
Discretized Streams: Fault-Tolerant Streaming Computation at Scale

Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, Ion Stoica
University of California, Berkeley

Abstract
Many “big data” applications must act on data in real
time. Running these applications at ever-larger scales re-
quires parallel platforms that automatically handle faults
and stragglers. Unfortunately, current distributed stream
processing models provide fault recovery in an expen-
sive manner, requiring hot replication or long recovery
times, and do not handle stragglers. We propose a new
processing model, discretized streams (D-Streams), that
overcomes these challenges. D-Streams enable a par-
allel recovery mechanism that improves efficiency over
traditional replication and backup schemes, and tolerates
stragglers. We show that they support a rich set of oper-
ators while attaining high per-node throughput similar
to single-node systems, linear scaling to 100 nodes, sub-
second latency, and sub-second fault recovery. Finally,
D-Streams can easily be composed with batch and in-
teractive query models like MapReduce, enabling rich
applications that combine these modes. We implement
D-Streams in a system called Spark Streaming.

1 Introduction
Much of “big data” is received in real time, and is most
valuable at its time of arrival. For example, a social net-
work may wish to detect trending conversation topics in
minutes; a search site may wish to model which users
visit a new page; and a service operator may wish to
monitor program logs to detect failures in seconds. To
enable these low-latency processing applications, there
is a need for streaming computation models that scale
transparently to large clusters, in the same way that batch
models like MapReduce simplified offline processing.

Designing such models is challenging, however, be-
cause the scale needed for the largest applications (e.g.,
realtime log processing or machine learning) can be hun-
dreds of nodes. At this scale, two major problems are

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the Owner/Author(s).
SOSP’13, Nov. 3–6, 2013, Farmington, Pennsylvania, USA.
ACM 978-1-4503-2388-8/13/11.
http://dx.doi.org/10.1145/2517349.2522737

faults and stragglers (slow nodes). Both problems are in-
evitable in large clusters [11], so streaming applications
must recover from them quickly. Fast recovery is even
more important in streaming than it was in batch jobs:
while a 30 second delay to recover from a fault or strag-
gler is a nuisance in a batch setting, it can mean losing
the chance to make a key decision in a streaming setting.

Unfortunately, existing streaming systems have
limited fault and straggler tolerance. Most dis-
tributed streaming systems, including Storm [36],
TimeStream [32], MapReduce Online [10], and stream-
ing databases [5, 8, 9], are based on a continuous op-
erator model, in which long-running, stateful operators
receive each record, update internal state, and send new
records. While this model is quite natural, it makes it
difficult to handle faults and stragglers.

Specifically, given the continuous operator model,
systems perform recovery through two approaches [19]:
replication, where there are two copies of each node
[5, 33], or upstream backup, where nodes buffer sent
messages and replay them to a new copy of a failed node
[32, 10, 36]. Neither approach is attractive in large clus-
ters: replication costs 2× the hardware, while upstream
backup takes a long time to recover, as the whole system
must wait for a new node to serially rebuild the failed
node’s state by rerunning data through an operator. In ad-
dition, neither approach handles stragglers: in upstream
backup, a straggler must be treated as a failure, incur-
ring a costly recovery step, while replicated systems use
synchronization protocols like Flux [33] to coordinate
replicas, so a straggler will slow down both replicas.

This paper presents a new stream processing model,
discretized streams (D-Streams), that overcomes these
challenges. Instead of managing long-lived operators,
the idea in D-Streams is to structure a streaming compu-
tation as a series of stateless, deterministic batch compu-
tations on small time intervals. For example, we might
place the data received every second (or every 100ms)
into an interval, and run a MapReduce operation on each
interval to compute a count. Similarly, we can run a
rolling count over several intervals by adding the new
count from each interval to the old result. By structuring
computations this way, D-Streams make (1) the state at
each timestep fully deterministic given the input data,
forgoing the need for synchronization protocols, and (2)
the dependencies between this state and older data visi-

423

ble at a fine granularity. We show that this enables pow-
erful recovery mechanisms, similar to those in batch sys-
tems, that outperform replication and upstream backup.

There are two challenges in realizing the D-Stream
model. The first is making the latency (interval granu-
larity) low. Traditional batch systems, such as Hadoop,
fall short here because they keep state in replicated,
on-disk storage systems between jobs. Instead, we use
a data structure called Resilient Distributed Datasets
(RDDs) [42], which keeps data in memory and can re-
cover it without replication by tracking the lineage graph
of operations that were used to build it. With RDDs, we
show that we can attain sub-second end-to-end latencies.
We believe that this is sufficient for many real-world
big data applications, where the timescale of the events
tracked (e.g., trends in social media) is much higher.

