possible. However, the state-of-the-art approach
is to rely on the programmer to specify this mapping manually
and statically. This approach is not only labor intensive but also
not adaptable to changes in runtime environments like problem
sizes and hardware configurations. In this study, we propose adap-
tive mapping, a fully automatic technique to map computations to
processing elements on heterogeneous multiprocessors. We have
implemented it in our experimental heterogeneous programming
system called Qilin. Our results demonstrate that, for a set of im-
portant computation kernels, automatic adaptive mapping achieves
a speedup of 9.3x on average over the best serial implementation
by judiciously distributing works over the CPU and GPU, which
is 69% and 33% faster than using the CPU or GPU alone, respec-
tively. In addition, adaptive mapping is within 94% of the speedup
of the best manual mapping found via exhaustive searching. To the
best of our knowledge, Qilin is the first and only system to date that
has such capability.

1. Introduction
Multiprocessors have emerged as mainstream computing platforms
nowadays. Among them, an increasingly popular class are those
with heterogeneous architectures. By providing processing ele-
ments1 of different performance/energy characteristics on the same
machine, these architectures could deliver high performance and
energy efficiency [10]. The most well-known heterogeneous archi-
tecture today is probably the IBM/Sony Cell architecture, which
consists of a Power processor and eight synergistic processors [20].
In the personal computer (PC) world, a desktop now has a multicore
CPU and a GPU, exposing multiple levels of hardware parallelism
to software, as illustrated in Figure 1.

1 The term processing element (PE) is a generic term for a hardware element
that executes a stream of instructions.

[Copyright notice will appear here once ’preprint’ option is removed.]

GPU

Core-0 Core-1

Core-2 Core-3

CPU

SIMD
Core-3

Figure 1. Multiple levels of hardware parallelism exposed to soft-
ware on current CPU+GPU systems (The GPU has tens to hundreds
of special-purpose cores, while the CPU has a few general-purpose
cores. Within each CPU core, there is short-vector parallelism pro-
vided by the SIMD extension of the ISA.)

In order for mainstream programmers to fully tap into the po-
tential of heterogeneous multiprocessors, the step that maps com-
putations to processing elements must be as automated as possible.
Unfortunately, the state-of-the-art approach [12, 17, 30] is to rely
on the programmer to perform this mapping manually: for the Cell,
O’Brien et al. extend the IBM XL compiler to support OpenMP on
this architecture [17]; for commodity PCs, Linderman et al. pro-
pose the Merge framework [12], a library-based system to program
CPU and GPU together using the map-reduce paradigm. In both
cases, the computation-to-processor mappings are statically deter-
mined by the programmer. This manual approach not only puts bur-
dens on the programmer but also is not adaptable, since the optimal
mapping is likely to change with different applications, different in-
put problem sizes, and different hardware configurations.

In this paper, we address this problem by introducing a fully
automatic approach that decides the mapping from computations
to processing elements using run-time adaptation. We have im-
plemented our approach into Qilin2, our experimental system for
programming heterogeneous multiprocessors. Experimental results
demonstrate that our automated adaptive mapping performs nearly
as well as manual mapping while at the same time can tolerate
changes in input problem sizes and hardware configurations. While
Qilin currently focuses on CPU+GPU platforms, our adaptive map-

2 “Qilin” is a mythical chimerical creature in the Chinese culture; we picked
it as the project name for the heterogeneity of this creature.

ping technique is applicable to heterogeneous platforms in general,
including the Cell and others, since our technique does not require
any information regarding the hardware or machine models. To the
best of our knowledge, Qilin is the first and the only system to date
that has such capability.

The rest of this paper is organized as follows. In Section 2, we
use a case study to further motivate the need of adaptive mapping.
Section 3 then describes the Qilin system in details. We will focus
on our runtime adaptation techniques in Section 4. Experimental
evidences will be given in Section 5. Finally, we relate our works
to others in Section 6 and conclude in Section 7.

2. A Case Study: Why Do We Need Adaptation
Mapping?

We now motivate the need of adaptive mapping with a case study on
matrix multiplication, a very commonly used computation kernel in
scientific computing. We measured the parallelization speedups on
matrix multiplication with a heterogeneous machine consisting of
an Intel multicore CPU and a Nvidia multicore GPU (details of the
machine configuration are given in Section 5.1).

We did three experiments with different input matrix sizes and
the number of CPU cores used. In each experiment, we varied
the distribution of work between the CPU and GPU. For matrix
multiplication C = A ∗ B, we first divide A into two smaller
matrices A1 and A2 by rows. We then compute C1 = A1 ∗ B
on the CPU and C2 = A2 ∗ B on the GPU in parallel. Finally,
we obtain C by combining C1 and C2. We use the best matrix
multiplication libraries available: for the CPU, we use the Intel
Math Kernel Library (MKL) [8]; for the GPU, we use the CUDA
CUBLAS library [15].

Figure 2 shows the results of these three experiments. All input
matrices are N ∗N square matrices. The y-axis is the speedup over
the serial case. The x-axis is the distribution of work across the CPU
and GPU, where the notation “X/Y” means X% of work mapped to
the GPU and Y% of work mapped to the CPU. At the two extremes
are the cases where we schedule all the work on either the GPU or
CPU.

In Experiment 1, we use a relatively small problem size (N =
1000) with eight CPU cores. The low computation-to-communication
ratio with this problem size renders the GPU less effective. As a
result, the optimal mapping is to schedule all work on the CPU. In
Experiment 2, we increase the problem size to N = 6000 and keep
the same number of CPU cores. Now, with a higher computation-
to-communication ratio, the GPU becomes more effective—both
the GPU-alone and the CPU-alone speedups are over 7x. And the
optimal mapping is to schedule 60% of work on the GPU and 40%
on the CPU, resulting into a 10.3x speedup. In Experiment 3, we
keep the problem size to N = 6000 but reduce the number of CPU
cores to only two. With much less CPU horsepower, the CPU-only
speedup is limited to 2x and the optimal mapping now is to sched-
ule 80% of work on the GPU and 20% on the CPU.

