Green-Marl
A DSL for Easy and Efficient Graph Analysis

Motivation

Issues with large-scale graph analysis

e Performance
e Implementation
e Capacity

Performance Issues

e RAM latency dominates running time for
large graphs
e Solved by exploiting data parallelism

Implementation Issues

Writing concurrent code is hard

Race-conditions

Deadlock

Efficiency requires deep hardware
knowledge

Couples code to architecture

Alternative: a DSL

Green-Marl and its compiler

High level graph analysis language
Hides underlying complexity

Exposes algorithmic concurrency
Exploits high level domain information for
optimisations

Example

Procedure Compute BC (

sEVEL
G: Graph, BC: Node Prop<Float> (G)) {
G.BC = 0; S
Foreach (s: G.Nodes) {
Node Prop<Float>(G) Sigma; Sﬁér
Node Prop<Float>(G) Delta;
s.Sigma = 1;
InBFS (v: G.Nodes From s) (v!=s) { > <<\\//;7
v.Sigma = Sum(w: v.UpNbrs) {w.Sigma};

}
InRBFS (v!=s) {
v.Delta Sum (w:v.DownNbrs) {
v.Sigma / w.Sigma * (1+ w.Delta)

b g
v.BC += v.Delta (@s;

Compute sigma from parents

Reverse
BFS
Order

Compute delta from children

Language Design

e Based on processing graph properties

e Mappings from a node/edge to a value

e e.g. the average number of phone calls
between two people

Language Design

Green-Marl is designed to compute

e scalar values from a graph and its properties
e new properties for nodes/edges
e selecting subgraphs (instance of above)

Language Design

Support for parallelism (fork-join style)
e Implicit
o G.BC = 0;
e EXxplicit
O Foreach(s: G.Nodes) (s!=t)
e Nested

Language Design

Other characteristics

Relaxed memory model (but atomic)
Reductions

Built-in graph and collection types
Built-in operations: BFS, DFS, etc.

The Compiler

Analysis Transform

Back-end
Transform

e —

————g----

Target

§ Code

U_ser_ Parsing &

Application Green-Marl Checking
__________ S

: Code Frontend

Graph E ront-en

Code Gen

P [Graph Data] Green-Marl
Structure (LIB) Compiler

The Compiler

e Currently compiles to C++
e Semantic analysis checks for conflicts Iin
parallel sections of code

e (Generic and graph-specific optimisations
o 9in total

The Compiler

Architecture Independent Optimisations
e.g. Flipping Edges

Foreach (t:G.Nodes) (f (t))

Foreach (s:t.InNbrs) (g(s))
t.A += s.B;

becomes

Foreach (s:G.Nodes) (g (s))
Foreach (t:s.0OutNbrs) (£ (t))
t.A += s.B;

The Compiler

Architecture Dependent Optimisations
e.g. Saving BFS Children

InBFS (v:G.Nodes; s) { }
InRBFS {

Foreach (t: v.DownNbrs) { DO THING(t); } }

becomes

_prepare edge marker () ;

for (e = edges ..) {
for (e = edges ...) { s if (edge marker[e] ==1) {
BN = .. .node(e); index t t= ...node(e);

if (isNextLevel(t)) { edge marker[e] = 1; } } DO THING(t); } })

Evaluation

e 1 machine, 5 algorithms, 2 graph generators

e 32 million nodes, 256 million edges

e Compared with the SNAP graph analysis
platform (only 3 algorithms)

Evaluation

158 =peed up
17 }]
16 1
15 ¢ 1
%g L _____7___‘_-5‘
12 | e
11 | IR
10 - e 1
g L / : __-—>-_-A—‘-
- ? - s e 4
R -
al ,? SNAP —+—]
3t GreenMarl —— |
2 -§<+ NoFlipBe —&— -
é [+ ‘NoSaveCh, NoFlipBe —#—]
o 2 4 B 8 10 12 14 16

Mum threads

(a) RMAT

ORMNWANO-JOOWD

Speed up .
[e :
- A . |
L @_’_'_H.-.— 4
I A]
- .‘v*-——' ~ -
o g SNAP —+—]
L - GreenMarl —— |
_@”+ NoFlipBe —&— -
[¥ NoSaveCh,NoFlipBe —%—]
o 2 4 6 8 10 12 14 16

Num threads

(b) Uniform

BC scaling across cores

N W s 1 -

O, ML A-J N0

E

S

valuation

peed up

T T T

T T T T T

SNAP —+—]
GreenMarl —— 4
NolLM —a—

NolLM, NoSRDC —#—

L L R |
i i

0

2 4 6 8 10 12 14 16

Num threads

(a) RMAT

Conductance

Low g N g A o I O SNy I g Ry)

Speed up

o
¥

~NolLM, NoSRDC —#%—

SNAP —+—
GreenMarl ——
NolLM —a—

Lllll

1=)

By
|

¥
¥ *

l

0 2 4 6 8 10 12 14 16

Num threads

(b) Uniform

Evaluation

In a nutshell...

e At least as fast as SNAP

e (Good speedup of up to ~16 threads

e Algorithms that are hard to parallelise do not
scale so well (Amdahl’s Law)

Evaluation

Usabillity

e Between 50% and 10% the lines of code of
other implementations

e Does not require application rewriting

e Embedded foreign code

e Concise and intuitive descriptions of graph
algorithms (in their opinion!)

