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ABSTRACT
Graph triangulation, which finds all triangles in a graph, has been
actively studied due to its wide range of applications in the net-
work analysis and data mining. With the rapid growth of graph
data size, disk-based triangulation methods are in demand but lit-
tle researched. To handle a large-scale graph which does not fit
in memory, we must iteratively load small parts of the graph. In
the existing literature, achieving the ideal cost has been consid-
ered to be impossible for billion-scale graphs due to the memory
size constraint. In this paper, we propose an overlapped and par-
allel disk-based triangulation framework for billion-scale graphs,
OPT, which achieves the ideal cost by (1) full overlap of the CPU
and I/O operations and (2) full parallelism of multi-core CPU and
FlashSSD I/O. In OPT, triangles in memory are called the internal
triangles while triangles constituting vertices in memory and ver-
tices in external memory are called the external triangles. At the
macro level, OPT overlaps the internal triangulation and the exter-
nal triangulation, while it overlaps the CPU and I/O operations at
the micro level. Thereby, the cost of OPT is close to the ideal cost.
Moreover, OPT instantiates both vertex-iterator and edge-iterator
models and benefits from multi-thread parallelism on both types
of triangulation. Extensive experiments conducted on large-scale
datasets showed that (1) OPT achieved the elapsed time close to
that of the ideal method with less than 7% of overhead under the
limited memory budget, (2) OPT achieved linear speed-up with an
increasing number of CPU cores, (3) OPT outperforms the state-of-
the-art parallel method by up to an order of magnitude with 6 CPU
cores, and (4) for the first time in the literature, the triangulation
results are reported for a billion-vertex scale real-world graph.

Categories and Subject Descriptors
H.3.3 [Information search and retrieval]: Search process
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1. INTRODUCTION
Graph triangulation enumerates triangles in a graph, and its sig-

nificance is well identified in the network analysis and data mining
area. Various network analysis metrics can be obtained directly
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from graph triangulation. Clustering coefficients [19], transitivity
[18], and trigonal connectivity [6] are representative. The clus-
tering coefficient and transitivity are two important metrics which
quantify density. Trigonal connectivity measures the tightness of
a connection between a pair of vertices. Graph triangulation also
provides insight into data mining applications. Becchetti et al. [7]
exploit the number of triangles used in detecting spam pages in
web graphs and in measuring content quality in social networks.
Prat-Pérez et al. [26] propose a community detection method based
on the observation that a good community has many triangles. Eck-
mann and Moses [14] study the hidden thematic relationship in web
graphs using the transitivity metric.

Subsequently, graph triangulation methods have been actively
studied. In early studies, most of the proposed methods assume
that graphs fit in main memory [2, 5, 21, 24, 27, 28]. In-memory
triangulation methods are classified into edge-iterator and vertex-
iterator methods. However, emerging graphs of interest, such as
social networks and web graphs, do not fit in main memory. To
alleviate the memory size restriction, approximation methods were
proposed [1, 7, 9, 13, 31]. However, such methods cannot support
general graph triangulation but approximate triangle counting only.
Thus, their applications are significantly limited [12].

To support triangulation in a cost-efficient way, the exact, disk-
based triangulation methods are in great demand due to the emer-
gence of large-scale graphs. Nowadays, online social networks
such as Facebook reach a billion vertices [17]. The Yahoo web
graph, which is publicly available, consists of over 1.4 billion ver-
tices. Moreover, billion-scale web graphs can easily be obtained by
ordinary users using open source crawlers such as Apache Nutch.
In order to support efficient triangulation for billion-scale graphs,
one may use the existing approaches which use either large-scale
clusters or expensive high-performance servers. However, buying
and maintaining such an expensive hardware environment is very
hard for ordinary users or for small research groups. Accordingly,
devising an efficient, disk-based parallel triangulation method in a
single PC capable of handling billion-scale graphs is important and
in great demand for the energy and economic benefits.

Figure 1 illustrates a motivating example that shows an exam-
ple graph G and two types of triangles. Let us denote a triangle
which is composed of three distinct vertices u, v and w as �uvw.
When the memory buffer holds edges to which a, b, c, and d be-
long, among five triangles in G, �abc and �cdf are identified us-
ing edges in the memory buffer. However, �def , �cfg , and �cgh

can be identified only when edges in the external memory – (e, f),
(f, g), and (g, h) – are loaded in the main memory. We call the
first type of triangles the internal triangles and the second type the
external triangles. Any disk-based triangulation method must iden-
tify both types of triangles efficiently.
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Figure 1: An example graph G and two types of triangles
(dark: internal triangle, light: external triangle)

In the existing literature, disk-based triangulation methods have
been little researched. To our knowledge, Chu and Cheng [12],
Kyrola et al. [23], and Hu et al. [20] proposed the state-of-the-
art methods. The method of Chu and Cheng [12] first partitions
a graph. Then, for each partition, it identifies triangles, removes
edges which participate the identified triangles, and saves the re-
maining edges. The above process is repeated until no edges re-
main. GraphChi [23] is the state-of-the-art parallel disk-based graph
processing system and provides a triangulation method as one of its
applications. The overall procedure of the application is similar to
[12]. However, both methods have a severe drawback in that they
require a significant amount of I/Os of reading and writing the re-
maining edges to disk at each iteration. Most recently, Hu et al.
[20] proposed a disk-based variant of the vertex-iterator triangu-
lation method. The method only reads the input graph as many
times as the number of iterations. Although this serial method out-
performs the method of [12], it is an instance of our triangulation
framework and has a heavier cost than ours.

In this paper, we propose a highly-scalable, overlapped and par-
allel, disk-based triangulation framework, OPT, in a single PC of
the multi-core CPU and the FlashSSD. OPT exploits (1) full paral-
lelism of multi-core CPU and FlashSSD I/O and (2) full overlap of
the CPU and I/O operations using asynchronous I/Os. The cost of
the ideal triangulation method is the sum of the I/O cost of reading
a graph once and the CPU cost of identifying triangles, provided
that the buffer size is sufficient to make the graph resident in main
memory. In the existing literature, such cost has been considered
to be impossible due to the memory size constraint. Remarkably,
OPT achieves the cost close to the ideal by using a two-level over-
lapping strategy (macro level and micro level).

At the macro level, OPT overlaps the internal triangulation and
the external triangulation. OPT organizes its memory buffer into
the internal area and the external area. In addition, it exploits two
types of threads, the main thread and the callback thread which are
dedicated to the internal and external triangulation. First, the main
thread loads adjacency lists until they fully fill the internal area.
While loading the data, the callback thread identifies the external
candidate vertices whose adjacency lists can constitute the external
triangles. After that, the two types of triangulation are overlapped
by the asynchronous read request to the FlashSSD. The main thread
(1) sends asynchronous read requests to the FlashSSD for the adja-
cency lists of the external candidate vertices, and (2) continues to
find the internal triangles. While the internal triangles are found, as
soon as the page requested by an asynchronous read is loaded on
the external area, the callback thread simultaneously (1) finds the
external triangles using both areas of the memory buffer and (2)
issues remaining asynchronous I/O requests. This procedure is re-
peated until each adjacency list is loaded in the internal area once.
The total elapsed time is the sum of the elapsed time of each iter-
ation which is the sum of the I/O cost of loading the internal area
and the maximum between (1) the CPU cost of the internal triangu-
lation and (2) the I/O and CPU costs of the external triangulation.

At the micro level, OPT overlaps I/O and CPU operations of the
external triangulation using asynchronous I/O. After asynchronous
read requests are issued by the main thread, while the callback

thread identifies the external triangles related to the data loaded
by the asynchronous read, remaining asynchronous read requests
are handled by the FlashSSD simultaneously. Consequently, OPT
fully overlaps the I/O and CPU cost in the external triangulation.
The elapsed time of the external triangulation only takes the CPU
time, and its I/O time can be hidden, since triangulation is a CPU
bound problem. Such I/O cost hiding incurs that the I/O cost of
OPT becomes reading the input graph only once.

Note that OPT is generic in that any in-memory triangulation
method is pluggable to OPT. By plugging appropriate operations
for identifying internal triangles, external candidate vertices, and
external triangles, OPT supports both vertex-iterator and edge-iterator
methods in a disk-based manner.

To fully utilize CPU resource, OPT exploits thread morphing in
which the type of one thread is morphed into the other type when
one thread terminates earlier than the other. The full CPU utiliza-
tion incurred by thread morphing maximizes the parallelization ef-
fect.

Moreover, OPT fully parallelizes the CPU operations using the
multi-core parallelism (e.g. OpenMP). In OPT, several lines of
OpenMP meta-language expressions enable parallel execution. When
multiple CPU cores are used, OPT achieves the linear speed-up
with an increasing number of CPU cores.

Our contributions are summarized as follows.

• We propose the first framework for overlapping I/O and CPU
operations in parallel triangulation (Section 3). Specifically,
we propose a two-level overlapping strategy. At the macro
level, the internal triangulation and the external triangulation
are overlapped. At the micro level, the I/O and CPU opera-
tions of the external triangulation are overlapped.

• Our triangulation framework is generic in that any vertex-
iterator (Algorithms 11, 12, and 13) and edge-iterator (Algo-
rithms 6, 8, and 10) triangulation models are pluggable.

• Through theoretical analysis, we show that, when the micro
level overlapping is only applied, the cost of OPT is close to
the ideal cost (Section 3.3).