It is clear from these experiments that even for a single ap-
plication, the optimal mapping from computations to processing
elements highly depends on the input problem size and the hard-
ware capability. Needless to say, different applications would have
different optimal mappings. Therefore, we believe that any static
mapping techniques would not be satisfactory. What we want is
a dynamic mapping technique that can automatically adapt to the
runtime environment, as we are going to propose next.

3. The Qilin Programming System
Qilin is a programming system we have recently developed for het-
erogeneous multiprocessors. Figure 3 shows the software architec-
ture of Qilin. At the application level, Qilin provides an API to

(a) Experiment 1 (N = 1000, #CPU Cores = 8)

5.1 5.2
5.7

6.1
7

5.7

4.7
4.1

3.6
3.2

7.7

0x

1x

2x

3x

4x

5x

6x

7x

8x

9x

GPU-on
ly

90
/10

80
/20

70
/30

60
/40

50
/50

40
/60

30
/70

20
/80

10
/90

CPU-on
ly

Sp
ee

du
p

ov
er

 S
er

ia
l

(b) Experiment 2 (N = 6000, #CPU Cores = 8)

7.6 8
8.7

9.7
9

7.7
6.7

5.9
5.3

7.4

10.3

0x

2x

4x

6x

8x

10x

12x

GPU-on
ly

90
/10

80
/20

70
/30

60
/40

50
/50

40
/60

30
/70

20
/80

10
/90

CPU-on
ly

Sp
ee

du
p

ov
er

 S
er

ia
l

(c) Experiment 3 (N = 6000, #CPU Cores = 2)

7.6
8.4

6.5

5
4

3.3
2.8 2.5 2.2 2

9.3

0x
1x
2x
3x
4x
5x
6x
7x
8x
9x

10x

GPU-on
ly

90
/10

80
/20

70
/30

60
/40

50
/50

40
/60

30
/70

20
/80

10
/90

CPU-on
ly

Sp
ee

du
p

ov
er

 S
er

ia
l

Figure 2. Matrix multiplication experiments with different input
matrix sizes and number of CPU cores used. The input matrices
are N by N . The notation “X/Y” on the x-axis means X% of work
mapped to the GPU and Y% of work mapped to the CPU.

programmers for writing parallelizable operations. By explicitly
expressing these computations through the API, the compiler is al-
leviated from the difficult job of extracting parallelism from se-
rial code, and instead can focus on performance tuning. Similar to
OpenMP, the Qilin API is built on top of C/C++ so that it can be
easily adopted. But unlike standard OpenMP, where parallelization
only happens on the CPU, Qilin can exploit the hardware paral-
lelism available on both the CPU and GPU.

Beneath the API layer is the Qilin system layer, which consists
of a dynamic compiler and its code cache, a number of libraries,

2 2008/11/14

Application
C++ source

Qilin
System

Qilin API

Compiler
Libraries Dev. tools

Hardware CPU GPU

Scheduler

Code Cache

Figure 3. Qilin software architecture

a set of development tools, and a scheduler. The compiler dynam-
ically translates the API calls into native machine codes. It also
decides the near-optimal mapping from computations to process-
ing elements using an adaptive algorithm. To reduce compilation
overhead, translated codes are stored in the code cache so that they
can be reused without recompilation whenever possible. Once na-
tive machine codes are available, they are scheduled to run on the
CPU and/or GPU by the scheduler. Libraries include commonly
used functions such as BLAS and FFT. Finally, debugging, visual-
ization, and profiling tools can be provided to facilitate the devel-
opment of Qilin programs.

Current Implementation Qilin is currently built on top of two
popular C/C++ based threading APIs: The Intel Threading Build-
ing Blocks (TBB) [24] for the CPU and the Nvidia CUDA [16] for
the GPU. Instead of directly generating CPU and GPU native ma-
chine codes, the Qilin compiler generates TBB and CUDA source
codes from Qilin programs on the fly and then uses the system com-
pilers to generate the final machine codes. The “Libraries” compo-
nent in Figure 3 is implemented as wrapper calls to the libraries
provided by the vendors: Intel MKL [8] for the CPU and Nvidia
CUBLAS [15] for the GPU. For the “scheduler” component, we
simply take advantage of the TBB task scheduler to schedule all
CPU threads and we dedicate one CPU thread to handle all hand-
shaking with the GPU. The “Dev. tools” component is still under
development.

In the rest of this section, we will focus our discussion on the
Qilin API and the Qilin compiler. We will discuss our adaptive
mapping technique in Section 4.

3.1 Qilin API

Qilin defines two new types QArray and QArrayList using
C++ templates. A QArray represents a multidimensional array
of a generic type. For example, QArray<float> is the type
for an array of floats. QArray is an opaque type and its actual
implementation is hidden from the programmer. A QArrayList
represents a list of QArray objects, and is also an opaque type.

Qilin parallel computations are performed on either QArray’s
or QArrayList’s. There are two approaches to writing these
computations. The first approach is called the Stream-API ap-
proach, where the programmer solely uses the Qilin stream API
which implements common data-parallel operations including ele-
mentwise, reduction, and linear algebra operations on QArray’s.
Our stream API is similar to those found in some GPGPU sys-
tems [2, 6, 19, 23, 28]. However, since Qilin targets for hetero-
geneous machines, it also allows the programmer to optionally
select the processing elements. For instance, “QArray<float>
Qsum = Add(Qx, Qy, PE SELECTOR GPU)” specifies that
the addition of the two arrays Qx and Qy must be performed on the

void MySgemm(float* A, float* B, float* C, int m, int k,
int n, float alpha, float beta)

{

// Create Qilin arrays from normal arrays

QArray<float> qA = QArray<float>::Create2D(m, k, A);

QArray<float> qB = QArray<float>::Create2D(k, n, B);

QArray<float> qC = QArray<float>::Create2D(m, n, C);

// Invoke the Qilin version of BLAS Sgemm() on the
// processing elements determined by the default
// mapping scheme
qC = BlasSgemm(qA, qB, qC, alpha, beta,

PE_SELECTOR_DEFAULT);

// Convert from qC[] back to C[] and

// this triggers the lazy evaluation

qC.ToNormalArray(C, m*n*sizeof(float))

}

Figure 4. Matrix multiplication written with the Stream-API ap-
proach.