The second challenge is recovering quickly from
faults and stragglers. Here, we use the determinism of
D-Streams to provide a new recovery mechanism that
has not been present in previous streaming systems: par-
allel recovery of a lost node’s state. When a node fails,
each node in the cluster works to recompute part of the
lost node’s RDDs, resulting in significantly faster recov-
ery than upstream backup without the cost of replication.
Parallel recovery was hard to perform in continuous pro-
cessing systems due to the complex state synchroniza-
tion protocols needed even for basic replication (e.g.,
Flux [33]),1 but becomes simple with the fully determin-
istic D-Stream model. In a similar way, D-Streams can
recover from stragglers using speculative execution [11],
while previous streaming systems do not handle them.

We have implemented D-Streams in a system called
Spark Streaming, based on the Spark engine [42]. The
system can process over 60 million records/second on
100 nodes at sub-second latency, and can recover from
faults and stragglers in sub-second time. Spark Stream-
ing’s per-node throughput is comparable to commercial
streaming databases, while offering linear scalability to
100 nodes, and is 2–5× faster than the open source
Storm and S4 systems, while offering fault recovery
guarantees that they lack. Apart from its performance,
we illustrate Spark Streaming’s expressiveness through
ports of two real applications: a video distribution mon-
itoring system and an online machine learning system.

Finally, because D-Streams use the same processing
model and data structures (RDDs) as batch jobs, a pow-
erful advantage of our model is that streaming queries
can seamlessly be combined with batch and interactive
computation. We leverage this feature in Spark Stream-
ing to let users run ad-hoc queries on streams using
Spark, or join streams with historical data computed as
an RDD. This is a powerful feature in practice, giving

1 The only parallel recovery algorithm we are aware of, by Hwang
et al. [20], only tolerates one node failure and cannot handle stragglers.

users a single API to combine previously disparate com-
putations. We sketch how we have used it in our applica-
tions to blur the line between live and offline processing.

2 Goals and Background
Many important applications process large streams of
data arriving in real time. Our work targets applications
that need to run on tens to hundreds of machines, and tol-
erate a latency of several seconds. Some examples are:
• Site activity statistics: Facebook built a distributed

aggregation system called Puma that gives advertis-
ers statistics about users clicking their pages within
10–30 seconds and processes 106 events/s [34].

• Cluster monitoring: Datacenter operators often col-
lect and mine program logs to detect problems, using
systems like Flume [3] on hundreds of nodes [16].

• Spam detection: A social network such as Twitter
may wish to identify new spam campaigns in real
time using statistical learning algorithms [38].

For these applications, we believe that the 0.5–2 sec-
ond latency of D-Streams is adequate, as it is well below
the timescale of the trends monitored. We purposely do
not target applications with latency needs below a few
hundred milliseconds, such as high-frequency trading.

2.1 Goals

To run these applications at large scales, we seek a sys-
tem design that meets four goals:

1. Scalability to hundreds of nodes.

2. Minimal cost beyond base processing—we do not
wish to pay a 2× replication overhead, for example.

3. Second-scale latency.

4. Second-scale recovery from faults and stragglers.

To our knowledge, previous systems do not meet these
goals: replicated systems have high overhead, while up-
stream backup based ones can take tens of seconds to re-
cover lost state [32, 40], and neither tolerates stragglers.

2.2 Previous Processing Models

Though there has been a wide set of work on distributed
stream processing, most previous systems use the same
continuous operator model. In this model, streaming
computations are divided into a set of long-lived state-
ful operators, and each operator processes records as
they arrive by updating internal state (e.g., a table track-
ing page view counts over a window) and sending new
records in response [9]. Figure 1(a) illustrates.

While continuous processing minimizes latency, the
stateful nature of operators, combined with nondeter-
minism that arises from record interleaving on the net-
work, makes it hard to provide fault tolerance efficiently.
Specifically, the main recovery challenge is rebuilding

424

mutable state

synchronization

primaries

replicas

node 1 node 2

node 1’ node 2’

input

(a) Continuous operator processing model. Each node con-
tinuously receives records, updates internal state, and emits
new records. Fault tolerance is typically achieved through
replication, using a synchronization protocol like Flux or
DPC [33, 5] to ensure that replicas of each node see records in
the same order (e.g., when they have multiple parent nodes).

t = 1:

t = 2:

D-Stream 1 D-Stream 2

immutable
dataset

immutable
dataset

batch operation

…

input

(b) D-Stream processing model. In each time interval, the
records that arrive are stored reliably across the cluster to form
an immutable, partitioned dataset. This is then processed via
deterministic parallel operations to compute other distributed
datasets that represent program output or state to pass to the
next interval. Each series of datasets forms one D-Stream.

