Drinking From The Fire Hose: The Rise of Scalable Stream Processing Systems

Peter Pietzuch
prp@doc.ic.ac.uk

Large-Scale Distributed Systems Group
http://lsds.doc.ic.ac.uk

Cambridge MPhil – February 2014
The Data Deluge

150 Exabytes (billion GBs) created in 2005 alone
 – Increased to 1200 Exabytes in 2010

Many new sources of data become available
 – Sensors, mobile devices
 – Web feeds, social networking
 – Cameras
 – Databases
 – Scientific instruments

How can we make sense of all data?
 – Most data is not interesting
 – New data supersedes old data
 – Challenge is not only storage but also querying
Real Time Traffic Monitoring

Instrumenting country’s transportation infrastructure

Many parties interested in data
- Road authorities, traffic planners, emergency services, commuters
- But access not everything: Privacy

High-level queries
- “What is the best time/route for my commute through central London between 7-8am?”
Web/Social Feed Mining

Social Cascade Detection

Detection and reaction to social cascades
Fraud Detection

How to detect identity fraud as it happens?

Illegal use of mobile phone, credit card, etc.
 – Offline: avoid aggravating customer
 – Online: detect and intervene

Huge volume of call records

More sophisticated forms of fraud
 – e.g. insider trading

Supervision of laws and regulations
 – e.g. Sabanes-Oxley, real-time risk analysis
Astronomic Data Processing

Analysing transient cosmic events: \(\gamma \)-ray bursts

Large Synoptic Survey Telescope (LSST)
- Generates 1.28 Petabytes per year
Stream Processing to the Rescue!

- Process data streams on the fly without storage

Stream data rates can be high
- High resource requirements for processing (clusters, data centres)

Processing stream data has real-time aspect
- Latency of data processing matters
- Must be able to react to events as they occur
Traditional Databases (Boring)

• Database Management System (DBMS):
 • Data relatively static but queries dynamic
 • Random access
 • Low update rate
 • Unbounded disk storage
 • One-time queries
 • Finite query result
 • Queries exploit (static) indices
Data Stream Processing System

- DSPS: Queries static but data dynamic
- Data represented as time-dependent data stream

Working Storage
- Transient streams
 - Sequential access
 - Potentially high rate
 - Bounded main memory
- Continuous queries
 - Produce time-dependent result stream
 - Indexing?

- Result stream
Overview

Why Stream Processing?

Stream Processing Models
- Streams, windows, operators
- Data mining of streams

Stream Processing Systems
- Distributed Stream Processing
- Scalable Stream Processing in the Cloud
Stream Processing

Need to define

1. Data model for streams

2. Processing (query) model for streams
“A **data stream** is a real-time, continuous, ordered (implicitly by arrival time or explicitly by timestamp) **sequence of items**. It is impossible to control the order in which items arrive, nor is it feasible to locally store a stream in its entirety.”

[Golab & Oszu (SIGMOD 2003)]

Relational model for stream structure?

- Can’t represent audio/video data
- Can’t represent analogue measurements
Streams consist of infinite sequence of tuples
- Tuples often have associated time stamp
 - e.g. arrival time, time of reading, ...

Tuples have fixed relational schema
- Set of attributes

<table>
<thead>
<tr>
<th>id</th>
<th>temp</th>
<th>rain</th>
</tr>
</thead>
<tbody>
<tr>
<td>27182</td>
<td>24 C</td>
<td>20mm</td>
</tr>
</tbody>
</table>

Sensors(data stream)
Stream Relational Model

Window converts stream to dynamic relation
- Similar to maintaining view
- Use regular relational algebra operators on tuples
- Can combine streams and relations in single query

Special operators:
- Istream
- Dstream
- Rstream

Diagram: Streams and Relations with Window specification and Any relational query.
Sliding Window I

How many tuples should we process each time?

Process tuples in window-sized batches

Time-based window with size τ at current time t

- $[t - \tau : t]$ Sensors [Range τ seconds]
- $[t : t]$ Sensors [Now]

Count-based window with size n:
- **last n tuples** Sensors [Rows n]

```
temp  rain  temp  rain
```

window

now
Sliding Window II

How often should we evaluate the window?