GPU. Other possible selector values are PE SELECTOR CPU for
choosing the CPU and PE SELECTOR DEFAULT for choosing the
default mapping scheme which can be a static one or the adaptive
mapping scheme (See Section 4).

Figure 4 shows a function MySgemm() which uses the Qilin
stream API to perform matrix multiplication. The function QArray::
Create2D() creates a 2D QArray from a normal C array.
Its reverse is QArray::ToNormalArray(), which converts
a QArray back to a normal C array. BlasSgemm() is the BLAS
Sgemm() function provided by Qilin. Since PE SELECTOR DEFAULT
is used in the call, BlasSgemm() can be mapped to either the
CPU or GPU or both, depending on the default mapping scheme.

The second approach to writing parallel computations is called
the Threading-API approach, in which the programmer provides
the parallel implementations of computations in the threading APIs
on which Qilin is built (i.e., TBB on the CPU side and CUDA on
the GPU side for our current implementation). A Qilin operation
is then defined to glue these two implementations together. When
Qilin compiles this operation, it will automatically partition com-
putations across processing elements and eventually merge the re-
sults.

Figure 5 shows an example of using the Threading-API ap-
proach to write an image filter. First, the programmer provides a
TBB implementation of the filter in CpuFilter() and a CUDA
implementation in GpuFilter() (TBB and CUDA codes are
omitted for clarity reasons). Since both TBB and CUDA work
on normal arrays, we need to convert Qilin arrays back to nor-
mal arrays before invoking TBB and CUDA. Second, we use
the Qilin function MakeQArrayOp() to make a new operation
myFilter out of CpuFilter() and GpuFilter(). Third,
we construct the argument list of myFilter from the two Qilin
arrays qSrc and qDst. The keyword QILIN PARTITIONABLE
tells Qilin that the associated computations of both arrays can be
partitioned to run on the CPU and GPU. Fourth, we call another
Qilin function ApplyQArrayOp() to apply myFilter with
the argument list using the default mapping scheme. The result
of ApplyQArrayOp() is a Qilin boolean array qSuccess of
a single element, which returns whether the operation is applied
successfully. Finally, we convert qSuccess to a normal boolean
value.

3 2008/11/14

void CpuFilter(QArray<Pixel> qSrc, QArray<Pixel> qDst) {

Pixel* src_cpu = qSrc.NormalArray(), dst_cpu = qDst.NormalArray();

int height_cpu = qSrc.DimSize(0), width_cpu = qSrc.DimSize(1);

// … Filter implementation in TBB …
}

void GpuFilter(QArray<Pixel> qSrc, QArray<Pixel> qDst) {

Pixel* src_gpu = qSrc.NormalArray(), dst_gpu = qDst.NormalArray();

int height_gpu = qSrc.DimSize(0), width_gpu = qSrc.DimSize(1);

// … Filter implementation in CUDA …
}

void MyFilter(Pixel* src, Pixel* dst, int height, int width) {

// Create Qilin arrays from normal arrays
QArray<Pixel> qSrc = QArray<Pixel>::Create2D(height, width, src);

QArray<Pixel> qDst = QArray<Pixel>::Create2D(height, width, dst);

// Define myFilter as an operation that glues CpuFilter() and GpuFilter()

QArrayOp myFilter = MakeQArrayOp(“myFilter”, CpuFilter, GpuFilter);

// Build the argument list for myFilter. QILIN_PARTITIONABLE means the

// associated computation can be partitioned to run on both CPU and GPU.

QArrayOpArgsList argList;

argList.Insert(qSrc, QILIN_PARTITIONABLE);

argList.Insert(qDst, QILIN_PARTITIONABLE);

// Apply myFilter with argList using the default mapping scheme

QArray<BOOL> qSuccess = ApplyQArrayOp(myFilter, argList, PE_SELECTOR_DEFAULT);

// Convert from qSuccess[] to success, and this triggers the lazy evaluation

BOOL success;

qSuccess.ToNormalArray(&success, sizeof(BOOL));

}

Figure 5. Image filter written with the Threading-API approach.

3.2 Dynamic Compilation

Qilin uses dynamic compilation to compile Qilin API calls into
native machine codes while the program runs. The main advantage
of dynamic over static compilation is able to adapt to changes in
the runtime environment. The downside of dynamic compilation is
the compilation overhead incurred at run time. However, we argue
that this overhead is largely amortized in the typical Qilin usage
model, where a relatively small program runs for a long period of
time.

The Qilin dynamic compilation consists of the following four
steps:

1. Building Directed Acyclic Graph (DAGs) from Qilin API
calls: DAGs are built according to the data dependencies
among QArrays in the API calls. These DAGs are essen-
tially the intermediate representation which latter steps in the
compilation process will operate on.

2. Deciding the mapping from computations to processing ele-
ments: This step either uses the programmer-specified choice at
each operation (see Section 3.1) or uses the automatic adaptive
mapping technique (see Section 4).

3. Performing optimizations on DAGs: A number of optimiza-
tions are applied to the DAGs. The most important ones are
(i) operation coalescing and (ii) removal of unnecessary tem-
porary arrays. Operation coalescing groups as many operations
running on the same processing elements into a single function
as possible, and thereby reducing the overhead of scheduling
individual operations. It is also important to remove the allocat-
ing/deallocating and copying of temporary arrays used in the
intermediate computations of QArrays.

4. Code generation: At this point, we have the optimized DAGs
and their computation-to-processor mappings decided. One ad-
ditional step we need to do here is to ensure that all hardware
resource constraints are satisfied. The most common issue is
the memory requirement of computations that are mapped to
the GPU, because the amount of GPU physical memory avail-
able is relatively limited (typically less than 1GB) and it does
not have virtual memory. To cope with this issue, if Qilin esti-
mates that the GPU memory requirement of a DAG exceeds the
limit, it will split the DAG into multiple smaller DAGs and run
them sequentially. Once all resource constraints are taken care
of, Qilin generates the native machine codes from the DAGs ac-

4 2008/11/14

cording to the mappings. Qilin also automatically generates all
gluing codes needed to combine the results from the CPU and
the GPU.