• Experimental results showed that (1) OPT reached the ideal
cost with less than 7% overhead (Section 5.3), (2) OPT achieved
the linear speed-up with an increasing number of CPU cores
(Section 5.6), and (3) OPT was an order of magnitude faster
than the state-of-the-art parallel triangulation method when
6 CPU cores are used (Section 5.6).

• We report the triangulation results on a billion-vertex scale
real-world graph, which is believed to be the first time in the
literature (Section 5.7).

The rest of this paper is organized as follows. In Section 2, the
problem definition is stated, and existing in-memory triangulation
solutions are introduced. In Section 3, our triangulation framework
OPT is introduced and how OPT overlaps and parallelizes triangu-
lation is described in detail. In Section 4, the existing solutions and
related works are reviewed. In Section 5, our experimental result is
reported. Finally, in Section 6, our conclusion is presented.

2. PRELIMINARY
2.1 Problem Definition and Notation

First, we state the triangulation problem as follows.
Definition 1. [ The exact triangulation problem ]

When a simple undirected graph G(V,E) is given, the triangula-
tion problem identifies all triangles existing in G.

Before describing the triangulation methods, let us define the no-
tation related to the problem and the method description. G(V,E)
is a simple undirected graph where V is a set of vertices and, E is
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a set of edges. id(v) : V → N is a one-to-one mapping function
from a vertex v to its id. n(v) is the adjacency list of v. n�(v) is a
sub-list of n(v) which is defined as follows

n�(v) = [u|u ∈ n(v) and id(u) � id(v)]

where � represents a partial order.

n≺(v) is a sub-list of n(v) which is defined as follows

n≺(v) = [u|u ∈ n(v) and id(u) ≺ id(v)].

A binary operation ∩ of two ordered lists returns their intersec-
tion. ∪ of two ordered lists returns their union.

Table 1 shows the notation frequently used in the paper.

Table 1: Summary of notation
Symbol Description

id(v) / n(v) the vertex id/ the adjacency list of v

n�(v) / n≺(v) the sub-list of n(v) whose elements have higher/lower id than v

�uvw the triangle which consists of u, v, and w(id(u) ≺ id(v) ≺ id(w))

P (G) the number of pages of the graph G

m the number of pages of the memory buffer

min the number of pages of the internal area

mex the number of pages of the external area

2.2 Iterator Models for In-memory Triangu-
lation

The state-of-the-art in-memory triangulation methods follow the
iterator model which iterates over vertices or edges [27]. The vertex-
iterator finds a triangle �uvw when, for each vertex u, a combina-
tion (v, w) ∈ n(u) × n(u) is included in E. The edge-iterator
finds a triangle �uvw when, for an edge (u, v) ∈ E, there ex-
ists a common neighbor w between u and v. In addition, in or-
der to identify each triangle only once, the ordering constraint em-
bedded in n�(v) enforces each triangle to be identified only once
[27]. Algorithms 1 and 2 outline the in-memory vertex-iterator and
edge-iterator methods which identify each triangle �uvw only once
which satisfies id(u) ≺ id(v) ≺ id(w). In addition to helping
unique triangle identification, the vertex mapping, id(v), influences
the efficiency of the in-memory triangulation method. Schank and
Wagner [28] show that the degree-based heuristic, where id(u) ≺
id(v) if degree(u) < degree(v), boosts the elapsed time over
orders of magnitude in power-law graphs. The intuition behind
the heuristic is that assigning a high id to a high-degree vertex v
makes |n�(v)| small, and eventually reduces the intersection cost
in VertexIterator� and EdgeIterator� (See Eq. 3).

Algorithm 1 VertexIterator�(G)

1: for each u ∈ V do
2: for each v ∈ n�(u) do
3: for each w ∈ n�(u) do
4: if (v, w) ∈ E, id(w) � id(v) then
5: output �uvw

Algorithm 2 EdgeIterator�(G)

1: for each (u, v) ∈ E do
2: Wuv ← n�(u) ∩ n�(v)
3: for each w ∈ Wuv do
4: output �uvw

Both VertexIterator� and EdgeIterator� have O(α|E|) time com-
plexity where α is the arboricity of a graph [11]. Arboricity has the
following property which is used to bound the time complexity of
triangulation methods [11].

∑

(u,v)∈E

min(|n(u)|, |n(v)|) = O(α|E|) (1)

According to [20], when an O(1) time hash for checking (u, v) ∈
E exists, the time complexity of the VertexIterator� is O(α|E|).

Similarly, when an O(1) time hash for checking u ∈ n�(v) exists,
the time complexity of the EdgeIterator� is derived as follows:

∑

(u,v)∈E

cost(n�(u) ∩ n�(v)) (2)

=
∑

(u,v)∈E

min(|n�(u)|, |n�(v)|) (by using hash) (3)

≤
∑

(u,v)∈E

min(|n(u)|, |n(v)|) (4)

=O(α|E|) (by Eq.1). (5)

3. OPT: OVERLAPPED AND PARALLEL
TRIANGULATION

In this section, we describe our overlapped and parallel triangu-
lation framework, OPT, which exploits the advanced overlapping
and parallelism features of the multi-core CPU and the FlashSSD.
When a graph cannot fit in memory, the internal triangles and the
external triangles are classified, and the challenge of disk-based tri-
angulation methods is identified (Section 3.1). To resolve the chal-
lenge, OPT exploits a two-level overlapping strategy – (1) over-
lapping two types of triangulation and (2) overlapping the I/O and
CPU operations in the external triangulation (Section 3.2). Then,
we formally analyze the cost of OPT and show that it is close to
the ideal cost (Section 3.3). To achieve the full CPU utilization
and linear speed-up, thread morphing and multi-core parallelism
are applied to OPT (Section 3.4).

Although OPT provides a general framework for triangulation,
for ease of understanding, in Sections 3.1~3.3, we will describe
how OPT works by using a specific instance of OPT for EdgeIterator�
(Algorithm 2) with id(v) which follows alphabetical order. To
show the generalization power of OPT, Section 3.5 describes how
OPT instantiates the VertexIterator� and the method of [20].

3.1 Two Types of Triangles
When a graph is too large to be loaded into main memory, tri-

angles are classified into two types – the internal triangles and the
external triangles. We denote a triangle �uvw as an internal trian-
gle only if both n(u) and n(v) are loaded in main memory. When
n(u) and n(v) reside in main memory, �uvw is found as an inter-
nal triangle if w ∈ n�(u)∩n�(v) (Line 4 of Algorithm 2). If n(u)
is in main memory and n(v) is not, �uvw is an external triangle.

For example, let us recall the graph G in Figure 1. Suppose
that only n(a), n(b), n(c), and n(d) are resident in main memory.
Then, �abc and �cdf are the internal triangles identified by c ∈
n�(a) ∩ n�(b) and f ∈ n�(c) ∩ n�(d). However, �cfg , �cgh,
and �def are the external triangles because n(f), n(g), and n(e)
are not available in main memory. Thus, to find all triangles, the
adjacency lists (e.g. n(f)), which are required to find the external
triangles (e.g. �cfg), should be loaded in main memory.

When the graph does not fit in main memory, the in-memory tri-
angulation method incurs severe performance degradation due to
the excessive random I/O. Suppose that to get n�(v) Algorithm 2
loads n(v) from disk whenever it is not resident in main memory.
When we retrieve neighbors of a second vertex of (u, v) (i.e., when
reading n�(v)) (Line 2 of Algorithm 2), random I/O is inevitable
since each n(v) for v ∈ n�(u) is scattered across the disk. Con-
sequently, the excessive random read requests on small data frag-
ments from disk are required to fetch n(v) which is not loaded in
main memory. The same phenomenon occurs in Algorithm 1.

3.2 Overlapped Processing of OPT
In this subsection, we describe how OPT identifies triangles ef-

ficiently by using a two-level overlapping strategy.
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Graph Representation in Disk. When storing n(v) for v ∈
V in the disk, OPT uses the slotted page structure which is widely
used in database systems. Globally, each (v, n(v)) for v ∈ V
are stored throughout the slotted pages, but the storage ordering of
(v, v(n)) does not need to match the original id of v. When the
size of an adjacency list is larger than the size of a slotted page, a
list of slotted pages is used to store it.

Memory Buffer Organization. OPT splits the memory buffer
into the internal area and the external area. The internal area holds
the adjacency lists with which the internal triangles are recognized.
As in [12, 23], the internal area size must be large enough to load
at least one adjacency list, which is reasonable. The external area
is a temporary area to identify the external triangles under the ad-
jacency lists currently loaded in the internal area. For later use, let
us denote the number of pages of the memory buffer m, that of the
internal area as min, and that of the external area as mex.

Figure 2 shows an example of how OPT exploits the memory
buffer where two pages are assigned to the internal area and one
page is to the external area. When p1 and p2 are loaded into the in-
ternal area, �abc and �cdf are identified as the internal triangles.
To identify the external triangles, p3 and p4 should be loaded into
the external area. When p3 is loaded into the external area tem-
porarily, �def and �cfg are recognized as the external triangles.
When p4 is loaded into the external area, �cgh is recognized.

b

a

c

e

d

f

g

h

p2 p3p1 p4

internal area external area

edges in internal area

edges in external area

edges not in memory buffer

Figure 2: How OPT utilizes memory buffer
Here, we introduce a concept of the external candidate vertex

whose adjacency list should be loaded into the external area. In
EdgeIterator�, for a triangle �uvw where id(u) ≺ id(v) ≺ id(w)
, n(u) and n(v) are required to identify it. When only n(u) is in the
internal area, v is called the external candidate vertex. For exam-
ple, suppose that the adjacency lists of a, b, c, and d are loaded in
the internal area (Figure 2). e and f are the external candidate ver-
tices for n(d) which are not in the internal area and thus n(e) and
n(f) should be loaded in the external area to identify the external
triangles.

