Machine Learning in the Cloud with Spark

R212 Data Centric Systems and Networking
Open Source Project Study

by Haikal Pribadi
Machine Learning in the Cloud with Spark

Problem domain
Motivation and Contribution
Project Goal
Project Evaluation
Converging Trends
Converging Trends

Big Data
Converging Trends

Big Data

Distributed Systems
Converging Trends

- Big Data
- Distributed Systems
- Machine Learning
Converging Trends
Motivation and Contribution
Why Scale Up to the Cloud?

Input data size

- Large training data instances
 - e.g DryadLINQ and MapReduce
- High input dimensionality
 - e.g GraphLab and GraphChi
Why Scale Up to the Cloud?

Complexity of data and computation

- Data complexity brings algorithm complexity
 - e.g. PLANET (on top of MapReduce)
Why Scale Up to the Cloud?

Time constraint and parameter tuning
- Distribute system usage to increase throughput
- Model and hyper-parameter selection are repetitive and independent
Why Scale Up to the Cloud?

Data Parallelism
- MapReduce, GraphLab

Task Parallelism
- Multicores, GPUs (CUDA), MPI

or perhaps Hybrid?
- Spark, GraphLab, DryadLINQ
Problem?

With the various option of distributed architectures, implementing different machine systems become very task-specific.

Different architectures brings different benefits and constraints.
Spark + MLbase

Unified scalable machine learning

Suitable for many common Machine Learning problem

(project hypothesis)
Project Goal
Develop Mainstream ML

Evaluate Spark+MLbase on developing common Machine Learning problems
Develop Mainstream ML

Classification
- e.g. Bayesian classifier for Spam Filtering

Clustering
- e.g. k-means clustering for market segmentation

Regression
- e.g. Linear regression on weather forecasting

Collaborative Filtering
- Alternating Least Square for recommendation systems
Project Goal

Platform
- Amazon EC2

Run time
- Spark

Application
- MLbase
Project Evaluation
Evaluation and Analysis

Parallelism
- Granularity of data parallelism and task parallelism

Algorithm complexity
- Complexity of customization

Programming paradigm
- Learning curve, expressiveness and dataflow

Dataset distribution
- Management of large dataset
Performance Comparison

Learn a most suitable algorithm to be come a benchmark

Compare performance with [e.g.] GraphLab

- Speed (sequential runs)
- Scalability (efficiency increase with parallelism)
- Throughput (time / input size)
Thank you!
Questions are very welcome

Haikal Pribadi
hp356@cam.ac.uk