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Motivation

MapReduce/Dryad have shortcomings:

1. Designed to maximize throughput, not to minimize
latency.

2. Perform scheduling before running the algorithm. The
resulting schedule is static.

These makes MapReduce/Dryad inappropriate for
iterative algorithms.



Goals

Design a distributed execution framework that can

1. efficiently run iterative algorithms
2. provide a simple interface
3. offer transparent fault tolerance
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CIEL’s Computation Model

The key feature of CIEL is a dynamic task graph.
Primitives of the model:

1. Object: An unstructured sequence of bytes (code,
libraries, data, etc.)

2. Reference: The location where an object is stored

3. Task: A computation that executes completely on a
single machine. Tasks can publish results and spawn

other tasks.
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System Architecture

e Master maintains current state of task graph in the
object and task tables.

e Master does scheduling by lazily evaluating output
objects, and pairs runnable tasks with idle workers.

e \Workers execute tasks and store objects.

Master Worker
PUBLISH OBJECT
Object - DATA I/O
table Java
NET
Worker

table DISPATCH TASK. |

Scheduler
Executors

Object
store

Task SW
table <

SPAWN TASKS




Skywriting

e A simple programming interface to CIEL

function process_chunk (chunk, prev_result) {
// Execute native code for chunk processing.
// Returns a reference to a partial result.
return spawn_exec(...);

}

function is_converged (curr_result, prev_result) {
// Execute native code for convergence test.
// Returns a reference to a boolean.
return spawn_exec(...) [0];

}

input_data = [ref("ciel://host1l37/chunk0"),
ref ("ciel://host223/chunkl"),
-1

curr = ...; // Initial guess at the result.
do {

prev = curr;

curr = [];

for (chunk in input_data) {
curr += process_chunk (chunk, prev);
}

} while (!=xis_converged(curr, prev));

return curr;



Task Creation in Skywriting

Task creation is the distinctive feature that facilitates data-

dependent control flow. Two essential ways to create tasks

in Skywriting:

1. spawn(f, args = [...])
spawns a child task that computes and returns a pointer
to f(args). Explicit task creation.

2. * (unary dereference operator that applies to a ref)
Loads the referenced data and evaluates to the
resulting data structure. Implicit task creation.



Implicit Task Creation with *

Problem: CIEL tasks are non-blocking, but dereferencing
future objects will require waiting for tasks to complete.

Solution: Implicit creation of continuation task, which
depends on dereferenced object and current execution stack.

----------------

a = spawn (f);
b = spawn(qg) ;
return *a + *b;

------------------
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Running a simple script

partitions = [..];
guess = ..;

do {
prev = guess;

} while (!*done);
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Fault Tolerance

e Client: Trivial since no driver program is required.

e Worker: Monitored by master (similar to Dryad)

e Master: Master state can be derived from the set of
active jobs. This is accomplished with
o persistent logging, and
o object table reconstruction by workers
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Experiment I: Grep

e How does CIEL compare to Hadoop?

e Hadoop polls for tasks once every 5 seconds. fthis has
changed since 2011. See patch: MAPREDUCE-1906]

e Hadoop runs mandatory “setup” and “cleanup” for each
job
e Note Hadoop’s weaker performance for small tasks.
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Experiment Il: k-means

e How does CIEL compare to = '
Hadoop (Apache Mahout) for Hadoop
iterative algorithms?

e Hadoop does not perform
cross-job optimisations. Each ¢
iteration is an independent
job.
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Experiment lll: DP

e CIEL can distribute partially parallelizable tasks that do
not cleanly fall into the MapReduce format.
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Goals (revisited)

Design a distributed execution framework that can

1. efficiently run iterative algorithms [dynamic task graph]

2. provide a simple interface [Skywriting]
3. offer transparent fault tolerance [Master fault tolerance]



Related Work

e Pregel: Google’s distributed execution engine for graph
algorithms [designed primarily for graph algorithms]

e Haloop: task scheduler is made loop-aware by adding
caching mechanisms [lacks fault tolerance]

e Apache Mahout: Uses Hadoop as its execution engine
and a driver program runs iterative algorithms. [lacks
master fault tolerance + requires driver program]



Conclusion

What are CIEL's significant contributions?

e |terative Algorithms can be a single job. Therefore, there
IS no driver program running outside of the cluster.

e Dynamic Task Graph: Task spawns Task

e Fault tolerance for Master