Asynchronous Read Function. We provide a core function
AsyncRead(pid, Callback, Args), in order to allow asynchronous
reads to the FlashSSD. Here, pid is the page id to be loaded, Callback
is a callback function, and Args is the list of arguments of Callback.
AsyncRead(pid, Callback, Args) issues an asynchronous read for
the page pid to the FlashSSD and registers Callback with Args to
the operating system. On completion of reading, Callback with
Args is called. For example, AsyncRead(1, ExampleCallback,
{a, b}) issues a read request for page 1, and on completion of the
asynchronous read, ExampleCallback(a, b) for the page 1 is called.

A Two-Level Overlapping Strategy. The asynchronous I/Os
to the FlashSSD and the callback functions play a crucial role on a
two-level overlapping strategy of OPT which enables two levels of
simultaneous executions.

At the macro level, OPT overlaps the internal and external tri-
angulation by using two types of threads. The main thread and the
callback thread are dedicated to identifying the internal triangles
and the external triangles, respectively. When the main thread re-
quests an asynchronous read to the FlashSSD, it feeds the data and
the corresponding task to the callback thread. Because the asyn-

chronous I/Os do not wait for completion of the I/O requests, the
two types of threads can be executed simultaneously.

At the micro level, OPT overlaps the CPU and I/O operations
in the external triangulation. The asynchronous I/O and the call-
back functions enable the independent execution of the I/O and the
CPU operations. Consequently, while the callback thread finds the
external triangles by calling the callback function, the FlashSSD
processes the asynchronous read request simultaneously.

Main Thread. The main thread controls the overall procedure of
OPT. First, it allocates the internal area and the external area of the
memory buffer. It fills the internal area with a part of the graph and
identifies the external candidate vertices. It issues asynchronous
read requests to FlashSSD for the adjacency lists of the external
candidate vertices and delegates the external triangulation to the
callback thread. It finds the internal triangles using the adjacency
lists in the internal area. Until all adjacency lists are loaded in the
internal area once, the above procedure is repeated.

Algorithm 3 describes the detailed procedure of OPT. When the
main thread starts, it first initializes the external candidate vertex
set, Vex, as an empty set (Line 2). It allocates min pages of the
internal area and mex pages of the external area (Line 3). After
the memory allocation, the main thread repeats 
P (G)/min� iter-
ations (Lines 4-13). For each iteration, it first loads min from disk
by calling AsyncRead(j, IdentifyExternalCandidateVertex, {j}) min

times (Lines 6-7). On completion of each read request, the callback
function, IdentifyExternalCandidateVertex (Algorithm 7), collects
the external candidate vertex set, Vex. The main thread waits un-
til all asynchronous read requests for the internal area are finished.
(Line 8). After filling the internal area, the main thread delegates
the external triangulation to the callback thread by calling Dele-
gateExternalTriangle (Line 9). Note that DelegateExternalTriangle
only issues the asynchronous read requests to the Flash-SSD, and
the actual triangulation is conducted in the callback thread. Then,
the internal triangles under the current internal area are identified
by calling InternalTriangle (Line 10). After all the internal triangles
are identified, the main thread waits until the external triangulation
is finished (Line 11). Finally, all pages in the internal area are un-
pinned to allow the replacement policy to freely evict those pages
(Lines 12-13).

Algorithm 3 OPT(min,mex, d)

1: Require: min: # of pages, mex: # of pages, P (G): # of pages
2: Vex ← φ
3: allocate the memory buffer of min for the internal area and mex pages for the

external area
4: for i ← 1 to �P (G)/min� do
5: pids ← (i − 1) × min + 1, pide ← i × min

6: for j ← pids to pide do
7: AsyncRead(j, IdentifyExternalCandidateVertex, {j})

8: wait until IdentifyExternalCandidateVertex executions are finished
9: DelegateExternalTriangle(Vex, P (G), pide,min,mex)

10: InternalTriangle(pids, pide)
11: wait until DelegateExternalTriangle executions are finished
12: for j ← pids to pide do
13: unpin a page of id j

For example, consider the graph G in Figure 2. At the first itera-
tion, the main thread executes the following step. First, three pages
are allocated in the memory buffer, two pages are assigned to the
internal area, and one page is assigned to the external area. Next,
p1 and p2 are loaded into the internal area by calling AsyncRead(j,
IdentifyExternalCandidateVertex, {j}) (j = 1, 2). When p1 is
loaded, n(a) and n(b) become available in memory. When p2 is
loaded, n(c) and n(d) become available, and {e, f, g, h} is iden-
tified as Vex. By calling DelegateExternalTriangle ({e, f, g, h}, 4,
2, 2, 1), the main thread delegates the external triangulation to the
callback thread, and �cfg , �cgh, and �def are found as the exter-
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nal triangles in the callback thread. The internal triangles are iden-
tified by calling InternalTriangle(1,2), and �abc and �cdf are iden-
tified. At the second iteration, the same procedure is conducted, but
no triangles are identified.

Algorithm 4 constructs asynchronous I/O requests by grouping
the candidate vertices by their page IDs and issues those requests
to the FlashSSD. Specifically, it first groups the external candidate
vertices by their corresponding page IDs and makes a request list
L whose element is a pair of page id, i, and the external candi-
date vertex set, V i

ex (Lines 3-6). When the number of the requested
pages, |L|, is larger than the number of pages for the external area,
mex, the request list is split into two lists – Lnow and Llater such
that |Lnow| = min(mex, |L|) (Line 7). Then, |Lnow| times asyn-
chronous reads are requested to the FlashSSD, and the external tri-
angulation is delegated to the callback thread which executes the
callback function ExternalTriangle (Algorithm 9) (Lines 8-9). The
remaining |Llater| requests are issued in ExternalTriangle.

Algorithm 4 DelegateExternalTriangle(Vex, P (G), ide,min,mex)

1: Require: Vex: vertex set, P (G): # of pages, ids : page id, ide : page id,
mex: # of pages

2: L ← φ
3: for i ← (· · · , ide + min, · · · , ide + 1) do
4: V i

ex ← {v|n(v) in the page of id i and v ∈ Vex}
5: if V i

ex 	= φ then
6: append {(i, V i

ex)} to L

7: split L into Lnow and Llater s.t |Lnow| = min(mex, |L|)
8: for each (j, V j

ex) ∈ Lnow do
9: AsyncRead(j, ExternalTriangle, {j, V j

ex, Llater})

For example, DelegateExternalTriangle({e, f, g, h}, 4, 2, 2, 1)
from the first iteration executes the following. First, the requested
adjacency lists, n(e), n(f), n(g), and n(h), are translated into a
request list of L = [(4, {g, h}); (3, {e, f})]. As the page size of
the external area is 1, L is split into Lnow = [(4, {g, h})] and
Llater = [(3, {e, f})]. Finally, an asynchronous I/O request for p4
is submitted, and the request for p3 will be submitted in External-
Triangle after the external triangles related to p4 are found.

Note that the pages in the internal area for the next iteration
should be the last pages loaded in the external area for the current
iteration. The above condition on the page loading order avoids
repetitive loading of those pages. The page loading order of the
internal area (Line 6 of Algorithm 3) and that of the external area
(Line 3 of Algorithm 4) satisfies this condition. When the pages of
id from ids to ide are loaded in the internal area, the last min pages
loaded in the external area are the pages of id (ide+min, · · · , ide+
1), and thus, those pages in the external area in the current iteration
can be used for the internal area in the next iteration. Thus, OPT
can even outperform the ideal method as we will see in Section 5.3.

The asynchronous read request in Line 9 of Algorithm 4 is the
critical point where the two-level overlapping strategy of OPT is
implemented. Here, both types of triangulation can be executed si-
multaneously (the macro level overlapping). Also, while the Flash-
SSD processes an asynchronous read request on the page i, the
callback thread identifies the external triangles related to the dis-
tinct page j(i �= j) simultaneously (the micro level overlapping).

Algorithm 5 identifies the internal triangles in parallel using mul-
tiple CPU cores. By plugging a specific triangulation method to In-
ternalTriangleImpl, OPT can instantiate various triangulation meth-
ods. For example, to instantiate EdgeIterator�, InternalTriangle-
EdgeIterator� (Algorithm 6) is plugged to InternalTriangleImpl.
Moreover, when multiple CPU cores are available for the inter-
nal triangulation, the parallelization can be applied on the basis of
pages (Lines 2-4).

When generating results, we use a nested representation to avoid
generating repetition of the triangle prefixes. Specifically, for those

Algorithm 5 InternalTriangle(pids,pide)

1: Require: pids: page id, pide: page id
2: for j ← pids to pide parallel do
3: for each (u, n(u)) in the page of id j do
4: InternalTriangleImpl(u);

triangles having the same u and v, �uvw1 ∼ �uvwk , to be gener-
ated in Line 5 of Algorithm 6, we output the results in the form of
< u, v, {w1, · · · , wk} >. In order to increase the performance,
each thread accumulates results into a memory buffer and flushes
the buffer to the FlashSSD using asynchronous write requests.