3.2.1 Reducing Compilation Overhead

To reduce the runtime overhead, dynamic compilation is mostly
done in a lazy-evaluation manner: When a Qilin program is exe-
cuted, DAGs are built (i.e., Step 1 in the compilation process) as
API calls are encountered. Nevertheless, the remaining three steps
are not invoked until the computation results are really needed—
when we perform a QArray::ToNormalArray() call to con-
vert from a QArray to a normal C array. Thus, dynamically dead
Qilin API calls will not cause any compilation. In addition, code
generated for a particular DAG is stored in a software code cache
so that if the same DAG is seen again later in the same program
run, we do not have to redo Steps 2-4.

4. Adaptive Mapping
The Qilin adaptive mapping is a technique to automatically find the
near-optimal mapping from computations to processing elements
for the given application, problem size, and hardware configura-
tion. To facilitate our discussion, let us introduce the following no-
tations:

TC(N) = The actual time to execute the

given program of problem size N on the CPU.

TG(N) = The actual time to execute the

given program of problem size N on the GPU.

T ′
C(N) = Qilin’s projection of TC(N)

T ′
G(N) = Qilin’s projection of TG(N)

One approach to predicting TC(N) and TG(N) is to build an
analytical performance model based on static analysis. While this
approach might work well for simple programs, it is unlikely to
be sufficient for more complex programs. In particular, predicting
TC(N) using an analytical model is challenging with features like
out-of-order execution, speculation and prefetching on modern pro-
cessors. Instead, Qilin takes an empirical approach, as pictorialized
in Figure 6 and explained below.

Qilin maintains a database that provides execution-time projec-
tion for all the programs it has ever executed. The first time that a
program is run under Qilin, it is used as the training run (see Fig-
ure 6(a)). Suppose the input problem size for this training run is
Nt. Then Qilin divides the input into two parts of size N1 and N2.
The N1 part is mapped to the CPU while the N2 part is mapped to
the GPU. Within the CPU part, it further divides N1 into m sub-
parts N1,1...N1,m . Each subpart N1,i is run on the CPU and the
execution time TC(N1,i) is measured. Similarly, the N2 part is fur-
ther divided into m subparts N2,1...N2,m and their execution times
on the GPU TG(N2,i)’s are measured. Once all TC(N1,i)’s and
TG(N2,i)’s are available, Qilin uses curve fitting to construct two
linear equations T ′

C(N) and T ′
G(N) as projections for the actual

execution times TC(N) and TG(N), respectively. That is:

TC(N) ≈ T ′
C(N)

= ac + bc ∗ N (1)

TG(N) ≈ T ′
G(N)

= ag + bg ∗ N (2)

where ac, bc, ag and bg are constant real numbers. The next time
that Qilin runs the same program with a different input problem
size Nr , it can use the execution-time projection stored in the
database to determine the computation-to-processor mapping (see

(a) Training run

P

Nt
N1,1 N1,m

P P P P

N2,1 N2,m

PPPP
time taken: Tc (N1,1)

curve
fitting

Input sizeR
un

tim
e

curve
fitting

T’C(N) T’G(N)

Tc (N1,m) TG(N2,1) TG(N2,m)

Database

(b) Reference run

P

Nr

Database

Tβ(Nr) Max(T’C(Nr), T’G((1-)Nr))
Find to minimize Tβ(Nr)

P

CPU

P

GPU

Figure 6. Qilin’s adaptive mapping technique.

Figure 6(b)). Let β be the fraction of work mapped to the CPU and
Tβ(N) be the actual time to execute β of work on the CPU and
(1 − β) of work on the GPU in parallel. Then:

Tβ(N) = Max(TC(βN), TG((1 − β)N))

≈ Max(T ′
C(βN), T ′

G((1 − β)N)) (3)

The above equations assume that running the CPU and GPU
simultaneously is as fast as running them standalone. In reality, this
is not the case since the CPU and GPU do contend for common
resources including bus bandwidth and the need of CPU processor
cycles to handshake with the GPU. So, we take these factors into
account by multiplying factors into Equation (3):

Tβ(N) ≈ Max(
p

p − 1
T ′

C(βN), T ′
G((1 − β)N)) (4)

5 2008/11/14

Case i: CPU and GPU curves intersect at β ≤ 0

Time

β0 1

CPU: (p/p-1)T’c(β Nr)

Minimized when mapping
all work to the GPU

GPU: T’G((1-β) Nr)

Case ii: CPU and GPU curves intersect at β ≥ 1

Time

β0 1

CPU: (p/p-1)T’c(β Nr)

GPU: T’G((1-β) Nr)

Minimized when mapping all
work to the CPU

Case iii: CPU and GPU curves intersect at 0 < β < 1

Time

β0 1

CPU: (p/p-1)T’c(β Nr)

GPU: T’G((1-β) Nr)

Minimized when mapping
βmin of work to the CPU

βmin

Figure 7. Three possible cases of the β in Equation (4).

where p is the number of CPU cores. Here we dedicate one CPU
core to handshake with the GPU and we assume that bus bandwidth
is not a major factor.

Now, we can plug the input problem size Nr into Equation
(4). T ′

C(βNr) becomes a linear equation of a single variable β
and the same for T ′

G((1 − β)Nr). We need to find the value of
β that minimizes Max(p

p−1
T ′

C(βNr), T
′
G((1 − β)Nr)). This is

equivalent to finding the β at which p
p−1

T ′
C(βNr) and T ′

G((1 −
β)Nr) intersect. There are three possible cases, as illustrated in
Figure 7. In case (i) where the intersection happens at β ≤ 0,
Qilin maps all work to the GPU; in case (ii) where the intersection
happens at β ≥ 1, Qilin maps all work to the CPU; in case (iii)
where the intersection happens at 0 < βmin < 1, Qilin maps βmin

of work to the CPU and 1 − βmin of work to the GPU.
Finally, if Qilin detects any hardware changes since the last

training run for a particular program was done, it will trigger a new
training run for the new hardware configuration and use the results
for future performance projection.