Figure 1: Comparison of traditional record-at-a-time stream processing (a) with discretized streams (b).

the state of operators on a lost, or slow, node. Previ-
ous systems use one of two schemes, replication and
upstream backup [19], which offer a sharp tradeoff be-
tween cost and recovery time.

In replication, which is common in database systems,
there are two copies of the processing graph, and input
records are sent to both. However, simply replicating the
nodes is not enough; the system also needs to run a syn-
chronization protocol, such as Flux [33] or Borealis’s
DPC [5], to ensure that the two copies of each operator
see messages from upstream parents in the same order.
For example, an operator that outputs the union of two
parent streams (the sequence of all records received on
either one) needs to see the parent streams in the same
order to produce the same output stream, so the two
copies of this operator need to coordinate. Replication
is thus costly, though it recovers quickly from failures.

In upstream backup, each node retains a copy of the
messages it sent since some checkpoint. When a node
fails, a standby machine takes over its role, and the
parents replay messages to this standby to rebuild its
state. This approach thus incurs high recovery times,
because a single node must recompute the lost state
by running data through the serial stateful operator
code. TimeStream [32] and MapReduce Online [10]
use this model. Popular message queueing systems, like
Storm [36], also use this approach, but typically only
provide “at-least-once” delivery for messages, relying
on the user’s code to handle state recovery.2

More importantly, neither replication nor upstream
backup handle stragglers. If a node runs slowly in the
replication model, the whole system is affected because

2 Storm’s Trident layer [25] automatically keeps state in a repli-
cated database instead, writing updates in batches. This is expensive,
as all updates must be replicated transactionally across the network.

of the synchronization required to have the replicas re-
ceive messages in the same order. In upstream backup,
the only way to mitigate a straggler is to treat it as a fail-
ure, which requires going through the slow state recov-
ery process mentioned above, and is heavy-handed for a
problem that may be transient.3 Thus, while traditional
streaming approaches work well at smaller scales, they
face substantial problems in a large commodity cluster.

3 Discretized Streams (D-Streams)
D-Streams avoid the problems with traditional stream
processing by structuring computations as a set of
short, stateless, deterministic tasks instead of continu-
ous, stateful operators. They then store the state in mem-
ory across tasks as fault-tolerant data structures (RDDs)
that can be recomputed deterministically. Decomposing
computations into short tasks exposes dependencies at a
fine granularity and allows powerful recovery techniques
like parallel recovery and speculation. Beyond fault tol-
erance, the D-Stream model gives other benefits, such as
powerful unification with batch processing.

3.1 Computation Model

We treat a streaming computation as a series of deter-
ministic batch computations on small time intervals. The
data received in each interval is stored reliably across the
cluster to form an input dataset for that interval. Once
the time interval completes, this dataset is processed via
deterministic parallel operations, such as map, reduce
and groupBy, to produce new datasets representing ei-
ther program outputs or intermediate state. In the for-
mer case, the results may be pushed to an external sys-

3 Note that a speculative execution approach as in batch systems
would be challenging to apply here because the operator code assumes
that it is fed inputs serially, so even a backup copy of an operator would
need to spend a long time recovering from its last checkpoint.

425

Spark Streaming

divide data
stream into

batches

streaming
computations

expressed using
DStreams

Spark
Task Scheduler

Memory Manager

generate
RDD

transfor-
mations

batches
of input
data as
RDDs

live input
data stream

batches of
results

Spark batch jobs
to execute RDD
transformations

Figure 2: High-level overview of the Spark Streaming
system. Spark Streaming divides input data streams
into batches and stores them in Spark’s memory. It
then executes a streaming application by generating
Spark jobs to process the batches.

tem in a distributed manner. In the latter case, the inter-
mediate state is stored as resilient distributed datasets
(RDDs) [42], a fast storage abstraction that avoids repli-
cation by using lineage for recovery, as we shall explain.
This state dataset may then be processed along with the
next batch of input data to produce a new dataset of up-
dated intermediate states. Figure 1(b) shows our model.

We implemented our system, Spark Streaming, based
on this model. We used Spark [42] as our batch process-
ing engine for each batch of data. Figure 2 shows a high-
level sketch of the computation model in the context of
Spark Streaming. This is explained in more detail later.

In our API, users define programs by manipulating
objects called discretized streams (D-Streams). A D-
Stream is a sequence of immutable, partitioned datasets
(RDDs) that can be acted on by deterministic transfor-
mations. These transformations yield new D-Streams,
and may create intermediate state in the form of RDDs.