1. Output new result tuples as soon as available
 - Difficult to implement efficiently

2. Slide window by s seconds (or m tuples)

 Sensors [Slide s seconds]

 Sliding window: \(s < T \)
 Tumbling window: \(s = T \)
Continuous Query Language (CQL)

Based on SQL with streaming constructs
- Tuple- and time-based windows
- Sampling primitives

```
SELECT temp
FROM Sensors [Range 1 hour]
WHERE temp > 42;
```

```
SELECT *
FROM S1 [Rows 1000],
S2 [Range 2 mins]
WHERE S1.A = S2.A
AND S1.A > 42;
```

Apart from that regular SQL syntax
Join Processing

Naturally supports joins over windows

```
SELECT *
FROM S1, S2
WHERE S1.a = S2.b;
```

Only meaningful with window specification for streams
 – Otherwise requires unbounded state!

```
SELECT S.id, S.rain
FROM Sensors [Rows 10] as S, Faulty [Range 1 day] as F
WHERE S.rain > 10 AND F.id != S.id;
```
Converting Relations ➔ Streams

Define mapping from relation back to stream
- Assumes discrete, monotonically increasing timestamps \(\tau, \tau+1, \tau+2, \tau+3, \ldots \)

\[\text{Istream}(R) \]
- Stream of all tuples \((r, \tau)\) where \(r \in R\) at time \(\tau\) but \(r \notin R\) at time \(\tau-1\)

\[\text{Dstream}(R) \]
- Stream of all tuples \((r, \tau)\) where \(r \in R\) at time \(\tau-1\) but \(r \notin R\) at time \(\tau\)

\[\text{Rstream}(R) \]
- Stream of all tuples \((r, \tau)\) where \(r \in R\) at time \(\tau\)
Data Mining in Streams
Stream Data Mining

Often continuous queries relate to long-term characteristics of streams
- Frequency of stock trades, number of invalid sensor readings, ...

May have insufficient memory to evaluate query
- Consider stream with window of 10^9 integers
 - Can store this in 4GB of memory
- What about 10^6 such streams?
 - Cannot keep all windows in memory

Need to compress data in windows
Limitations of Window Compression

Consider window compression for following query:

```
SELECT SUM(num)
FROM Numbers [Rows 10^9];
```

Assume that W can be compressed as $C(W) = W_C$

- Then $W_1 \neq W_2$ must exist, with $C(W_1) = C(W_2)$
- Let t be oldest time in window for which W_1 and W_2 differ:

```
<table>
<thead>
<tr>
<th>W_1</th>
<th>3</th>
<th>5</th>
<th>8</th>
<th>9</th>
<th>2</th>
<th>3</th>
<th>9</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_2</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
```

- For W_1: subtract $W_1(t) = 3$; for W_2: subtract $W_2(t) = 4$
 - Cannot distinguish between cases from $C(W_1) = C(W_2)$
 - No correct compression scheme $C(W)$ possible
Approximate Sum Calculation

Keep sums Σ_i for each n tuples in window
- Compression ratio is $1/n$

\[
\begin{array}{cccccccccc}
V_1 & V_2 & \ldots & V_n & V_{n+1} & V_{n+2} & \ldots & V_{2n} & \ldots & V_{2n+1} & V_{2n+2} \\
\end{array}
\]

- Estimate of window sum Σ_W is total of group sums Σ_i

Now v_1 leaves window and v_{2n+3} arrives:

\[
\Sigma_W = (n-1/n) * \Sigma_1 + \Sigma_2 + \ldots + \Sigma_{\text{incomplete}}
\]

- Accuracy of approximation depends on variance
Counting Bits

Assume sliding window \(W \) of size \(N \) contains bits 1 and 0

- How many 1s are there in the most recent \(k \) bits?
 \((1 \leq k \leq N)\)

Could answer question trivially with \(O(N) \) storage

- But can we approximate answer with, say, logarithmic storage?
Divide window into multiple buckets $B(m, t)$
- $B(m, t)$ contains 2^m 1s and starts at t
- Size of buckets does not decrease as t increases
- Either one or two buckets for each size m
- Largest bucket only partially filled

Estimate sum of last k tuples Σ_k:
- $\Sigma_k = \{\text{sizes of buckets within } k\} + \frac{1}{2} \{\text{last partial bucket}\}$
- $\Sigma_N = 2^0 + 2^0 + 2^1 + 2^2 + \frac{1}{2} * 2^3 = 12$ (exact answer: 13)
Maintaining Buckets

Discard/merge buckets as window slides

- Discard largest bucket once outside of window
- Create new bucket $B(0,1)$ for new tuple if 1
- Merge buckets to restore invariant of at most 2 buckets of each size m
Space Complexity

Need $O(\log N)$ buckets for window of size N

Need $O(\log N)$ bits to represent bucket $B(m, t)$:
- m is power of 2, so representable as $\log_2 m$
 m can be represented with $O(\log \log N)$ bits
- t is representable as $t \mod N$
 t can be represented with $O(\log N)$ bits

Overall window compressed to $O(\log^2 N)$ bits
Stream Processing Systems
General DSPS Architecture

Source: Golab & Ozsu 2003
Continuous queries are long-running

- properties of base streams may change
 - Tuple distribution, arrival characteristics, query load, available CPU, memory and disk resources, system conditions, ...

