
Green-Marl
A DSL for Easy and Efficient Graph Analysis

Motivation

Issues with large-scale graph analysis
● Performance
● Implementation
● Capacity

Performance Issues

● RAM latency dominates running time for
large graphs

● Solved by exploiting data parallelism

Implementation Issues

Writing concurrent code is hard
● Race-conditions
● Deadlock
● Efficiency requires deep hardware

knowledge
● Couples code to architecture

Alternative: a DSL

Green-Marl and its compiler
● High level graph analysis language
● Hides underlying complexity
● Exposes algorithmic concurrency
● Exploits high level domain information for

optimisations

Example
Procedure Compute_BC(
 G: Graph, BC: Node_Prop<Float>(G)) {
 G.BC = 0; // initialize BC
 Foreach(s: G.Nodes) {
 Node_Prop<Float>(G) Sigma;
 Node_Prop<Float>(G) Delta;
 s.Sigma = 1; // Initialize Sigma for root
 InBFS(v: G.Nodes From s)(v!=s) {
 v.Sigma = Sum(w: v.UpNbrs) {w.Sigma};
 }
 InRBFS(v!=s) {
 v.Delta = Sum(w:v.DownNbrs) {
 v.Sigma / w.Sigma * (1+ w.Delta)
 };
 v.BC += v.Delta @s; //accumulate BC
} } }

Language Design

● Based on processing graph properties
● Mappings from a node/edge to a value
● e.g. the average number of phone calls

between two people

Language Design

Green-Marl is designed to compute
● scalar values from a graph and its properties
● new properties for nodes/edges
● selecting subgraphs (instance of above)

Language Design

Support for parallelism (fork-join style)
● Implicit

○ G.BC = 0;
● Explicit

○ Foreach(s: G.Nodes) (s!=t)
● Nested

Language Design

Other characteristics
● Relaxed memory model (but atomic)
● Reductions
● Built-in graph and collection types
● Built-in operations: BFS, DFS, etc.

The Compiler

The Compiler

● Currently compiles to C++
● Semantic analysis checks for conflicts in

parallel sections of code
● Generic and graph-specific optimisations

○ 9 in total

The Compiler

Architecture Independent Optimisations
e.g. Flipping Edges
Foreach(t:G.Nodes)(f(t))

 Foreach(s:t.InNbrs)(g(s))

 t.A += s.B;

becomes
Foreach(s:G.Nodes)(g(s))

 Foreach(t:s.OutNbrs)(f(t))

 t.A += s.B;

The Compiler

Architecture Dependent Optimisations
e.g. Saving BFS Children
InBFS(v:G.Nodes; s) { ... //forward }

InRBFS { // reverse-order traverse

 Foreach(t: v.DownNbrs) { DO_THING(t); } }

becomes
_prepare_edge_marker(); // O(E) array

 for (e = edges ...) {

 index_t t = ...node(e);

 if (isNextLevel(t)) { edge_marker[e] = 1; } }

for (e = edges ..) {

 if (edge_marker[e] ==1) {

 index_t t= ...node(e);

 DO_THING(t); } }}

⇒

Evaluation

● 1 machine, 5 algorithms, 2 graph generators
● 32 million nodes, 256 million edges
● Compared with the SNAP graph analysis

platform (only 3 algorithms)

Evaluation

BC scaling across cores

Evaluation

Conductance

Evaluation

In a nutshell…
● At least as fast as SNAP
● Good speedup of up to ~16 threads
● Algorithms that are hard to parallelise do not

scale so well (Amdahl’s Law)

Evaluation

Usability
● Between 50% and 10% the lines of code of

other implementations
● Does not require application rewriting
● Embedded foreign code
● Concise and intuitive descriptions of graph

algorithms (in their opinion!)