We illustrate the idea with a Spark Streaming pro-
gram that computes a running count of view events by
URL. Spark Streaming exposes D-Streams through a
functional API similar to LINQ [41, 2] in the Scala pro-
gramming language.4 The code for our program is:

pageViews = readStream("http://...", "1s")

ones = pageViews.map(event => (event.url, 1))

counts = ones.runningReduce((a, b) => a + b)

This code creates a D-Stream called pageViews by
reading an event stream over HTTP, and groups these
into 1-second intervals. It then transforms the event
stream to get a new D-Stream of (URL, 1) pairs called
ones, and performs a running count of these with a
stateful runningReduce transformation. The arguments
to map and runningReduce are Scala function literals.

4Other interfaces, such as streaming SQL, would also be possible.

interval
[0, 1)

interval
[1, 2)

pageViews
DStream

ones
DStream

counts
DStream

map

. . .

. . .

. . .

reduce

Figure 3: Lineage graph for RDDs in the view count
program. Each oval is an RDD, with partitions shown
as circles. Each sequence of RDDs is a D-Stream.

To execute this program, Spark Streaming will receive
the data stream, divide it into one second batches and
store them in Spark’s memory as RDDs (see Figure 2).
Additionally, it will invoke RDD transformations like
map and reduce to process the RDDs. To execute these
transformations, Spark will first launch map tasks to pro-
cess the events and generate the url-one pairs. Then it
will launch reduce tasks that take both the results of the
maps and the results of the previous interval’s reduces,
stored in an RDD. These tasks will produce a new RDD
with the updated counts. Each D-Stream in the program
thus turns into a sequence of RDDs.

Finally, to recover from faults and stragglers, both D-
Streams and RDDs track their lineage, that is, the graph
of deterministic operations used to build them [42].
Spark tracks this information at the level of partitions
within each distributed dataset, as shown in Figure 3.
When a node fails, it recomputes the RDD partitions that
were on it by re-running the tasks that built them from
the original input data stored reliably in the cluster. The
system also periodically checkpoints state RDDs (e.g.,
by asynchronously replicating every tenth RDD)5 to pre-
vent infinite recomputation, but this does not need to
happen for all data, because recovery is often fast: the
lost partitions can be recomputed in parallel on separate
nodes. In a similar way, if a node straggles, we can spec-
ulatively execute copies of its tasks on other nodes [11],
because they will produce the same result.

We note that the parallelism usable for recovery in D-
Streams is higher than in upstream backup, even if one
ran multiple operators per node. D-Streams expose par-
allelism across both partitions of an operator and time:
1. Much like batch systems run multiple tasks per node,

each timestep of a transformation may create multi-
ple RDD partitions per node (e.g., 1000 RDD parti-
tions on a 100-core cluster). When the node fails, we
can recompute its partitions in parallel on others.

5Since RDDs are immutable, checkpointing does not block the job.

426

2. The lineage graph often enables data from different
timesteps to be rebuilt in parallel. For example, in
Figure 3, if a node fails, we might lose some map
outputs from each timestep; the maps from different
timesteps can be rerun in parallel, which would not
be possible in a continuous operator system that as-
sumes serial execution of each operator.

Because of these properties, D-Streams can paral-
lelize recovery over hundreds of cores and recover in 1–2
seconds even when checkpointing every 30s (§6.2).

In the rest of this section, we describe the guarantees
and programming interface of D-Streams in more detail.
We then return to our implementation in Section 4.

3.2 Timing Considerations

Note that D-Streams place records into input datasets
based on the time when each record arrives at the sys-
tem. This is necessary to ensure that the system can
always start a new batch on time, and in applications
where the records are generated in the same location
as the streaming program, e.g., by services in the same
datacenter, it poses no problem for semantics. In other
applications, however, developers may wish to group
records based on an external timestamp of when an event
happened, e.g., when a user clicked a link, and records
may arrive out of order. D-Streams provide two means
to handle this case:

1. The system can wait for a limited “slack time” before
starting to process each batch.

2. User programs can correct for late records at the ap-
plication level. For example, suppose that an appli-
cation wishes to count clicks on an ad between time
t and t + 1. Using D-Streams with an interval size
of one second, the application could provide a count
for the clicks received between t and t + 1 as soon
as time t + 1 passes. Then, in future intervals, the
application could collect any further events with ex-
ternal timestamps between t and t + 1 and compute
an updated result. For example, it could output a new
count for time interval [t, t+1) at time t+5, based on
the records for this interval received between t and
t+5. This computation can be performed with an ef-
ficient incremental reduce operation that adds the old
counts computed at t+1 to the counts of new records
since then, avoiding wasted work. This approach is
similar to order-independent processing [22].