Solution: Use **adaptive query plans**

- Monitor system conditions
- Re-optimise query plans at run-time

DBMS didn’t quite have this problem...
Query Plan Execution

Executed query plans include:
- **Operators**
- **Queues** between operators
- **State**/“Synposis” (windows, ...)
- **Base streams**

```sql
SELECT * 
FROM S1 [Rows 1000], S2 [Range 2 mins]
WHERE S1.A = S2.A 
AND S1.A > 42;
```

Challenges
- State may get large (e.g. large windows)
Operator Scheduling

Need scheduler to invoke operators (for time slice)
- Scheduling must be adaptive

Different scheduling disciplines possible:
1. Round-robin
2. Minimise queue length
3. Minimise tuple delay
4. Combination of the above
DSMS must handle overload: Tuples arrive faster than processing rate

Two options when overloaded:

1. **Load shedding**: Drop tuples
 - Much research on deciding which tuples to drop: c.f. result correctness and resource relief
 - e.g. sample tuples from stream

2. **Approximate processing**: Replace operators with approximate processing
 - Saves resources
Distributed DSPS
Distributed DSPS

Interconnect multiple DSPSs with network
- Better scalability, handles geographically distributed stream sources

Interconnect on LAN or Internet?
- Different assumptions about time and failure models
Stream Processing to the Rescue!

Process data streams on-the-fly:
Apache S4, Twitter Storm, Nokia Dempsy, ...

Most interesting operators are **stateful**

Exploit intra-query parallelism for scale out
Query Planning in DSPS

- Query Plan
 - Operator placement
 - Stream connections
 - Resource allocation: CPU, network bandwidth, ...

- State-of-the-art planners
 - Based on heuristics (eg IBM’s SODA)
 - Assume over-provisioned system
 - Simplifies query planning
 - Not true when you pay for resources...
Planning Challenges

- Premature exhaustion of resources \Rightarrow multi-resource constraints

- Waste of resources due to query overlap \Rightarrow reuse streams

Waste of resources due to query overlap \Rightarrow reuse streams

Premature exhaustion of resources \Rightarrow multi-resource constraints
Unified optimisation problem for

- query admission
- operator allocation
- stream reuse

maximise:
\[\lambda_1 \times \text{(no of satisfied queries)} - \lambda_2 \times \text{(CPU usage)} - \lambda_3 \times \text{(net usage)} - \lambda_4 \times \text{(balance load)} \]

subject to constraints:
1. availability: streams for operators exist on nodes
2. resource: allocations within resource limits
3. demand: final query streams are generated eventually
4. acyclicity: all streams come from real sources

This is hard!

- Solve approximate problem to obtain tractable solution
Idea: Only optimise over streams related to new query

- Add relay operators to work around constraints under reuse
Scalable Stream Processing
Stream Processing in the Cloud

Clouds provide virtually infinite pools of resources
- Fast and cheap access to new machines for operators

n virtual machines in cloud data centre

How do you decide on the optimal number of VMs?
- Needlessly overprovisioning system is expense
- Using too few nodes leads to poor performance
Challenge 1: Elastic Data-Parallel Processing

Typical stream processing workloads are bursty

High + bursty input rates ➔ Detect bottleneck + parallelise
Challenge 2: Fault-Tolerant Processing

Large scale deployment ➔ Handle node failures

Failure is a common occurrence
- Active fault-tolerance requires 2x resources
- Passive fault-tolerance leads to long recovery times
State in Stream Processing

Consider a streaming recommender application (collaborative filtering)

Stream Processing System
(eg Twitter Storm, Yahoo S4,...)

User Activities
(eg item purchases, page views, clicks, ...)

Processing State

User A
Item 1: 2
Item 2: 5
User B
Item 1: 4
Item 2: 1

Most online machine learning algorithms require state
State Complicates Things...

1. Dynamic scale out impacts state

2. Recovery from failures

Partitioning of state

Loss of state after node failure
Current Approaches for Stateful Processing

Stateless stream processing systems (eg Yahoo S4, Twitter Storm, ...)
- Developers manage state
- Typically combine with external system to store state (eg Cassandra)
- Design complexity

Relational stream processing systems (eg Borealis, Stream)
- State is window over stream
- No support for arbitrary state
- Hard to realise complex ML algorithms

```
| temp rain |
```

window
Operators can maintain arbitrary state

State management primitives to:
- Backup and recover state
- Partition state

Integrated mechanism for scale out and failure recovery
- Operator recovery and scale out equivalent from state perspective

Idea: State as First Class Citizen

- Expose operator state as external entity so that it can be managed by stream processing system

Operators have direct access to state

System manages state
Operator State Management

State cannot be lost, or stream results are affected

On **scale out:**
- Partition operator state correctly, maintaining consistency

On **failure recovery:**
- Restore state of failed operator

👉 Make operator state an external entity that can be managed by the stream processing system
- Define primitives for state management and build other mechanisms on top of them
What is State?