CPU GPU

Architecture Intel Core2 Quad Nvidia 8800 GTX
Core Clock 2.4 GHz 575 MHz

Number of Cores 8 cores (on two sockets) 128 stream processors
Memory size 4 GB 768 MB

Memory 8 GB/s 86.4 GB/s
Bandwidth
Threading Intel Threading Nvidia CUDA 1.1

API Building Blocks (TBB)
Compiler Intel C Compiler; Nvidia C Compiler

(ICC 10.1, “-fast”) (NVCC 1.1,“-O3”)
OS 32-bit Linux Fedora Core 6

Table 1. Experimental Setup

5. Evaluation
We now present the methodology used to evaluate the effectiveness
of adaptive mapping and the results.

5.1 Methodology

Our evaluation was done on a heterogeneous PC, consisting of a
multicore CPU and a high-end GPU, as depicted in Table 1. Ta-
ble 2 lists our benchmarks, including the ones used in the Merge
work [12], the most relevant previous study, and a few other im-
portant computation kernels. We compare Qilin’s adaptive imple-
mentation against the best available CPU or GPU implementations
whenever possible: for the GPU implementations, we use the ones
provided in the CUDA Software Development Kit (SDK) [14] if
available.

We measured the wall-clock execution time, including the time
required to transfer the data between the CPU and the GPU when
the GPU is used. For Qilin’s adaptive versions, we did one training
run followed by a variable number of reference runs until the
total execution time (including both training and reference runs)
reaches one hour. We then report the average execution time per
reference run (i.e., total execution time divided by the number
of reference runs). This emulates the expected usage model of
Qilin where a program is trained once and then used many times
afterwards. In addition, since our current prototype uses source-
to-source translation and invokes the system compilers to generate
the final executables (see Section 3), the dynamic compilation
overhead is fairly high. So we amortize it with multiple reference
runs. In a production environment where we shall have a full-
fledged compiler that generates code all the way from source to
binary, the compilation overhead would be much less an issue.

5.2 Results

In this section, we first present results that compare adaptive map-
ping against manual mapping, using training set sizes identical to
the reference set sizes. Second, we present results with different
training input sizes. Finally, we present results with different hard-
ware configurations.

5.2.1 Effectiveness of Adaptive Mapping

Figure 8 shows the performance comparison between automatic
adaptive mapping and other mappings. The y-axis is the speedup
over the serial case in logarithmic scale. The x-axis shows the
benchmarks and the geometric mean. In each benchmark, there are
four bars representing different mapping schemes. “CPU-always”
means always scheduling all the computations to the CPU, while
“GPU-always” means scheduling all the computations to the GPU.
“Manual mapping” means the programmer manually determines
the near-optimal mapping through an exhaustive search. “Adap-
tive mapping” means Qilin automatically determines the near-
optimal mapping via adaptive mapping. Both “Manual mapping”

6 2008/11/14

Benchmark Description Input Serial Origin
Problem Size Time

Binomial American option pricing 1000 options, 2048 steps 11454 ms CUDA SDK [14]
BlackScholes Eurpoean option pricing 10000000 options 343 ms CUDA SDK

Convolve 2D separable image convolution 12000 x 12000 image, 10844 ms CUDA SDK
kernel radius = 8

MatrixMultiply Dense matrix multiplication 6000 x 6000 matrix 37583 ms CUDA SDK
Linear Linear image filter—compute output 13000 x 13000 image 6956 ms Merge [12]

pixel as average of a 9-pixel square
Sepia Modify RGB value to artificially age images 13000 x 13000 image 2307 ms Merge

Smithwat Compute scoring matrix for a pair 2000 base pairs 26494 ms Merge
of DNA sequences

Svm Kernel from a SVM-based face classifier 736 x 992 image 491 ms Merge

Table 2. Benchmarks

5.
5 7

9.
9

9.
3

1x

10x

100x

Bino
mial

Blac
kS

ch
ole

s

Con
vo

lve

Matr
ixM

ult
ipl

y

Lin
ea

r
Sep

ia

Smith
wat

Svm

Geo
-M

ea
n

Sp
ee

du
p

ov
er

 S
er

ia
l

CPU-always GPU-always

Manual mapping Adaptive mapping

Figure 8. Performance of Adaptive Mapping (Note: The y-axis is in logarithmic scale).

and “Adaptive mapping” use training inputs that are identical to the
reference inputs (we will investigate the impact of different training
inputs in Section 5.2.2).

Table 3 reports the distribution of computations under the last
two mapping schemes. Table 4 reports the linear equations T ′

C(N)
and T ′

G(N) that Qilin constructed for each benchmark via curve
fitting. Note that the equations are fairly different for different
benchmarks, indicating that Qilin automatically adjusts the time
predictions for different programs.

On average, adaptive mapping is 69% faster than always using
the CPU and 33% faster than always using the GPU. It is within
94% of the near-optimal mapping found by the programmer via
exhaustive searching. In the cases of Binomial, Convolve and
Svm, adaptive mapping performs slightly better than manual map-
ping.

There are two major factors that determine the performance
of adaptive mapping. The first factor is how accurate Qilin’s per-
formance projections are (i.e., Equation (4) in Section 4). Table 3
shows that the work distributions under the two mapping schemes
are similar, indicating that Qilin’s performance projections are
fairly accurate. Figure 9 evaluates the accuracy of Qilin’s perfor-
mance projection in more details for Binomial. It plots the actual
and predicted execution times for both CPU and GPU with different
problem sizes. As shown, the actual and predicted execution-time

Manual Adaptive
mapping mapping

CPU GPU CPU GPU
Binomial 10% 90% 10.5% 89.5%

BlackScholes 40% 60% 46.5% 53.5%
Convolve 40% 60% 36.3% 63.7%

MatrixMultiply 40% 60% 45.5% 54.5%
Linear 60% 40% 50.8% 49.2%
Sepia 80% 20% 76.2% 23.8%

Smithwat 60% 40% 59.3% 40.7%
Svm 10% 90% 14.3% 85.7%

Table 3. Distribution of computations under the manual mapping
and adaptive mapping in Figure 8.

curves are very close in both CPU and GPU cases. Similar obser-
vations are made in other benchmarks as well.