These timing concerns are inherent to stream process-
ing, as any system must handle external delays. They
have been studied in detail in databases [22, 35]. In
general, any such technique can be implemented over
D-Streams by “discretizing” its computation in small
batches (running the same logic in batches). Thus, we
do not explore these approaches further in this paper.

3.3 D-Stream API

Because D-Streams are primarily an execution strategy
(describing how to break a computation into steps), they
can be used to implement many of the standard opera-
tions in streaming systems, such as sliding windows and
incremental processing [9, 4], by simply batching their
execution into small timesteps. To illustrate, we describe
the operations in Spark Streaming, though other inter-
faces (e.g., SQL) could also be supported.

In Spark Streaming, users register one or more
streams using a functional API. The program can define
input streams to be read from outside, which receive data
either by having nodes listen on a port or by loading it
periodically from a storage system (e.g., HDFS). It can
then apply two types of operations to these streams:
• Transformations, which create a new D-Stream from

one or more parent streams. These may be stateless,
applying separately on the RDDs in each time inter-
val, or they may produce state across intervals.

• Output operations, which let the program write data
to external systems. For example, the save operation
will output each RDD in a D-Stream to a database.

D-Streams support the same stateless transformations
available in typical batch frameworks [11, 41], including
map, reduce, groupBy, and join. We provide all the oper-
ations in Spark [42]. For example, a program could run a
canonical MapReduce word count on each time interval
of a D-Stream of words using the following code:

pairs = words.map(w => (w, 1))

counts = pairs.reduceByKey((a, b) => a + b)

In addition, D-Streams provide several stateful trans-
formations for computations spanning multiple inter-
vals, based on standard stream processing techniques
such as sliding windows [9, 4]. These include:

Windowing: The window operation groups all the
records from a sliding window of past time intervals into
one RDD. For example, calling words.window("5s") in
the code above yields a D-Stream of RDDs containing
the words in intervals [0,5), [1,6), [2,7), etc.

Incremental aggregation: For the common use case of
computing an aggregate, like a count or max, over a slid-
ing window, D-Streams have several variants of an in-
cremental reduceByWindow operation. The simplest one
only takes an associative merge function for combining
values. For instance, in the code above, one can write:

pairs.reduceByWindow("5s", (a, b) => a + b)

This computes a per-interval count for each time interval
only once, but has to add the counts for the past five sec-
onds repeatedly, as shown in Figure 4(a). If the aggrega-
tion function is also invertible, a more efficient version
also takes a function for “subtracting” values and main-

427

words interval
counts

sliding
counts

t-1

t

t+1

t+2

t+3

t+4
+

(a) Associative only

words interval
counts

sliding
counts

t-1

t

t+1

t+2

t+3

t+4 +
+

–

(b) Associative & invertible

Figure 4: reduceByWindow execution for the
associative-only and associative+invertible versions
of the operator. Both versions compute a per-interval
count only once, but the second avoids re-summing
each window. Boxes denote RDDs, while arrows show
the operations used to compute window [t, t +5).

tains the state incrementally (Figure 4(b)):

pairs.reduceByWindow("5s", (a,b) => a+b, (a,b) => a-b)

State tracking: Often, an application has to track states
for various objects in response to a stream of events indi-
cating state changes. For example, a program monitoring
online video delivery may wish to track the number of
active sessions, where a session starts when the system
receives a “join” event for a new client and ends when it
receives an “exit” event. It can then ask questions such
as “how many sessions have a bitrate above X .”
D-Streams provide a track operation that transforms
streams of (Key, Event) records into streams of (Key,
State) records based on three arguments:
• An initialize function for creating a State from the

first Event for a new key.
• An update function for returning a new State given

an old State and an Event for its key.
• A timeout for dropping old states.

For example, one could count the active sessions from a
stream of (ClientID, Event) pairs called as follows:

sessions = events.track(

(key, ev) => 1, // initialize function

(key, st, ev) => // update function

ev == Exit ? null : 1,

"30s") // timeout

counts = sessions.count() // a stream of ints

This code sets each client’s state to 1 if it is active and
drops it by returning null from update when it leaves.
Thus, sessions contains a (ClientID, 1) element for
each active client, and counts counts the sessions.

These operators are all implemented using the batch
operators in Spark, by applying them to RDDs from dif-
ferent times in parent streams. For example, Figure 5

D-Stream of
(Key, Event) pairs

D-Stream of
(Key, State) pairs

track

groupBy + map

t = 1:

t = 2:

t = 3:
groupBy + map

. . .

Figure 5: RDDs created by the track operation.

shows the RDDs built by track, which works by group-
ing the old states and the new events for each interval.