Processing state

Routing state

Dynamic data flow graph:
Based on data, A → B or A → C

Buffer state

<table>
<thead>
<tr>
<th>Data ts1</th>
<th>Data ts2</th>
<th>Data ts3</th>
<th>Data ts4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item 1</th>
<th>Item 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>User A</td>
<td>2</td>
</tr>
<tr>
<td>User B</td>
<td>4</td>
</tr>
</tbody>
</table>
State Management Primitives

- Makes state available to system
- Attaches *last processed tuple timestamp*

- Moves copy of state from one operator to another

- Splits state to scale out an operator
State Primitives: Backup and Restore
State Primitives: Partition

Processing state modeled as (key, value) dictionary

State partitioned according to key k of tuples
- Same key used to partition streams
Two cases:
- Operator B becomes **bottleneck** ➔ **Scale out**
- Operator B **fails** ➔ **Recover**
Scaling Out Stateful Operators

Periodically, stateful operators checkpoint and back up state to designated **upstream backup node**.

Finally, upstream operators replay unprocessed tuples to update checkpointed state.

For scale out, backup node already has state of operator to be parallelised.
Recovering Failed Operators

Use backed up state to recover quickly

State restored and unprocessed tuples replayed from buffer
SEEP Stream Processing System

Experimental stateful stream processing platform

Implements dynamic scale out and recovery
- Detect failed or overloaded operators
- Have fast access to new VMs
Detecting Bottlenecks

CPU utilisation report

Bottleneck detector

35% 85% 30%

Local infrastructure view

Bottleneck
Problem: Allocating new VMs takes minutes...

1. **Bottleneck detected**
2. **Decision to scale-out**
3. **Select pre-provisioned VM** (order of secs)
4. **Provision VM from cloud** (order of mins)
5. **Add new VM to pool**
6. **Virtual Machine Pool**
7. **Monitoring information**
8. **VM1 VM2 VM3**
9. **Dynamic pool size**
10. **Cloud provider**
Evaluation: Goals and Methodology

1. Effectiveness of dynamic scale out
2. Measurement of failure recovery time
3. Overhead of state management

Workload: **Linear Road Benchmark** [VLDB’04]
- Operator state depends on whole stream history
- Input stream rate increases over time according to Load Factor L
- SLA: results < 5 secs
- Data flow graph with 7 operators

Deployed SEEP on **Amazon AWS EC2**
Scale Out with Elastic Workload

Scales to load factor $L=350$ with 60 VMs on Amazon EC2
- $L=512$ highest report result [VLDB’12]

→ SEEP scales out dynamically with low impact on latency
Upstream Backup saves all tuples in buffers

Source Replay saves tuples only in the source
Failure Recovery Time

Workload: Windowed word counting query
- 30 sec window with 5 sec checkpointing interval

Checkpointing leads to smaller buffers
Overhead of Checkpointing

Tradeoff between latency and recovery time
Related Work

Scalable stream processing systems

- **Twitter Storm, Yahoo S4, Nokia Dempsey**
 Exploit operator parallelism mainly for stateless queries
- **ParaSplit operator** [VLDB’12]
 Partition stream for intra-query parallelism

Support for elasticity

- **StreamCloud** [TPDS’12]
 Dynamic scale out/in for subset of relational stream operators
- **Esc** [ICCC’11]
 Dynamic support for stateless scale out

Resource-efficient fault tolerance models

- **Active Replication at (almost) no cost** [SRDS’11]
 Use under-utilized machines to run operator replicas
- **Discretized Streams** [HotCloud’12]
 Data is checkpointed and recovered in parallel in event of failure
Conclusions

Stream processing will grow in importance
- Handling the data deluge
- Just provide a view/window on subset of data
- Enables real-time response and decision making

Principled models to express stream processing semantics
- Enables automatic optimisation of queries, e.g. finding parallelism
- What is the right model?

Resource allocation matters due to long running queries
- High stream rates and many queries require scalable systems
- Handling overload becomes crucial requirement
- Volatile workloads benefit from elastic DSPS in cloud environments
Thank You! Any Questions?

Peter Pietzuch
<prp@doc.ic.ac.uk>
http://lsds.doc.ic.ac.uk