
Analyzing the Graph-Processing Pipeline: A
comparative study of GraphLab and GraphX

An open source project study

Presented by Niko Stahl for R212

Context
● GraphLab (execution engine: Powergraph) is exclusively

built for graph processing.
● GraphX is built on top of Spark.

Quick Intro: GraphX and Spark
What makes it competitive?
● Spark facilitates in-memory computation on clusters.
● The main abstraction:

RDDs (Resilient Distributed Datasets)
● RDDs maintain fault tolerance
● The caching of RDDs can greatly speed-up algorithms

that exhibit data reuse (e.g. PageRank)

Context
● GraphX combines the advantages of data-parallel and

graph-parallel systems.

Why is it useful to combine data-parallel and graph-
parallel features?

A typical graph-processing
pipeline requires moving
between different views of
the same data.

http://spark.apache.org/docs/0.9.0/graphx-programming-guide.html

Context Switching: GraphX preferred

http://spark.apache.org/docs/0.9.0/graphx-programming-guide.html

Performance: GraphLab preferred
Xin et al., 2013: GraphX: A Resilient Distributed Graph
System on Spark

16 node Amazon EC2 cluster

Each node 8 virtual cores

68GB memory

Graph: 4.8M vertices, 69M edges

Project Motivation
“We believe that the loss in performance may, in many cases, be
ameliorated by the gains in productivity achieved by the GraphX
system.” - Xin et al., 2013

Project Significance
● GraphLab released GraphLab Create earlier this year
● Goal of the project is to introduce a tabular data

structure (SFrame) to GraphLab
● SFrame are similar to R/pandas data frames but stored

on disk.
● To the best of my knowledge, there are no direct

comparisons between GraphLab Create and GraphX.

Project Aim - In Detail
● Compare the efficiency and usability of GraphLab

Create vs. GraphX in a realistic scenario.
● The pipeline I will evaluate:

1. transform (Filter pages of a certain language)
2. process (PageRank)
3. summarize (top k most influential pages)

Project Evaluation
● Experiments will take place on an Amazon EC2 cluster
● Each stage will be evaluated according to:

1. Execution Time
2. Programming effort (lines of code, flexibility of API)

Expected Outcome
stage performance programming effort

1. transform GraphX (?) ?

2. process GraphLab ?

3. summarize GraphX (?) ?

Project Challenges
● How objective is a comparison on Amazon EC2?

-> Every time you launch a cluster you get different
machines.

● How do you objectively evaluate programming effort?
-> Lines of code is contrived. This will be a subjective
evaluation.

Project Status
● I have launched GraphX on AmazonEC2 and have run

stand-alone Scala applications with GraphX.
● Next Steps:

1. Setup preliminary GraphX experiments
2. Setup preliminary GraphLab Create experiments
3. Evaluate how comparable each stage is
4. Tune experiments and run repeatedly on Amazon

EC2 to get statistics