Finally, the user calls output operators to send results
out of Spark Streaming into external systems (e.g., for
display on a dashboard). We offer two such operators:
save, which writes each RDD in a D-Stream to a storage
system (e.g., HDFS or HBase), and foreachRDD, which
runs a user code snippet (any Spark code) on each RDD.
For example, a user can print the top K counts with
counts.foreachRDD(rdd => print(rdd.top(K))).

3.4 Consistency Semantics

One benefit of D-Streams is that they provide clean con-
sistency semantics. Consistency of state across nodes
can be a problem in streaming systems that process
each record eagerly. For instance, consider a system that
counts page views by country, where each page view
event is sent to a different node responsible for aggre-
gating statistics for its country. If the node responsible
for England falls behind the node for France, e.g., due to
load, then a snapshot of their states would be inconsis-
tent: the counts for England would reflect an older prefix
of the stream than the counts for France, and would gen-
erally be lower, confusing inferences about the events.
Some systems, like Borealis [5], synchronize nodes to
avoid this problem, while others, like Storm, ignore it.

With D-Streams, the consistency semantics are clear,
because time is naturally discretized into intervals, and
each interval’s output RDDs reflect all of the input re-
ceived in that and previous intervals. This is true regard-
less of whether the output and state RDDs are distributed
across the cluster—users do not need to worry about
whether nodes have fallen behind each other. Specifi-
cally, the result in each output RDD, when computed,
is the same as if all the batch jobs on previous inter-
vals had run in lockstep and there were no stragglers
and failures, simply due to the determinism of computa-
tions and the separate naming of datasets from different
intervals. Thus, D-Streams provide consistent, “exactly-
once” processing across the cluster.

3.5 Unification with Batch & Interactive Processing

Because D-Streams follow the same processing model,
data structures (RDDs), and fault tolerance mechanisms
as batch systems, the two can seamlessly be combined.

428

Aspect D-Streams Continuous proc. systems

Latency 0.5–2 s
1–100 ms unless records
are batched for consistency

Consis-
tency

Records processed
atomically with in-
terval they arrive in

Some systems wait a short
time to sync operators be-
fore proceeding [5, 32]

Late
records

Slack time or app-
level correction

Slack time, out of order
processing [22, 35]

Fault
recovery

Fast parallel recov-
ery

Replication or serial recov-
ery on one node

Straggler
recovery

Possible via specu-
lative execution

Typically not handled

Mixing
w/ batch

Simple unification
through RDD APIs

In some DBs [14]; not in
message queueing systems

Table 1: Comparing D-Streams with record-at-a-
time systems.

Spark Streaming provides several powerful features to
unify streaming and batch processing.

First, D-Streams can be combined with static RDDs
computed using a standard Spark job. For instance, one
can join a stream of message events against a precom-
puted spam filter, or compare them with historical data.

Second, users can run a D-Stream program on previ-
ous historical data using a “batch mode.” This makes it
easy compute a new streaming report on past data.

Third, users run ad-hoc queries on D-Streams interac-
tively by attaching a Scala console to their Spark Stream-
ing program and running arbitrary Spark operations on
the RDDs there. For example, the user could query the
most popular words in a time range by typing:

counts.slice("21:00", "21:05").topK(10)

Discussions with developers who have written both
offline (Hadoop-based) and online processing applica-
tions show that these features have significant practical
value. Simply having the data types and functions used
for these programs in the same codebase saves substan-
tial development time, as streaming and batch systems
currently have separate APIs. The ability to also query
state in the streaming system interactively is even more
attractive: it makes it simple to debug a running compu-
tation, or to ask queries that were not anticipated when
defining the aggregations in the streaming job, e.g., to
troubleshoot an issue with a website. Without this abil-
ity, users typically need to wait tens of minutes for the
data to make it into a batch cluster, even though all the
relevant state is in memory on stream processing nodes.

3.6 Summary

To end our overview of D-Streams, we compare them
with continuous operator systems in Table 1. The main
difference is that D-Streams divide work into small, de-
terministic tasks operating on batches. This raises their

W
or

ke
r

Task execution
Block manager

Input receiver

W
or

ke
r

 Task execution
Block manager

Input receiver

replication of
input & check-
pointed RDDs

Client

Client

Master

Task scheduler

Block tracker

RDD lineage

D-Stream lineage

Input tracker

Comm. Manager

Comm. Manager

New

Modified

Figure 6: Components of Spark Streaming, showing
what we added and modified over Spark.

minimum latency, but lets them employ highly efficient
recovery techniques. In fact, some continuous operator
systems, like TimeStream and Borealis [32, 5], also de-
lay records, in order to deterministically execute opera-
tors that have multiple upstream parents (by waiting for
periodic “punctuations” in streams) and to provide con-
sistency. This raises their latency past the millisecond
scale and into the second scale of D-Streams.