Algorithm 6 InternalTriangleEdgeIterator�(u)

1: for each (u, v) where v ∈ n�(u) do
2: if n(v) is in internal area then
3: Wuv ← n�(u) ∩ n�(v)
4: for each v ∈ Wuv do
5: output �uvw

Callback Thread. On completion of an asynchronous I/O re-
quest, the callback thread catches the I/O completion signal from
the FlashSSD via the operating system and executes the callback
function which conducts the CPU operations related to the loaded
data. We use two callback functions in OPT for (1) identifying the
external candidate vertices and (2) finding the external triangles.

On completion of loading the page pid in the internal area, Al-
gorithm 7 collects the external candidate vertices as a response to
the asynchronous read request from AsyncRead (pid, IdentifyEx-
ternalCandidateVertex, {pid}) (Line 7 of Algorithm 3). It first pins
the loaded page in the internal area to prevent the page from being
evicted (Line 3). Then, it determines the external candidate vertices
whose adjacency lists must be loaded in the external area (Line 5).
The condition of identifying external candidate vertices depends on
the specific instance of OPT and such condition should be plugged
in ExternalCandidateVertexImpl.

To instantiate EdgeIterator�, ExternalCandidateVertexEdgeIterator�
(Algorithm 8) is used. In EdgeIterator�, when an adjacency list
n(u) is loaded in the internal area, n(v) for v ∈ n�(u) should
be resident in the memory buffer to find all triangles in which
u and v participate. If such n(v)s are not in the internal area,
ExternalCandidateVertexEdgeIterator� identifies v as the external
candidate vertex (Lines 2-4).

Algorithm 7 IdentifyExternalCandidateVertex(pid)

1: Require: pid: page id
2: Ensure: Vex: external candidate vertex set is updated
3: pin a page p of pid
4: for each (u, n(u)) ∈ p do
5: Vex ← Vex∪ ExternalCandidateVertexImpl(u)

Algorithm 8 ExternalCandidateVertexEdgeIterator�(u)

1: ret ← φ
2: for each v ∈ n�(u) do
3: if n(v) is not in the internal area then
4: ret ← ret ∪ {v}
5: return ret

From the recurring example of G, when p2 is loaded in the in-
ternal area, the external candidate vertex set Vex, is identified as
{e, f, g, h}. From n�(c), f , g, and h become the external candi-
date vertices, and from n�(d), e and f do.

On completion of reading the page pid in the external area, Al-
gorithm 9 identifies the external triangles as a response to the asyn-
chronous read request from AsyncRead (pid, ExternalTriangle, {pid,
V pid
ex , Llater}) (Line 9 of Algorithm 4). Like IdentifyExternalCan-

didateVertex, it first pins the loaded page (Line 3). V pid
ex contains

the external candidate vertices whose adjacency lists are located in
page pid. For each v ∈ V pid

ex , the vertex set V v
req , whose element

requests v as the external candidate vertex, is identified (Line 5).
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Then, from a combination of (u ∈ V v
req, v ∈ V pid

ex ), external trian-
gles are identified using ExternalTriangleImpl((u, v)) (Line 7). Af-
ter all the external triangles in the loaded page are found, OPT un-
pins the page to yield the space that the loaded page occupies (Line
8). Finally, If Llater is not empty, the next page to be loaded in the
external area is popped from Llater , and another asynchronous I/O
request is issued (Lines 9-13). When multiple CPU cores are avail-
able for the callback thread, the asynchronous I/O request (Lines
9-13) should be atomic, since Llater is a shared variable.

Algorithm 10 (ExternalTriangleEdgeIterator�) is the EdgeIterator�
implementation of identifying external triangles. It identifies exter-
nal triangles by intersecting n�(u) in the internal area and n�(v)
in the external area.

Algorithm 9 ExternalTriangle(pid, V pid
ex , Llater)

1: Require: pid: page id, V pid
ex : vertex set, Llater : list of pairs of page id and

vertex set
2: Ensure: the external triangles related to the page pid are counted.
3: pin a page p of pid

4: for each v ∈ V pid
ex do

5: V v
req ← {u|u ∈ n≺(v) and n(u) is in the internal area}

6: for each u ∈ V v
req do

7: ExternalTriangleImpl(u, v)

8: unpin p
9: atomic {

10: if Llater is not empty then
11: (pid′, V ′

ex) ← pop the first element of Llater

12: AsyncRead(pid′, ExternalTriangle, {pid′, V ′
ex, Llater})

13: }

Algorithm 10 ExternalTriangleEdgeIterator�(u, v)

1: Wuv ← n�(u) ∩ n�(v)
2: for w ∈ Wuv do
3: output �uvw

For example, when p4 is loaded in the external area, External-
Triangle (4, {g, h}, [(3, {e, f})]) is executed as follows. From
V 4
ex = {g, h}, V g

req = {c} and V h
req = {c} are extracted. Then,

�cgh is identified from n�(c) ∩ n�(g). After the external trian-
gles related to p4 are processed, the next page p3 is requested by an
asynchronous I/O.

Correctness. To prove the correctness, we first prove that the
EdgeIterator� instance of OPT executes the same set of adjacency
list intersections to EdgeIterator�(Algorithm 2).

THEOREM 1. The adjacency list intersections executed in the
EdgeIterator� instance of OPT are same to those executed in
EdgeIterator� (Algorithm 2).

PROOF. For each vertex u ∈ V , n�(u) must be intersected with
n�(v) for v ∈ n�(u) (Line 2 of Algorithm 2). In EdgeIterator�
instance of OPT, only part of n�(v)s are located in the internal
area. Let us denote ninternal

� (u) = {v|v ∈ n�(u) and n(v) ∈ the
internal area} and nexternal

� (u) = {v|v ∈ n�(u) and n(v) /∈ the
internal area}.

Case v ∈ ninternal
� (u): Because n(v) is loaded into the internal

area, n�(u)∩n�(v) is executed when finding the internal triangles
(Line 10 of Algorithm 3).

Case v ∈ nexternal
� (u): Each v, whose adjacency list, n(v), is

not in the internal area, is identified in IdentifyExternalCandidat-
eVertex (Lines 4-5 of Algorithm 7). The page p to which n(v)
belongs is identified in DelegateExternalTriangle (Lines 3-6 of Al-
gorithm 4). When the page p is loaded into the external area, Ex-
ternalTriangle finds u ∈ V p

ex and executes n�(u) ∩ n�(v) to find
the external triangles (Line 7 of Algorithm 9).

From both cases, for all v ∈ n�(u), n�(u)∩n�(v) is executed
in OPT. Since this analysis is applied to all vertices, OPT executes
the same intersections as EdgeIterator�.

Theorem 1 naturally induces the correctness of the EdgeIterator�
instance of OPT (Lemma 1).

LEMMA 1. OPT correctly identifies triangles.
PROOF. By Theorem 1, all set intersections in both methods are

the same. Triangles of a graph is directly obtained from the set
intersection result. Therefore, as long as EdgeIterator� identifies
triangles correctly, so does the EdgeIterator� instance of OPT.

3.3 Cost Analysis
By the cost analysis of OPT, we want to show that (1) when a

single CPU core is available, the cost OPT is close to the cost of
the ideal method with a small overhead and (2) when multiple CPU
cores are available, an additional treatment is required to fully uti-
lize the CPU resource. To unify the I/O and CPU cost in terms of
time complexity, let us denote the ratio of the I/O cost reading a
page to the CPU cost executing an operation as a constant c. Be-
cause OPT is a generic triangulation framework, we analyze the
I/O and CPU cost of the EdgeIterator� instance of OPT.

The ideal cost of EdgeIterator� is the sum of the I/O cost of read-
ing a graph once (cP (G)) and the CPU cost of identifying triangles
(CostCPU ). Note that, according to Eq.5, CostCPU has the same
asymptotic time complexity O(α|E|) of the method in [20]. Such
cost is only achievable only when the in-memory triangle method
is executed under the infinite-sized main memory. Let us denote
such method as ideal. Formally, the cost of ideal is expressed as
follows.

Costideal = cP (G) + CostCPU (6)

Note that CPU cost in this analysis follows EdgeIterator� (Algo-
rithm 2). Let us denote a serial version of OPT as OPTserial when a
single CPU core is available. To make OPTserial use only one CPU
core, OPT is modified to disable the macro level overlapping – at
each iteration, the external triangles are identified after the internal
triangulation is completed.

When a single core is available, the cost of OPTserial , CostOPTserial ,
consists of the cost of ideal and the overhead induced by the in-
complete I/O and CPU overlap in the external triangulation. The
cost of OPTserial is the sum of the internal triangulation cost and
the external triangulation cost. As k = 
P (G)/min� iterations
are executed in the outer loop of OPTserial, the overall cost is the
summation of the cost of each iteration. At the ith iteration, let us
denote the edges participating in the internal/external/total triangu-
lation as Eini /Eexi /Ei. We also denote the request list generated
in Algorithm 4 as Li. Eini , Eexii, and Ei are formally defined as
follows.