The second factor is the runtime overhead of adaptive mapping.
Among our benchmarks, Smithwat is the only one that signifi-
cantly suffers from this overhead (see the relative low performance
of “Adaptive mapping”for Smithwat in Figure 8). This bench-
mark computes the scoring matrix for a pair of DNA sequences.
The serial version is sketched in Figure 10(a). The two-level for-

7 2008/11/14

CPU GPU
T ′

C(N) = ac + bc ∗ N T ′
G(N) = ag + bg ∗ N

ac bc ag bg

Binomial 16.21 1.61 1.20 0.26
BlackScholes 4.40 0.000015 0.98 0.000013

Convolve 6.45 0.18 4.50 0.10
MatrixMultiply 24.23 0.00017 96.58 0.00014

Linear 4.07 0.0000076 2.73 0.0000079
Sepia 3.80 0.0000028 4.98 0.0000089

Smithwat 178.85 2.55 13.71 3.91
Svm 3.81 0.0011 5.34 0.00017

Table 4. The time-projection equations constructed by Qilin via
curve fitting (i.e., Equations (1) and (2) in Section 4).

0

200

400

600

800

1000

1200

1400

1600

100 200 300 400 500 600 700 800 900 1000
Problem size (number of options)

Ex
ec

ut
io

n
tim

e
(m

s)

CPU-actual CPU-predicted
GPU-actual GPU-predicted

Figure 9. Accuracy of Qilin’s performance projections in
Binomial.

loop considers all possible pairs of elements (one element from
seqA and the other from seqB). The Qilin version is sketched in
Figure 10(b). Data dependency constrains us to parallelize the inner
loop instead of the outer loop. Consequently, the Qilin version has
to pay the adaptation overhead in each iteration of the outer loop
(i.e., the work being done in MySmithwat(), including convert-
ing between normal arrays and Qilin arrays and defining and ap-
plying new QArrayOp’s.)

5.2.2 Impact of Training Input Size

Figure 11 shows the impact of the training set size on the per-
formance of adaptive mapping. Each benchmark uses six different
training set sizes, ranging from 10% to 100% of the reference set
size (i.e., the “100%” bars in Figure 11 are the same as the “Adap-
tive mapping” bars in Figure 8). Figure 11 shows that much of the
performance benefit of adaptive mapping is preserved as long as
the training set size is at least 30% of the reference set size. When
the training set size is only one-tenth of the reference set size, the
average adaptive-mapping speedup drops to 7.5x, but is still higher
than the 7.0x or 5.5x speedups by using the GPU or CPU alone, re-
spectively. These results provide a guideline on when Qilin should
apply adaptive mapping if the actual problem sizes are significantly
different from the training input sizes stored in the database.

5.2.3 Adapting to Hardware Changes

One important advantage of adaptive mapping is its capability to
adjust to hardware changes. To demonstrate this advantage, we did
the following two experiments.

In the first experiment, we replaced our GPU by a less pow-
erful one (Nvidia 8800 GTS) but kept the same 8-core CPU.
8800 GTS has fewer stream processors (96) and less memory

(a) Serial version
void SerialSmithwat(float* score,

float* seqA, int startA, int lenA,
float* seqB, int startB, int lenB)

{

for (int i=startA; i<lenA; i++)

for (int j=startB; j<lenB; j++)

ScoreOnePair(score, seqA, i, lenA,

seqB, j, lenB);

}

(b) Qilin version

void MySmithwat(float* score, float* seqA, int i, int lenA,

float* seqB, int startB, int lenB) {

QArray<float> q1 = QArray<float>::Create1D(…);
QArray<float> q2 = QArray<float>::Create1D(…);

QArrayOp mySmithwat = MakeQArrayOp(…);
QArrayOpArgsList argList;
argList.Insert(q1, …); argList.Insert(q2, …);

QArray<BOOL> qSuccess = ApplyQArrayOp(mySmithwat,
argList, …);

qSuccess.ToNormalArray(…);
}

void QilinSmithwat(float* score,

float* seqA, int startA, int lenA,
float* seqB, int startB, int lenB) {

for (int i=startA; i<lenA; i++)

MySmithwat(score, seqA, i, lenA, seqB, startB, lenB);

}

Figure 10. Explaining the high adaptation overhead in
Smithwat.

(640MB) than 8800 GTX. The performance of adaptive mapping
with this new hardware configuration is shown in Figure 12(a).
The “GPU-always” speedup with 8800 GTS is 5.7x compared to
the 7x speedup with 8800 GTX in Figure 8, or a 19% perfor-
mance reduction. Adaptive mapping automatically re-distributes
the computations for this change. The new work distribution is
shown under the “Less powerful GPU” column in Table 5. Com-
paring this against the original work distribution in Table 3, Qilin
has shifted more work from the GPU to the CPU. Consequently,
adaptive mapping achieves a 8.2x speedup, or a 12% performance
reduction compared against its 9.3x speedup in Figure 8. Note that
the performance reduction in the “Adaptive mapping” case (12%)
is less than that in the “GPU-always” case (19%), because Qilin is
able to recover part of the loss from the CPU.

In the second experiment, we went for the other extreme, where
we replaced our 8-core CPU by a 2-core CPU but kept the orig-
inal GPU (8800 GTX). The performance with this new hardware
configuration is shown in Figure 12(b) and the new work distribu-
tion is shown under the “Less powerful CPU” column in Table 5.
With a 2-core CPU, the average speedup of “CPU-always” is down
to 1.5x. Qilin decided to shift most computations to the GPU. As
a result, the “Adaptive mapping” speedup in Figure 12(b) is only
slightly better than the “GPU-always” speedup.

6. Related Work
Heterogeneous multiprocessors have been drawing increasing at-
tentions from both the hardware and software research communi-
ties. On the hardware side, Kumar et al. [10] demonstrate the ad-
vantages of heterogeneous chip multiprocessors (CMPs) over ho-

8 2008/11/14

9.
3 9.