4 System Architecture
We have implemented D-Streams in a system called
Spark Streaming, based on a modified version of the
Spark processing engine [42]. Spark Streaming consists
of three components, shown in Figure 6:
• A master that tracks the D-Stream lineage graph and

schedules tasks to compute new RDD partitions.
• Worker nodes that receive data, store the partitions

of input and computed RDDs, and execute tasks.
• A client library used to send data into the system.

As shown in the figure, Spark Streaming reuses many
components of Spark, but we also modified and added
multiple components to enable streaming. We discuss
those changes in Section 4.2.

From an architectural point of view, the main differ-
ence between Spark Streaming and traditional streaming
systems is that Spark Streaming divides its computations
into short, stateless, deterministic tasks, each of which
may run on any node in the cluster, or even on multi-
ple nodes. Unlike the rigid topologies in traditional sys-
tems, where moving part of the computation to another
machine is a major undertaking, this approach makes it
straightforward to balance load across the cluster, react
to failures, or launch speculative copies of slow tasks.
It matches the approach used in batch systems, such as
MapReduce, for the same reasons. However, tasks in
Spark Streaming are far shorter, usually just 50–200 ms,
due to running on in-memory RDDs.

All state in Spark Streaming is stored in fault-tolerant
data structures (RDDs), instead of being part of a long-
running operator process as in previous systems. RDD
partitions can reside on any node, and can even be com-

429

puted on multiple nodes, because they are computed de-
terministically. The system tries to place both state and
tasks to maximize data locality, but this underlying flex-
ibility makes speculation and parallel recovery possible.

These benefits come naturally from running on a
batch platform (Spark), but we also had to make signif-
icant changes to support streaming. We discuss job exe-
cution in more detail before presenting these changes.

4.1 Application Execution

Spark Streaming applications start by defining one or
more input streams. The system can load streams either
by receiving records directly from clients, or by load-
ing data periodically from an external storage system,
such as HDFS, where it might be placed by a log collec-
tion system [3]. In the former case, we ensure that new
data is replicated across two worker nodes before send-
ing an acknowledgement to the client library, because
D-Streams require input data to be stored reliably to re-
compute results. If a worker fails, the client library sends
unacknowledged data to another worker.

All data is managed by a block store on each worker,
with a tracker on the master to let nodes find the loca-
tions of blocks. Because both our input blocks and the
RDD partitions we compute from them are immutable,
keeping track of the block store is straightforward—each
block is simply given a unique ID, and any node that has
that ID can serve it (e.g., if multiple nodes computed it).
The block store keeps new blocks in memory but drops
them in an LRU fashion, as described later.

To decide when to start processing a new interval, we
assume that the nodes have their clocks synchronized
via NTP, and have each node send the master a list of
block IDs it received in each interval when it ends. The
master then starts launching tasks to compute the output
RDDs for the interval, without requiring any further kind
of synchronization. Like other batch schedulers [21], it
simply starts each task whenever its parents are finished.

Spark Streaming relies on Spark’s existing batch
scheduler within each timestep [42], and performs many
of the optimizations in systems like DryadLINQ [41]:
• It pipelines operators that can be grouped into a sin-

gle task, such as a map followed by another map.
• It places tasks based on data locality.
• It controls the partitioning of RDDs to avoid shuf-

fling data across the network. For example, in a re-
duceByWindow operation, each interval’s tasks need
to “add” the new partial results from the current in-
terval (e.g., a click count for each page) and “sub-
tract” the results from several intervals ago. The
scheduler partitions the state RDDs for different in-
tervals in the same way, so that data for each key
(e.g., a page) is consistently on the same node across
timesteps. More details are given in [42].

4.2 Optimizations for Stream Processing

While Spark Streaming builds on Spark, we also had to
make sigificant optimizations and changes to this batch
engine to support streaming. These included:

Network communication: We rewrote Spark’s data
plane to use asynchronous I/O to let tasks with remote
inputs, such as reduce tasks, fetch them faster.

Timestep pipelining: Because the tasks inside each
timestep may not perfectly utilize the cluster (e.g., at the
end of the timestep, there might only be a few tasks left
running), we modified Spark’s scheduler to allow sub-
mitting tasks from the next timestep before the current
one has finished. For example, consider our first map
+ runningReduce job in Figure 3. Because the maps at
each step are independent, we can begin running the
maps for timestep 2 before timestep 1’s reduce finishes.

Task Scheduling: We made multiple optimizations to
Spark’s task scheduler, such as hand-tuning the size of
control messages, to be able to launch parallel jobs of
hundreds of tasks every few hundred milliseconds.