Eini = {(u, v)|n(u) is in internal area, v ∈ ninternal
� (u)}

Eexi = {(u, v)|n(u) is in internal area, v ∈ nexternal
� (u)}

Ei = Eini ∪ Eexi

The cost at each iteration is the sum of the internal triangulation
cost and the external triangulation cost. The cost of the internal
triangulation at the ith iteration is the I/O cost of loading data into
the internal area, c × min, minus the saved I/O cost by the pages
buffered at the previous iteration (Algorithm 4), c × Δini

I/O , and

plus the CPU cost of finding the internal triangles,
∑

(u,v)∈E
ini

min(|n�(u)|, |n�(v)|) by Eq.5. The cost of external triangulation
of ith iteration is the maximum of the I/O cost of loading data into
the external area, c|Li|, and the CPU cost of finding the external
triangles,

∑
(u,v)∈E

exi
min(|n�(u)|, |n�(v)|), due to the micro

level overlapping. The maximum can be interpreted as the sum
of CPU cost of finding external triangles and the non-overlapped
I/O cost, c × Δexi

I/O(≥ 0). After re-organizing the cost into the

I/O cost and the CPU cost, the CPU cost becomes that of the in-
memory triangulation method by Theorem 1. The I/O cost becomes
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the cost of reading the input graph once, cP (G), minus the saved

I/O cost by the buffered pages, c × Δin
I/O(=

∑k
i=1 c × Δini

I/O),

and plus the non-overlapped I/O cost in the external triangulation,
c×Δex

I/O(=
∑k

i=1 c×Δexi
I/O). The final cost of OPTserial becomes

as follows.

CostOPTserial

=
∑k

i=1{c(min −Δ
ini
I/O

) +
∑

(u,v)∈E
ini

min(|n�(u)|, |n�(v)|)
+max(c|Li|,

∑
(u,v)∈E

exi
min(|n�(u)|, |n�(v)|))}

=
∑k

i=1{c(min −Δ
ini
I/O

) +
∑

(u,v)∈E
ini

min(|n�(u)|, |n�(v)|)
+

∑
(u,v)∈E

exi
min(|n�(u)|, |n�(v)|) + c×Δ

exi
I/O

}
=

∑k
i=1{c(min −Δ

ini
I/O

+Δ
exi
I/O

)

+
∑

(u,v)∈Ei min(|n�(u)|, |n�(v)|)}
= cP (G) +

∑
(u,v)∈E min(|n�(u)|, |n�(v)|) + c(Δex

I/O
−Δin

I/O
)

= cP (G) + CostCPU + c(Δex
I/O

−Δin
I/O

)

= Costideal + c(Δex
I/O

−Δin
I/O

)

However, the cost of OPTserial is still close to or even less than
that of ideal. Because the triangulation problem is a CPU bound
task, most of I/O cost in the external triangulation becomes hidden
behind the CPU operations by the asynchronous I/O. In addition,
the saved I/O cost by the buffered pages, c × Δin

I/O , reduces the

total I/O cost. Consequently, c(Δex
I/O − Δin

I/O), which is the cost
gap between OPTserial and ideal, is small in the triangulation. In
Section 5.3, the empirical evaluation shows that the I/O cost over-
head, c(Δex

I/O −Δin
I/O), becomes negative or does not exceed 7%

of the cost of ideal in term of the elapsed time.
When two CPU cores are available, OPT reduces its cost, Costopt,

by applying both levels of overlapping, but does not fully utilize the
CPU resource. By applying the macro level overlapping addition-
ally, OPT can overlap the internal triangulation and the external
triangulation. The lower bound of I/O cost of OPT is the cost of
reading the graph once, minus the saved cost by buffered pages.
The CPU cost of OPT becomes the summation of the maximum of
the CPU cost in the internal triangulation and that in the external
triangulation at each iteration as follows.

CostOPT =

c(P (G)−Δin
I/O

) +
∑k

i=0{max(
∑

(u,v)∈E
ini

min(|n�(u)|, |n�(v)|),
∑

(u,v)∈E
exi

min(|n�(u)|, |n�(v)|) + c×Δ
exi
I/O

)}
The overhead induced by non-overlapped I/O cost, c × Δexi

I/O

has an additional chance to be hidden behind the CPU cost of inter-
nal triangulation.Because, in most cases, the CPU costs of the two
types of the triangulation are not the same, the CPU cost of OPT
is larger than half of the CPU cost of OPTserial although two CPU
cores are used. Consequently, OPT does not fully utilize the CPU
resource.

3.4 Thread Morphing and Parallel Processing
By adapting thread morphing to the macro level overlapping,

OPT accomplishes full CPU utilization. At each iteration of OPT,
if the callback thread terminates earlier than the main thread, the
callback thread is morphed into the main thread and continues iden-
tifying the internal triangles. If the main thread terminates earlier,
the opposite happens. We call such thread type changes as thread
morphing. From the cost analysis of OPT in Section 3.3 OPT does
not fully exploit the CPU resource if the two types of triangulation
at each iteration do not terminate at the same time. However, us-
ing thread morphing, OPT always utilizes the CPU resources and
achieves full speed-up when at least two CPU cores are available.

When more than two CPU cores are available, OPT further im-
proves the elapsed time using parallelism such as OpenMP. Ba-
sically, OPT applies the parallelization on the internal triangula-

tion, the for loop of iterating slotted pages (Lines 2-5 of Algo-
rithm 5). The parallelization of the external triangulation is en-
hanced by thread morphing. If the internal triangulation is termi-
nated earlier than the external triangulation, the main thread iden-
tifies the external triangles. With the full parallelization on both
types of triangulation, OPT achieves linear speed-up with an in-
creasing number of CPU cores (Section 5.6).

3.5 Instantiation of OPT for Vertex Iterator
In this section, to show generalization power of OPT, we present

two OPT instances of VertexIterator� (Algorithm 1) and MGT
[20]. First, the internal triangles and external triangles should be
identified in the vertex-iterator perspective. In VertexIterator�, the
key task is checking (v, w) ∈ E (Line 4 of Algorithm 1). Be-
cause holding all (v, w)s is impossible with the limited memory
budget, only part of edges, Ein, are loaded in the internal area.
Then, for each u ∈ V , all candidate combinations of (v′, w′),
where (1) v′, w′ ∈ n�(u), (2) n(v′) ∈ the internal area, and (3)
id(v′) ≺ id(w′), are checked if they are included in the internal
area. Thus, if n(u) is loaded in the internal area, �uvw is identified
as the internal triangle, otherwise, it is identified as the external tri-
angle. The above procedure continues until all edges are loaded in
the internal area. When a single CPU is used, the CPU cost of the
VertexIterator� instance of OPT follows that of VertexIterator�
(Algorithm 1) and the I/O cost is c(P (G)+Δex

I/O −Δin
I/O) which

is same to that of the EdgeIterator� instance of OPT. The proof is
omitted due to the space limit, but it follows the same steps men-
tioned in Section 3.2.

Algorithm 11 identifies the internal triangles using VertexIterator�
when n(u) is loaded in the internal area. Algorithm 12 adds u ∈
n≺(v) as an external candidate vertex if n(u) is not loaded in the
internal area. Algorithm 13 identifies the external triangles using
VertexIterator� when n(u) is loaded in the external area.

Algorithm 11 InternalTriangleVertexIterator�(u)

1: for each v ∈ {v|v ∈ n�(u), n(v) is in internal area} do
2: for each w ∈ {w|w ∈ n�(u), id(w) � id(v)} do
3: if (v, w) ∈ Ein then
4: output �uvw

Algorithm 12 ExternalCandidateVertexVertexIterator�(v)

1: ret ← φ
2: for each u ∈ n≺(v) do
3: ret ← u
4: return ret

Algorithm 13 ExternalTriangleVertexIerator�(v, u)

1: for each w ∈ {w|w ∈ n�(u), id(w) � id(v)} do
2: if (v, w) is loaded in external area then
3: output �uvw

MGT [20] is also an instance of OPT. To instantiate it, (1)
no task is conducted in internal triangulation, (2) all vertices be-
come the external candidate vertices, (3) ExternalTriangleVertex-
Iterator is used for external triangulation, and (4) synchronous I/O
is used instead of asynchronous I/O. In summary, MGT [20] is a
serial, disk-based, vertex iterator method which exploits only syn-
chronous I/Os. Thus, although the CPU cost of MGT is the same
as the VertexIterator� instance of OPTserial, the I/O cost of MGT
is worse than OPTserial as follows.

Cost
I/O
OPTserial

=

c(P (G)−Δin
I/O

+Δex
I/O

) < cP (G) +
∑�P (G)/min�

i=1 c|Li|
< (1 + �P (G)/min�)cP (G) = Cost

I/O
MGT

(7)

4. RELATED WORK
In-memory Methods. The early stage of triangulation methods
assumed that the input graph would fit in memory. Traditionally,
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triangulation methods are classified into two categories depend-
ing on the iterator type. The vertex-iterator finds a triangle �uvw

when, for each vertex u, a combination (v, w) ∈ n(u) × n(u) is
included in E. The edge-iterator finds a triangle �uvw when, for
an edge (u, v) ∈ E, there exists a common neighbor w between
u and v. [2] theoretically improved the worst case complexity of
the vertex-iterator method. Specifically, it first divides vertices into
a high-degree vertex set Vhigh and a low-degree vertex set Vlow.
Matrix multiplication is used to count triangles in the induced sub-
graph of Vhigh (step 1), and the vertex-iterator without the order-
ing constraint is used to count triangles in which at least one ver-
tex in Vlow is included (step 2). The time complexity of step 1
(O(|E|2ω/ω+1) dominates that of step 2 (O(|E|2(ω−1)/ω+1)) and
becomes the time complexity of [2], where ω is the matrix multi-
plication exponent (e.g. 2.804 in the Strassen’s algorithm). How-
ever, as we will see in Section 5.3, the method of [2] shows longer
elapsed time than VertexIterator� and EdgeIterator�, because the
step 1 took less than 1% of the elapsed time, and the step 2 showed
longer elapsed time than VertexIterator� and EdgeIterator�. [28]
improved the edge-iterator method using the vertex ordering based
on degree. All these methods are inapplicable to large-scale graphs
which do not fit in memory.