3 9.
2

9.
0

8.
2

7.
5

1x

10x

100x

Bino
mial

Blac
kS

ch
ole

s

Con
vo

lve

Matr
ixM

ult
ipl

y
Lin

ea
r

Sep
ia

Smith
wat

Svm

Geo
-M

ea
n

Sp
ee

du
p

ov
er

 S
er

ia
l

100% 80% 50% 30% 20% 10%

Figure 11. Impact of the training set size on adaptive mapping performance (Note: The y-axis is in logarithmic scale. The legend ”X%”
means the training set size is X% of the reference set size.).

(a) Using a less powerful GPU

5.
5 5.

7 8.
2

1x

10x

100x

Bino
mial

Blac
kS

ch
ole

s

Con
vo

lve

Matr
ixM

ult
ipl

y
Lin

ea
r

Sep
ia

Smith
wat

Svm

Geo
-M

ea
n

Sp
ee

du
p

ov
er

 S
er

ia
l

CPU-always GPU-always Adaptive mapping

(b) Using a less powerful CPU

1.
5

7 7.
2

1x

10x

100x

Bino
mial

Blac
kS

ch
ole

s

Con
vo

lve

Matr
ixM

ult
ipl

y

Lin
ea

r
Sep

ia

Smith
wat

Svm

Geo
-M

ea
nSp

ee
du

p
ov

er
 S

er
ia

l

CPU-always GPU-always Adaptive mapping

Figure 12. Performance of Adaptive Mapping with respect to
hardware changes (Note: The y-axis is in logarithmic scale).

mogeneous CMPs in terms of power and throughput. They predict
that once homogeneous CMPs reach a total of four cores, the bene-
fits of heterogeneity will outweigh the benefits of additional homo-
geneous cores in many applications. They also classify heteroge-
neous multiprocessors into multi-ISA multiprocessors such as the

Cell and CPU+GPU and single-ISA multiprocessors [9] such as the
upcoming Intel’s Larrabee [26]. Our adaptive mapping technique
is applicable to both single-ISA or multi-ISA heterogeneous mul-
ticores. Recently, Hill and Marty [7] also argue that heterogeneous
(“asymmetric” in their terminology) multicore designs offer greater
potential speedup than homogeneous (“symmetric”) designs, pro-
vided that software challenges like the computation-to-processor
mapping problem can be addressed.

On the software side, there are a number of GPGPU pro-
gramming systems from both academic and industry. Most of
them, including Stanford’s Brook [2], Microsoft’s Accelerator [28],
Google’s Peakstream [19], Rapidmind [23], AMD’s Brook+ [1]
and Nvidia’s Cuda [16] target for only the GPU. In contrast, Intel’s
Ct [6] currently targets for the CPU only. Liao et al. [11] devel-
oped a compiler that generates multithreaded CPU codes from
Brook-like programs. Similarly, Stratton et al. [27] have devel-
oped MCUDA for translating CUDA kernels to run on multicore
CPUs. While Qilin shares some similarities with these systems in
its stream API, it differs from them by taking advantage of both the
CPU and the GPU simultaneously.

As we mentioned in Section 1, the IBM’s OpenMP extension
for Cell [17] and Intel’s Merge work [12] are most related to Qilin
as they could also map computations to both the host processor and
the special processor. However, the key advantage of Qilin is that
the mapping is done automatically and is adaptive to changes in
the runtime environment. Most recently, OpenCL [13] is proposed
as the standard API for programming GPUs. At this moment, it is
unclear what kind of mechanism will be available in OpenCL to
help programmers decide the computation-to-processor mapping.
At the operating system level, Ghiasi et al [5] proposes a sched-
uler that schedules memory-bound tasks to cores running at lower
frequencies, thereby limiting system power while minimizing total
performance loss.

Our work is also related to program autotuning [3, 4, 18, 21, 22,
25, 29, 31], an increasingly popular approach to producing high-
quality portable code by generating many variants of a computation
kernel and benchmarking each variant on the target platform. Exist-
ing autotuners largely focus on tuning the program parameters that
affect the memory-hierarchy performance, such as the cache block-
ing factor and prefetch distance. Adaptive mapping can be viewed

9 2008/11/14

Less powerful Less powerful
GPU CPU

CPU GPU CPU GPU
Binomial 19.2% 80.8% 0% 100%

BlackScholes 46.3% 53.7% 9.9% 90.1%
Convolve 39.4% 60.6% 9.4% 90.6%

MatrixMultiply 53.6% 46.4% 11.7% 88.3%
Linear 55.3% 44.7% 14.5% 85.5%
Sepia 82% 18% 32.4% 67.6%

Smithwat 60% 40% 22.9% 77.1%
Svm 15% 85% 0% 100%

Table 5. Distribution of computations under adaptive mapping
corresponding to the two hardware changes in Figure 12.

as an autotuning technique that tunes for the distribution of works
on heterogeneous multiprocessors.

7. Conclusion
We have presented adaptive mapping, the first automatic technique
that maps computations to processing elements on heterogeneous
multiprocessors. We have implemented it in an experimental sys-
tem called Qilin for programming CPUs and GPUs. We demon-
strate that automated adaptive mapping performs close to manual
mapping and can adapt to changes in input problem sizes and hard-
ware configurations. We believe that adaptive mapping could be an
important technique in the multicore software stack.

References
[1] AMD. AMD Stream SDK User Guide v 1.2.1-beta, Oct 2008.

[2] BUCK, I., FOLEY, T., HORN, D., SUGERMAN, J., FATAHALIAN,
K., HOUSTON, M., AND HANRAHAN, P. Brook for GPUs: Stream
Computing on Graphics Hardware. ACM Transactions on Graphics
23, 3 (2004), 777–786.

[3] CHEN, C., CHAME, J., NELSON, Y. L., DINIZ, P., HALL, M., AND
LUCAS, R. Compiler-Assisted Performance Tuning. In Proceedings
of SciDAC 2007, Journal of Physics: Conference Series (June 2007).

[4] FURSIN, G. G., O’BOYLE, M. F. P., AND KNIJNENBURG, P.
M. W. Evaluating Iterative Compilation. In Proceedings of the 2002
Workshop on Languages and Compilers for Parallel Computing.

[5] GHIASI, S., KELLER, T., AND RAWSON, F. Scheduling for
Heterogeneous Processors in Server Systems. In Proceedings of
the 2nd Conference on Computing Frontiers (May 2005), pp. 199–
210.

