Reviewing:

CIEL

A universal execution engine for distributed data-flow computing

Presented by Niko Stahl for R202

Outline

. Motivation

. Goals

. Design

. Fault Tolerance
. Performance

. Related Work

. Conclusion

N OO O A W N -

Motivation

MapReduce

Dryad

Job = Directed Acyclic Graph
Q@ 96 @ o

Outputs
- /l
Processing (
vertlces\ [® C " Channels
! = (file, pipe,

¥ : . shared
\ % memo
. A ry)

.
‘ ‘ .\"\puts’—.'

Motivation

MapReduce/Dryad have shortcomings:

1. Designed to maximize throughput, not to minimize
latency.

2. Perform scheduling before running the algorithm. The
resulting schedule is static.

These makes MapReduce/Dryad inappropriate for
iterative algorithms.

Goals

Design a distributed execution framework that can

1. efficiently run iterative algorithms
2. provide a simple interface
3. offer transparent fault tolerance

Outline

. Motivation

. Goals

. Design

. Fault Tolerance
. Performance

. Related Work

. Conclusion

N O O A W DN -

CIEL’s Computation Model

The key feature of CIEL is a dynamic task graph.
Primitives of the model:

1. Object: An unstructured sequence of bytes (code,
libraries, data, etc.)

2. Reference: The location where an object is stored

3. Task: A computation that executes completely on a
single machine. Tasks can publish results and spawn

other tasks.

B Concrete
object

4
|
|
Root task —((4 -0 Child task

:
:

DELEGATES ! Future

: object
:
-I, :
Result R |
—_— I< i
\

An example task graph

System Architecture

e Master maintains current state of task graph in the
object and task tables.

e Master does scheduling by lazily evaluating output
objects, and pairs runnable tasks with idle workers.

e \Workers execute tasks and store objects.

Master Worker
PUBLISH OBJECT
Object - DATA I/O
table Java
NET
Worker

table DISPATCH TASK. |

Scheduler
Executors

Object
store

Task SW
table <

SPAWN TASKS

Skywriting

e A simple programming interface to CIEL

function process_chunk (chunk, prev_result) {
// Execute native code for chunk processing.
// Returns a reference to a partial result.
return spawn_exec(...);

}

function is_converged (curr_result, prev_result) {
// Execute native code for convergence test.
// Returns a reference to a boolean.
return spawn_exec(...) [0];

}

input_data = [ref("ciel://host1l37/chunk0"),
ref ("ciel://host223/chunkl"),
-1

curr = ...; // Initial guess at the result.
do {

prev = curr;

curr = [];

for (chunk in input_data) {
curr += process_chunk (chunk, prev);
}

} while (!=xis_converged(curr, prev));

return curr;

Task Creation in Skywriting

Task creation is the distinctive feature that facilitates data-

dependent control flow. Two essential ways to create tasks

in Skywriting:

1. spawn(f, args = [...])
spawns a child task that computes and returns a pointer
to f(args). Explicit task creation.

2. * (unary dereference operator that applies to a ref)
Loads the referenced data and evaluates to the
resulting data structure. Implicit task creation.

Implicit Task Creation with *

Problem: CIEL tasks are non-blocking, but dereferencing
future objects will require waiting for tasks to complete.

Solution: Implicit creation of continuation task, which
depends on dereferenced object and current execution stack.

a = spawn (f);
b = spawn(qg) ;
return *a + *b;

Continuation of T

\
'
]
'
'
'
]
]
return *a + *b; :
'
/

T
|
-——
A
'
'
'
'
'
]
]
[PV AN

Running a simple script

partitions = [..];
guess = ..;

do {
prev = guess;

} while (!*done);

Outline

. Motivation

. Goals

. Design

. Fault Tolerance
. Performance

. Related Work

. Conclusion

N O O A WO DN -

Fault Tolerance

e Client: Trivial since no driver program is required.

e Worker: Monitored by master (similar to Dryad)

e Master: Master state can be derived from the set of
active jobs. This is accomplished with
o persistent logging, and
o object table reconstruction by workers

Outline

. Motivation

. Goals

. Design

. Fault Tolerance
. Performance

. Related Work

. Conclusion

~N OO O A WO DN -

Experiment I: Grep

e How does CIEL compare to Hadoop?

e Hadoop polls for tasks once every 5 seconds. fthis has
changed since 2011. See patch: MAPREDUCE-1906]

e Hadoop runs mandatory “setup” and “cleanup” for each
job
e Note Hadoop’s weaker performance for small tasks.

400

350 = Hadoop
300 BN CIEL

250
200 -
150 -

i
100 - T
0 _
10 20 50

Number of workers

Execution time (s)

Experiment Il: k-means

e How does CIEL compare to = '
Hadoop (Apache Mahout) for Hadoop
iterative algorithms?

e Hadoop does not perform
cross-job optimisations. Each ¢
iteration is an independent
job.

e CIEL prefers workers that 0 | A |

05 -

X <

0 50 100 150 200
have consumed the same T .
_ _ _ ask duration (s)
data for previous iterations,
which leads to better data-
locality.

Experiment lll: DP

e CIEL can distribute partially parallelizable tasks that do
not cleanly fall into the MapReduce format.

74

Bl g

oo

(a) Smith-Waterman (b) Binomial options pricing

Goals (revisited)

Design a distributed execution framework that can

1. efficiently run iterative algorithms [dynamic task graph]

2. provide a simple interface [Skywriting]
3. offer transparent fault tolerance [Master fault tolerance]

Related Work

e Pregel: Google’s distributed execution engine for graph
algorithms [designed primarily for graph algorithms]

e Haloop: task scheduler is made loop-aware by adding
caching mechanisms [lacks fault tolerance]

e Apache Mahout: Uses Hadoop as its execution engine
and a driver program runs iterative algorithms. [lacks
master fault tolerance + requires driver program]

Conclusion

What are CIEL's significant contributions?

e |terative Algorithms can be a single job. Therefore, there
IS no driver program running outside of the cluster.

e Dynamic Task Graph: Task spawns Task

e Fault tolerance for Master