Approximation Methods. To detour the memory constraint,
approximation methods were proposed. Streaming algorithms [1,
9, 13] scan the whole graph several times and estimate the triangle
count. [31] samples the input graph and approximate the triangle
counting using Map-Reduce. However, such methods support ap-
proximate triangle counting only, and thus their applications are
significantly limited [12].

Exact Disk-based Methods. Recently, the serial, exact, disk-
based triangulation methods were proposed [12, 20, 23]. The meth-
ods of [12] first partition the input graph to make each partition fit
into the memory buffer. For each partition, it loads the partition,
identifies all triangles which exist in the memory buffer, and re-
moves edges which participate in the recognized triangles. After
the whole graph is loaded into the memory buffer once, the remain-
ing edges are merged. The partition-identifying-merging sequence
is repeated until no edges remain. The method requires a signifi-
cant amount of disk I/Os to conduct a sequence of reading and writ-
ing remaining edges. Such I/O overhead degrades the efficiency of
those methods. Most recently, [20] proposed a disk-based method
that performs read I/O only. After re-ordering vertices based on
the degree, the method of [20] is a disk-based variant of the vertex-
iterator triangulation method. As mentioned in Section 3.5, its I/O
cost is reading the input graph as many times as the number of it-
erations (
P (G)/m�). Consequently, it improves the efficiency by
reducing the I/O cost, but is still far from the ideal cost.

GraphChi [23] is a parallel disk-based graph processing system.
It follows the vertex-centric programming model which processes
graph operations by updating vertex values and passing messages
between vertices via edge values. To support the vertex-centric pro-
gramming model in a disk-based manner, GraphChi divides ver-
tices into P execution intervals and each execution interval has a
shard file which contains all edges whose target vertices are in-
cluded in the execution interval. Then, it conducts a load-update-
store sequence of the sub-graph for each execution interval.

For efficient graph processing, GraphChi exploits asynchronous
I/O and multi-core parallelism, but the underlying mechanism is
completely different from OPT. Asynchronous I/Os are conducted
on only loading and storing outgoing edges of a vertex in the ex-
ecution interval. For incoming edges, synchronous I/Os are used,
which hinders the overlapping of CPU and I/O operations. More-

over, when both vertices of an edge are included in the same exe-
cution interval, GraphChi enforces the sequential-order processing
to prevent data hazard. The enforced sequential-order processing
has a negative impact on the multi-core parallelism. Accordingly,
the triangle counting application of GraphChi shows much worse
parallelization performance than OPT, which will be detailed in
Section 5.6.

The triangle counting application of GraphChi allocates the ad-
ditional memory buffer for pivoting a part of graph. At every odd
iteration, it loads a part of graph into the additional memory buffer
and removes edges that participate triangles identified at the pre-
vious iteration. At every even iteration, it identifies triangles by
intersecting the adjacency lists in the additional memory buffer and
all adjacency lists. The iteration continues until no edges remain.
Like [12], the application suffers from a sequence of reading and
writing remaining edges.

Distributed Method. The distributed triangle counting meth-
ods [16, 30] and triangulation method [3] which exploit Hadoop
or MPI are also proposed in parallel with the disk-based triangula-
tion method. [30] proposed a MapReduce-based triangle counting
method. In the map phase, the input graph is partitioned by send-
ing edges to reducers using a universal hash over vertices. In the
reduce phase, in each partition, triangles are counted using the ob-
tained edges to that partition. To handle triangles which are counted
in multiple partitions, such triangles are accumulated to the trian-
gle count by 1 over the number of occurrences across partitions.
[3] proposed an MPI-based vertex-iterator triangulation method.
The method distributes a partition of the input graph to cluster
nodes, identifies triangles in each cluster node, and merges all iden-
tified triangles. [16] proposed a distributed graph processing en-
gine named PowerGraph, and PowerGraph has a triangle counting
method as one of its applications. Like GraphChi, PowerGraph
proposes the Gather-Apply-Scatter (GAS) model which follows the
vertex-centric programming model. To support it in a distributed
manner, PowerGraph partitions the input graph using a balanced
p-way vertex-cut. Sticking to the GAS model, a triangle counting
method can be implemented in PowerGraph.

5. EXPERIMENT RESULT
The goals of the experiment are as follows:

• We validate the cost analysis of OPTserial which claims that
CostOPTserial is close to Costideal with small overhead c(Δex

I/O−
Δin

I/O) (Section 5.3).
• We show that OPT along with thread morphing achieves

ideal speed-up (Section 5.4).
• We show the insensitiveness of the elapsed time of OPT for

varying the memory buffer size (Section 5.5).
• We show the linear speed-up of OPT with an increasing

number of CPU cores (Section 5.6).
• We report the triangulation results on a billion-vertex scale

real-world graph. To our knowledge, it is the first time such
results have been reported in the literature (Section 5.7).

• We perform sensitivity analysis by varying several parameter
values using a synthetic graph generator (Section 5.8).

• We show significantly better performance of OPT compared
to the distributed triangulation methods (Section 5.9).

5.1 Experiment Setup
Datasets. Five real-world graph datasets were used in the exper-
iments. LJ [4] is a sample of the LiveJournal blogger network in
which bloggers are vertices, and the friend relationships between
them are edges. ORKUT [25] is a sample of the orkut network
which is an online social network operated by Google. TWITTER
[22] is a sample of the Twitter network, which is one of the largest
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online social networks. UK [8] is a web graph where web pages are
vertices, and hyperlinks are edges. YAHOO1 is one of the largest
real-world graphs which have over one-billion vertices. Table 2
shows basic statistics for the five datasets. Note that all the datasets
are downloaded from the original websites.

Table 2: Basic statistics on the datasets
LJ ORKUT TWITTER UK YAHOO

|V | 4, 847, 571 3, 072, 627 41, 652, 230 105, 896, 555 1, 413, 511, 394

|E| 68, 993, 773 223, 534, 301 1, 468, 365, 182 3, 738, 733, 648 6, 636, 600, 779

# of � 285, 730, 264 627, 584, 181 34, 824, 916, 864 286, 701, 284, 103 85, 782, 928, 684

Methods. OPT was compared with four state-of-the-art meth-
ods, GraphChi-Tri [23], CC-Seq [12], CC-DS [12], and MGT
[20]. We implemented MGT using our OPT framework as stated
in Section 3.5. OPT used EdgeIterator�, which shows shorter
elapsed time than VertexIterator� [28]. The memory buffer is evenly
divided into the internal area and the external area to maximize the
buffering effect of Line 3 of Algorithm 4. Specifically, when m
pages of the memory buffer are available, min = mex = m/2.

To exclude the OS file system cache effect, we made OPT, MGT,
CC-Seq, and CC-DS use direct I/O and made GraphChi-Tri clear
the OS file system cache at each iteration. Note that when map-
ping vertices to ids, we used the degree-based heuristic [28] men-
tioned in Section 2.2, since all five methods above are based on
VertexIterator� or EdgeIterator� which benefit from the degree-
based heuristic.

Measure. To measure the cost, the elapsed time is used. To mea-
sure the parallelization effect, the speed-up is used, which is the
elapsed time of the single thread execution over that of the multiple
thread execution.

Running Environment. We conducted the experiments on two
machines having the same hardware – an Intel Core i7-3930K CPU
(a total of 6 CPU cores), 16GB RAM, and a 512GB FlashSSD
(Samsung 830). OPT, MGT, CC-Seq, and CC-DS were exe-
cuted on Windows 7, while GraphChi-Tri was executed on Linux,
since OPT framework currently supports Windows platform only,
while the GraphChi-Tri currently supports Linux platform only.
Although GraphChi-Tri does not officially support Window 7, we
ported GraphChi to Windows 7. However, due to a faster file sys-
tem support in Linux2, the ported GraphChi showed over 20%
longer elapsed time in all experiments. Thus, we report the result
of GraphChi-Tri on Linux.

5.2 Output Writing Cost
We performed experiments that measure the output writing times

on LJ, ORKUT, TWITTER, and UK. Since the original binary of
CC-Seq and CC-DS do not support output generation, in our im-
plementation of those algorithms, we applied the bulk write method
of the original implementation of MGT. Since the output writing
times of CC-Seq and CC-DS were almost the same, we report
that of CC-Seq. GraphChi-Tri was excluded because it is a tri-
angle counting method which only focuses on the number of trian-
gles. All methods used the same nested representation described in
Section 3.2, and the output was written to another FlashSSD (2TB
RevuAhn RT8500). The memory buffer size was set to 15% of the
graph size.

Table 3 shows the output writing times of OPTserial, MGT, and
CC-Seq. In all experiments, OPTserial shows the least output writ-
ing time, since it fully overlaps write I/O processing and CPU pro-
cessing. Among the methods that do not support such overlapping,

1http://webscope.sandbox.yahoo.com/
2http://www.phoronix.com/scan.php?page=
article&item=ubuntu_win7_ws&num=4

Table 3: Output writing times of triangulation methods (sec)
LJ ORKUT TWITTER UK

OPTserial 3.74 7.38 379.10 2858.24

MGT 6.65 12.81 555.04 3328.80

CC-Seq 16.56 41.53 1976.00 17146.80

MGT shows the least output writing time, since triangles identi-
fied by MGT have more common triangle prefixes than CC-Seq
and CC-DS. Note that OPTserial and MGT have almost the same
output sizes. Note also that OPT with the output writing step
shows slightly better speedup than OPT without it. These experi-
ments confirm that OPT is a true, parallel disk-based triangulation
method regardless of output generation. In the following sections,
we report the elapsed time excluding the output writing time, since
our focus is to efficiently identify triangles.