[6] GHULOUM, A., SMITH, T., WU, G., ZHOU, X., FANG, J., GUO,
P., SO, B., RAJAGOPALAN, M., CHEN, Y., AND CHEN, B. Future-
Proof Data Parallel Algorithms and Software On Intel Multi-Core
Architecture. Intel Technology Journal 11, 4, 333–348.

[7] HILL, M., AND MARTY, M. R. Amdahl’s Law in the Multicore Era.
IEEE Computer (July 2008), 33–38.

[8] INTEL. Intel Math Kernel Library Reference Manual, Sept 2007.

[9] KUMAR, R., FARKAS, K. I., JOUPPI, N. P., RANGANATHAN,
P., AND TULLSEN, D. Single-ISA Heterogeneous Multicore
Architectures: The Potential for Processor Power Reduction. In
Proceedings of the MICRO’03 (December 2003), pp. 81–92.

[10] KUMAR, R., TULLSEN, D., JOUPPI, N., AND RANGANATHAN, P.
Heterogeneous Chip Multiprocessors. IEEE Computer (November
2005), 32–38.

[11] LIAO, S.-W., DU, Z., WU, G., AND LUEH, G.-Y. Data and
Computation Transformations for Brook Streaming Applications on
Multiprocessors. In Proceedings of the 4th Conference on CGO
(March 2006), pp. 196–207.

[12] LINDERMAN, M. D., COLLINS, J. D., WANG, H., AND MENG,
T. H. Merge: A Programming Model for Heterogeneous Multi-core
Systems. In Proceedings of the 2008 ASPLOS (March 2008).

[13] MUNSHI, A. OpenCL Parallel Computing on the GPU and CPU. In
ACM SIGGRAPH 2008 (2008).

[14] NVIDIA. CUDA SDK. http://www.nvidia.com/object/cuda get.html.

[15] NVIDIA. CUDA CUBLAS Reference Manual, June 2007.

[16] NVIDIA. CUDA Programming Guide v 1.0, June 2007.

[17] O’BRIEN, K., O’BRIEN, K., SURA, Z., CHEN, T., AND ZHANG,
T. Supporting OpenMP on Cell. International Journal on Parallel
Programming 36 (2008), 289–311.

[18] PAN, Z., AND EIGENMANN, R. PEAL—A Fast and Effective Per-
formance Tuning System via Compiler Optimization Orchestration.
ACM Transactions. on Programming Languages and Systems 30, 3
(May 2008).

[19] PEAKSTREAM. Peakstream Stream Platform API C++ Programming
Guide v 1.0, May 2007.

[20] PHAM, D., ASANO, S., BOLLIGER, M., DAY, M. M., HOFSTEE,
H. P., JOHNS, C., KAHLE, J., KAMEYAMA, A., KEATY, J.,
MASUBUCHI, Y., RILEY, M., SHIPPY, D., STASIAK, D., SUZUOKI,
M., WANG, M., WARNOCK, J., WEITZEL, S., WENDEL, D.,
YAMAZAKI, T., AND YAZAWA, K. The Design and Implementation
of a First-Generation CELL Processor. In IEEE International Solid-
State Circuits Conference (May 2005), pp. 49–52.

[21] POUCHET, L.-N., BASTOUL, C., COHEN, A., AND CAVAZOS,
J. Iterative Optimization in the Polyhedral Model: Part II,
Multidimensional Time. In Proceedings of the ACM SIGPLAN
08 Conference on PLDI (June 2008).

[22] PUSCHEL, M., MOURA, J., JOHNSON, J., PAUDA, D., VELOSO,
M., SINGER, B., XIONG, J., FRANCHETTI, F., GACIC, A.,
VORONENKO, Y., CHEN, K., JOHNSON, R., AND RIZZOLO, N.
SPIRAL: Code Generation for DSP Transforms. Proceedings of
the IEEE, special issue on Program Generation, Optimization, and
Adaption 93, 2 (2005), 232–275.

[23] RAPIDMIND. Rapidmind. http://www.rapidmind.net.

[24] REINDERS, J. Intel Threading Building Blocks. O’Reilly, July 2007.

[25] REN, M., PARK, J., HOUSTON, M., AIKEN, A., AND DALLY, W. J.
A Tuning Framework for Software-Managed Memory Hierarchies.
In Proceedings of the 2008 International Conference on PACT.

[26] SEILER, L., CARMEAN, D., SPRANGLE, E., FORSYTH, T.,
ABRASH, M., DUBEY, P., JUNKINS, S., LAKE, A., SUGERMAN,
J., CAVIN, R., ESPASA, R., GROCHOWSKI, E., JUAN, T., AND

HANRAHAN, P. Larrabee: A Many-Core x86 Architecture for Visual
Computing. In Proceedings of ACM SIGGRAPH 2008 (2008).

[27] STRATTON, J. A., STONE, S. S., AND M W. HWU, W. MCUDA:
An Efficient Implementation of CUDA Kernels from Multi-Core
CPUs. In Proceedings of the 2008 Workshop on Languages and
Compilers for Parallel Computing.

[28] TARDITI, D., PURI, S., AND OGLESBY, J. Accelerator: Using
Data Parallelism to Program GPUs for General-Purpose Uses. In
Proceedings of the 2006 ASPLOS (October 2006).

[29] VUDUC, R., DEMMEL, J., AND YELICK, K. OSKI: A library of
automatically tuned sparse matrix kernels. In Proceedings of SciDAC
2005, Journal of Physics: Conference Series (June 2005).

[30] WANG, P., COLLINS, J. D., CHINYA, G., JIANG, H., TIAN, X.,
GIRKAR, M., YANG, N., LUEH, G.-Y., AND WANG, H. EXOCHI:
Architecture and Programming Environment for a Heterogeneous
Multi-core Multithreaded System. In Proceedings of the ACM
SIGPLAN 07 Conference on PLDI (June 2007), pp. 156–166.

[31] WHALEY, R. C., PETITET, A., AND DONGARRA, J. J. Automated
Empirical Optimization of Software and the ATLAS Project. Parallel
Computing 27, 1-2 (2001), 3–35.

10 2008/11/14