5.3 Validation of Cost Analysis on OPTserial and
Comparison to In-memory methods

To validate the analysis of OPTserial and to compare OPTserial

to the state-of-the-art in-memory methods, we measured the rel-
ative elapsed time of OPT and those of the in-memory methods
including VertexIterator�, EdgeIterator�, and [2]. The relative
elapsed time is the ratio of the elapsed time of a method to that of
ideal. Note that, ideal is equivalent to EdgeIterator� because OPT
used EdgeIterator�. When measuring the elapsed time of ideal and
the in-memory methods, we temporarily used more RAM to make
main memory hold the whole graph. Note that [2] is not a triangle
listing method, but a triangle counting method. When implement-
ing [2], in the matrix multiplication step, we used several state-of-
the-art matrix-matrix multiplication libraries including Eigen and
Intel’s implementation of Strassen’s algorithm, and, we reported
the best elapsed time. In addition, in the vertex-iterator step, we
further improved it by applying the ordering constraint when we
count the triangles consisting of low-degree vertices only.

Figure 3a shows the trend of relative elapsed time of OPTserial

with the change of the memory buffer size in LJ, ORKUT, TWIT-
TER, and UK. The memory buffer size was varied from 5% of
the graph size to 25% with 5% increments. In all datasets, the
relative elapsed time decreased until 15% of the graph size was
used as the memory buffer, and after that elbow point, the rela-
tive elapsed time became stabilized. At the elbow point, the rela-
tive overhead of OPTserial was 5.8%, −2.5%, −1.5%, and 7% in
LJ, ORKUT, TWITTER, and UK, respectively. With the moder-
ate memory buffer size (15%), OPTserial showed less than 7% of
relative overhead and even negative overhead in the ORKUT and
TWITTER datasets.

The relative overhead of OPTserial comes from c(Δex
I/O - Δin

I/O).
As stated in Section 3.2, the page loading order of OPT can lead to
the good buffering effect of the page loaded in the internal area at
each next iteration. Thus, when the saved I/O cost (cΔin

I/O) exceeds
the non-overlapped I/O cost in the external triangulation (cΔex

I/O),
we can have such negative overhead.

Figure 3b shows the relative elapsed time of the state-of-the-art
in-memory methods compared to OPTserial. The in-memory meth-
ods include graph loading times for fair comparison. For OPTserial,
the memory buffer size was set to 15% of the graph size. Among
the in-memory methods, EdgeIterator� consistently showed the
least elapsed time. Even though VertexIterator� has the same time
complexity of O(α|E|), it was about 20% slower than EdgeIterator�
in all cases, which is consistent with the results in [28]. Even
though [2] has theoretically lower time complexity than EdgeIterator�
and VertexIterator�, it showed the longest elapsed time. This is
because that (1) although counting triangles which have only high-
degree vertices dominates the time complexity in theory, it took less
than 1% of the elapsed time in practice, and (2) although the vertex-
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iterator, which is used to count the remaining triangles, is improved
by applying the ordering constraint, it still shows longer elapsed
time than VertexIterator� and EdgeIterator� counting each trian-
gle only once. OPTserial was close to EdgeIterator� and showed
better performance than VertexIterator� or [2].
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1.6

LJ ORKUT
TWITTER UK

(a) OPTserial by varying buffer size

LJ ORKUT TWITTER UK

1

2

3

4

5

OPTserial EdgeIterator�
VertexIterator� [2]

(b) OPTserial and in-memory methods

Figure 3: Relative elapsed time of OPTserial and in-memory
methods
5.4 Validation of Cost Analysis on OPT and Thread

Morphing
To validate the analysis of OPT and thread morphing, we com-

pared the elapsed time of two types of threads of OPT at each
iteration. In the experiment, the memory buffer size was set to
15% of the graph size, and OPT used two CPU cores and as-
signed one CPU core to each type of thread. The iteration count
is 14(= 
100/7.5�) as half of the memory buffer is used for the
internal area.

Figure 4a shows the elapsed time trends of the main thread (the
internal triangulation) and the callback thread (the external trian-
gulation) at each iteration in UK with and without applying thread
morphing. Without thread morphing, the main thread became idle
until the eighth iteration, and after that, the callback thread became
idle. With thread morphing, any idle thread continues to process
either external or internal triangulation. Thus, the main thread was
morphed to identify external triangles until the eighth iteration,
while the callback thread was morphed to identify internal trian-
gles after the eighth iteration.
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Figure 4: Thread morphing effect in UK dataset (X axis : iter-
ation number, Y axis : time (sec)

Figure 4b shows the cumulative elapsed time trend of OPT.
With thread morphing, OPT showed almost two times shorter cu-
mulative elapsed time than that of OPTserial. Without thread mor-
phing, however, the cumulative elapsed time was only 1.1 ~1.3
times shorter.

5.5 Effect of Memory Buffer Size
To see the effect of the memory buffer size on the elapsed time,

we varied the memory buffer size from 5% of the graph size to 25%
with 5% increments. For parallel methods (OPT and GraphChi-
Tri), we configured them to use a single thread. That is, OPTserial

was used for OPT, and the configuration variable execthread
was set to 1 for GraphChi-Tri.

Figure 5 shows the elapsed time trends of the five methods in the
TWITTER and UK datasets. Due to the space limit, we omit the
experiment result of the LJ and ORKUT datasets since the per-
formance trends are similar to those of the TWITTER and UK
datasets. Regardless of datasets and memory buffer size, OPTserial

always outperformed the other four triangulation methods. GraphChi-
Tri, CC-Seq, and CC-DS were 2 to 10 times slower than OPTserial.
In particular, when the memory buffer size was small, those three
methods suffered from performance degradation. MGT was the
closest method to OPTserial, but as the input graph size increased,
the elapsed time gap between two methods also increased – 1.11
times slower in TWITTER, and 1.25 times slower in UK.

GraphChi-Triserial CC-Seq CC-DS
MGT OPTserial

10 20
103

104

(a) TWITTER
10 20

103

104

105

(b) UK
Figure 5: Effect of Memory Buffer size (X axis: ratio of mem-
ory buffer to database size (%), Y axis : elapsed time (sec))

The triangulation methods are classified into two groups based
on the elapsed time result – the slow group (GraphChi-Tri, CC-
Seq, and CC-DS) and the fast group (MGT and OPTserial). The
main difference between the two groups is that the methods in the
slow group write the remaining edges at each iteration, while those
in the fast group always exploit the original input graph. Therefore,
the methods in the slow group are inherently slower than those in
the fast group. This analysis clearly explains the different elapsed
time trends between the two groups (Figure 5). Because the meth-
ods in the fast group execute read operations only, they are rela-
tively insensitive to the memory buffer size. However, the methods
in the slow group read the whole graph and write the remaining
edges at each iteration. Consequently, they are very sensitive to the
memory buffer size and suffer from performance degradation in the
case of small memory buffer due to excessive I/O operations.

Even though both MGT and OPTserial conduct read I/O opera-
tions only, OPTserial is always faster than MGT because it overlaps
the CPU and I/O operations in the external triangulation. By over-
lapping the CPU and I/O operations in the external triangulation,
OPTserial achieves less I/O cost than MGT (see Eq.7).

The performance results also show that OPT is more efficient
than the others when the buffer size is small. This feature is espe-
cially important when we handle very large graphs with a limited-
size buffer in a single PC.

5.6 Effect of Number of CPU Cores
To assess the parallelization effect, we compared the elapsed

times and the speed-ups of the parallel triangulation methods by
varying the number of CPU cores. In this experiment, the memory
buffer size was fixed as 15% of the graph size. The number of CPU
cores was varied from 1 to 6.

Table 4 shows the elapsed times of OPT and GraphChi-Tri in
the LJ, ORKUT, TWITTER, and UK datasets using 1 and 6 CPU
cores. In every combination of datasets and the number of CPU
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Table 4: Elapsed time comparison of OPT and GraphChi-Tri
using 1 and 6 CPU cores

LJ ORKUT TWITTER UK
OPTserial 17.05 83.32 2477.55 1966.93

GraphChi-Triserial 105.427 304.361 4477.29 6424.59

OPT 6.39 18.51 469.40 480.918

GraphChi-Tri 85.87 196.95 1850.26 4046.77

GraphChi-Tri/OPT 13.44 10.64 3.94 8.41

cores, OPT always showed shorter elapsed time than GraphChi-
Tri. OPT outperformed GraphChi-Tri by up to 13.44 times.

Figures 6a and 6b show the trends of the relative speed-up of
OPT and GraphChi-Tri in the TWITTER and UK datasets as the
number of CPU cores increases. As the number of cores increased,
the speed-up of OPT increased linearly. In all datasets, OPT al-
ways showed much higher speed-up than GraphChi-Tri regardless
of the number of cores. In contrast, the speed-up of GraphChi-Tri
saturated and never reached 2.5.

GraphChi-Tri OPT

Amdahl’s lawGraphChiTri Amdahl’s lawOPT

1 2 3 4 5 6
1

2

3

4

5

6

(a) TWITTER
1 2 3 4 5 6

1

2

3

4

5

6

(b) UK
Figure 6: Effect of CPU cores (X axis: # of CPU cores, Y axis:
speed-up)

The main reason for the different speed-up of the two parallel
methods is that OPT has a greater parallelizable portion in its op-
erations than GraphChi-Tri. According to Amdahl’s law, theoret-
ically, when c cores are available, and p ∈ (0, 1] is the parallel
fraction of a parallel method, the upper bound of speed-up, ubc, is

1
(1−p)+ p

c
. The dashed lines are the upper bound of both methods

inferred by Amdahl’s law. In OPT and GraphChi-Tri, the CPU op-
erations that intersect two adjacency lists are parallelizable, and the
rest of the CPU and I/O operations are not. Tables 5 shows (1) the
parallel fraction of OPT and GraphChi-Tri, (2) the upper bound
of the speed-up, and (3) the empirical speed-up when 6 cores were
used. From the table, in all datasets, OPT always has higher par-
allel fraction (> 95%) than GraphChi-Tri (< 75%). That leads to
the higher upper bound speed-up and empirical speed-up of OPT
than those of GraphChi-Tri.

Table 5: Speed-up of OPT and GraphChi-Tri using 6 cores
method measure LJ ORKUT TWITTER UK

OPT

p 0.961 0.980 0.989 0.975

ub6 5.03 5.45 5.70 5.34

speedup6 2.62 4.45 5.24 4.08

GraphChi-Tri
p 0.271 0.490 0.747 0.544

ub6 1.30 1.69 2.68 1.83

speedup6 1.23 1.54 2.42 1.59

5.7 Comparison on 1-billion Vertex Graphs
We performed the experiments on the larger graph which has

over 1-billion vertices. For this purpose, we obtained the YAHOO
dataset which is considered to be as the largest real-world graph
data publicly available and has 1.4 billion vertices. In these exper-
iments, OPT, MGT, and GraphChi-Tri were used, and CC-Seq
and CC-DS were excluded, since they are clearly inferior to the
other methods. The memory buffer size was set to 10GB.

Table 6 shows the elapsed times of the triangulation methods
on the YAHOO dataset. To the best of our knowledge, this is the

first time that triangulation result on a billion-vertex scale real-
world graph is reported. OPTserial showed 2.04 and 5.25 times
shorter elapsed time than MGT and GraphChi-Triserial. When 6
cores are used, OPT showed 31.36 times shorter elapsed time than
GraphChi-Tri. Although the number of triangles in this dataset is
relatively small compared with the other real datasets, the speed-up
of OPT reached 3.25, while that of GraphChi-Tri was only 1.11.
In summary, OPT shows reasonable performance even for billion-
scale graphs, consistently achieving the shortest elapsed time com-
pared with its competitors.

Table 6: Elapsed time on YAHOO (sec)
OPTserial MGT GraphChi-Triserial OPT GraphChi-Tri
2665 5445 28568 819 25686

5.8 Comparison on Synthetic Datasets
We compare performance of triangulation methods in synthetic

datasets. We generated synthetic datasets that using the R-MAT
model [10], which is well known for its simplicity and expressive
power that subsumes Erdos-Renyi model [15] and power-law distri-
bution. We used the publicly available implementation of R-MAT3

with the default parameter used in [10]. We varied the number of
vertices, |V |, and the density of graph, |E|/|V | – when varying
|V | = 16M, 32M, 48M, 64M , and 80M , we fixed |E|/|V | =
16, and when varying |E|/|V | = 4, 8, 16, 32, and 64, we fixed
|V | = 48M . The memory buffer size was set to 15% of the graph
size. The same set of methods in Section 5.7 was used.

GraphChi-Triserial OPTserial MGT
GraphChi-Tri OPT
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(b) varying density
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cient

Figure 7: Comparison on synthetic datasets (X axis: # of ver-
tices, density, clustering coefficient, Y axis: elapsed time)

Figure 7a shows the trend of the elapsed time as the number
of vertices increases. For the serial methods which are plotted as
straight lines, OPTserial showed shorter elapsed time than MGT,
and the processing time gap between them increased with the in-
crease of |V |. When |V | = 16M , OPTserial took 1.57 times shorter
time than MGT, and when |V | = 80M , OPTserial took 1.72 times
shorter time. For the parallel methods which are plotted as dashed
lines, the speed-up of both methods did not change much – the
speed-up of OPT was around 4.5, and that of GraphChi-Tri was
around 1.4. Again, OPT showed shorter elapsed time and higher
speed-up than GraphChi-Tri in all cases. When |V | = 80M ,
OPT showed 12.13 shorter elapsed time than GraphChi-Tri, and
the speed-up of OPT was 4.35 but that of GraphChi-Tri was 1.37.

Figure 7b shows the trend of the elapsed time as the density of
graph increases. For the serial methods, OPTserial showed 1.33~2.01
times shorter elapsed time than MGT. For the parallel methods,
OPT and GraphChi-Tri showed higher speed-up as the density in-
creases – OPT increased from 2.67 to 5.51, and GraphChi-Tri in-
creased from 1.12 to 1.97. Again, OPT achieved shorter elapsed
time and higher speed-up than GraphChi-Tri.

3http://www.cse.psu.edu/madduri/software/GTgraph
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Along with varying the density, we conducted the experiment by
varying the clustering coefficient. Because the R-MAT model can-
not control the clustering coefficient, we extensively surveyed the
literature and found the model of [19] that follows the power-law
degree distribution and controls the clustering coefficient. Follow-
ing the clustering coefficient range of the real-world graphs (LJ:
0.28, ORKUT: 0.17), we varied the clustering coefficient from 0.1
to 0.3 with a 0.05 interval, while fixing |V | = 48M . To get the
indented range of the clustering coefficient, the average degree,
|E|/|V |, was set to 10.

Figure 7c shows the trend of the elapsed time as the cluster-
ing coefficient increases. The elapsed times of OPT, OPTserial,
and MGT remained constant regardless of the clustering coefficient
since the time complexity of intersection of two adjacency lists
depends on the average degree, not on the clustering coefficient.
OPT showed about two times shorter elapsed time than MGT. The
speed-up of OPT reached 3.25, while that of GraphChi-Tri was
only 1.16. When 6 CPU cores were used, OPT showed 21.60
times shorter elapsed time than GraphChi-Tri.

Additionally, we conducted experiments using another synthetic
graph generator [29] which can control the clustering coefficient.
In this experiment, we varied the clustering coefficient from 0.1 to
0.5 with a 0.1 interval. We observed that the elapsed time of OPT
also remained constant.

5.9 Comparison to Distributed System Imple-
mentation

We compared the relative performance of OPT to the state-of-
the-art distributed triangle counting methods (SV [30] and Pow-
erGraph [16]) and triangulation method (AKM [3]). We imple-
mented SV in Hadoop and AKM in C++-MPI, and used the publicly
available C++ source code of PowerGraph. For fair comparison,
we used a 32-node cluster system. The distributed triangulation
methods used 31 nodes, while OPT used one node. Each node
is equipped with two Intel Xeon X5650 CPUs (a total of 12 CPU
cores) and 24GB RAM. The number of threads was set to the num-
ber of the available CPU cores. Specifically, OPT used 12 threads,
and SV, AKM, and PowerGraph used 372(= 12× 31) threads.

Table 7 shows the distributed triangulation methods, their hard-
ware settings, and their elapsed times for the TWITTER dataset.
OPT took 7.03 minutes using the memory buffer of 15% of the
graph size. SV [30] took 452.2 minutes and showed 64.32 times
longer elapsed time than OPT. AKM [3] took 10.14 minutes and
showed 1.44 times longer elapsed time. PowerGraph [16] took
5.38 minutes and showed 1.31 times shorter elapsed time. Con-
sidering that the distributed methods use 31 nodes, OPT shows
1994.05, 44.71, and 23.72 times better relative performance than
SV, AKM, and PowerGraph, respectively.

Table 7: Comparison with distributed methods in TWITTER
Method Framework Hardware setting # of machines Elapsed time

OPT 2 CPUs, 12 cores, 24GB RAM 1 7.03min

SV Hadoop

2 CPUs, 12 cores, 24GB RAM 31

452.2min

AKM MPI 10.14min

PowerGraph MPI 5.38min

6. CONCLUSION
In this paper, we proposed an overlapped and parallel disk-based

triangulation framework, OPT, in a single PC of the multi-core
CPU and the FlashSSD. When a graph does not fit in main mem-
ory, we first identify two types of triangles – the internal triangles
and the external triangles. The overlap of the I/O and CPU pro-
cessing and the multi-core parallelism make OPT exploit a two-
level overlapping strategy. At the macro level, OPT overlaps the
two types of graph triangulation using the multi-core parallelism
and FlashSSD parallelism. The macro level overlapping and thread

morphing make OPT achieve the linear speed-up with an increas-
ing number of CPU cores. At the micro level, OPT overlaps the
I/O and CPU processing using the I/O and CPU processing over-
lapping using the asynchronous I/Os of the FlashSSD. The micro
level overlapping makes OPT have the cost close to that of the ideal
triangulation method. In addition, OPT is generic in that OPT
can instantiate both vertex-iterator and edge-iterator triangulation
models. Extensive experiments conducted on large-scale datasets
showed that OPT achieved the ideal cost with less than 7% over-
head even under the limited memory budget and achieved the linear
speed-up and more than an order of magnitude shorter elapsed time
than the state-of-the-art parallel triangulation method, when 6 CPU
cores were used. Overall, we believe our overlapped and parallel
triangulation method provides comprehensive insight and a sub-
stantial framework for future research such as the subgraph listing
problem.
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