Storage layer: We rewrote Spark’s storage layer to sup-
port asynchronous checkpointing of RDDs and to in-
crease performance. Because RDDs are immutable, they
can be checkpointed over the network without blocking
computations on them and slowing jobs. The new stor-
age layer also uses zero-copy I/O for this when possible.

Lineage cutoff: Because lineage graphs between RDDs
in D-Streams can grow indefinitely, we modified the
scheduler to forget lineage after an RDD has been check-
pointed, so that its state does not grow arbitrarily. Sim-
ilarly, other data structures in Spark that grew without
bound were given a periodic cleanup process.

Master recovery: Because streaming applications need
to run 24/7, we added support for recovering the Spark
master’s state if it fails (Section 5.3).

Interestingly, the optimizations for stream processing
also improved Spark’s performance in batch benchmarks
by as much as 2×. This is a powerful benefit of using the
same engine for stream and batch processing.

4.3 Memory Management

In our current implementation of Spark Streaming, each
node’s block store manages RDD partitions in an LRU
fashion, dropping data to disk if there is not enough
memory. In addition, the user can set a maximum history
timeout, after which the system will simply forget old
blocks without doing disk I/O (this timeout must be big-
ger than the checkpoint interval). We found that in many
applications, the memory required by Spark Streaming
is not onerous, because the state within a computation is
typically much smaller than the input data (many appli-

430

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

R
e
c
o
v
e
ry

 t
im

e
(m

in
)

System Load (Before Failure)

Upstream Backup
Parallel Recovery N = 5

Parallel Recovery N = 10
Parallel Recovery N = 20

Figure 7: Recovery time for single-node upstream
backup vs. parallel recovery on N nodes, as a func-
tion of the load before a failure. We assume the time
since the last checkpoint is 1 min.

cations compute aggregate statistics), and any reliable
streaming system needs to replicate data received over
the network to multiple nodes, as we do. However, we
also plan to explore ways to prioritize memory use.

5 Fault and Straggler Recovery
The deterministic nature of D-Streams makes it possible
to use two powerful recovery techniques for worker state
that are hard to apply in traditional streaming systems:
parallel recovery and speculative execution. In addition,
it simplifies master recovery, as we shall also discuss.

5.1 Parallel Recovery

When a node fails, D-Streams allow the state RDD par-
titions that were on the node, and all tasks that it was
currently running, to be recomputed in parallel on other
nodes. The system periodically checkpoints some of the
state RDDs, by asynchronously replicating them to other
worker nodes.6 For example, in a program computing a
running count of page views, the system could choose to
checkpoint the counts every minute. Then, when a node
fails, the system detects all missing RDD partitions and
launches tasks to recompute them from the last check-
point. Many tasks can be launched at the same time to
compute different RDD partitions, allowing the whole
cluster to partake in recovery. As described in Section 3,
D-Streams exploit parallelism both across partitions of
the RDDs in each timestep and across timesteps for in-
dependent operations (e.g., an initial map), as the lineage
graph captures dependencies at a fine granularity.

To show the benefit of parallel recovery, Figure 7
compares it with single-node upstream backup using a
simple analytical model. The model assumes that the
system is recovering from a minute-old checkpoint.

In the upstream backup line, a single idle machine per-
forms all of the recovery and then starts processing new
records. It takes a long time to catch up at high loads
because new records for it continue to arrive while it is

6 Because RDDs are immutable, checkpointing does not block the
current timestep’s execution.

rebuilding old state. Indeed, suppose that the load before
failure was λ . Then during each minute of recovery, the
backup node can do 1 min of work, but receives λ min-
utes of new work. Thus, it fully recovers from the λ units
of work that the failed node did since the last checkpoint
at a time tup such that tup ·1 = λ + tup ·λ , which is

tup =
λ

1−λ
.

In the other lines, all of the machines partake in re-
covery, while also processing new records. Supposing
there where N machines in the cluster before the failure,
the remaining N−1 machines now each have to recover
λ/N work, but also receive new data at a rate of N

N−1 λ .
The time tpar at which they catch up with the arriving
stream satisfies tpar ·1 = λ

N + tpar · N
N−1 λ , which gives

tpar =
λ/N

1− N
N−1 λ

≈ λ

N(1−λ)
.

Thus, with more nodes, parallel recovery catches up with
the arriving stream much faster than upstream backup.

5.2 Straggler Mitigation

Besides failures, another concern in large clusters is
stragglers [11]. Fortunately, D-Streams also let us mit-
igate stragglers like batch systems do, by running spec-
ulative backup copies of slow tasks. Such speculation
would be difficult in a continuous operator system, as it
would require launching a new copy of a node, populat-
ing its state, and overtaking the slow copy. Indeed, repli-
cation algorithms for stream processing, such as Flux
and DPC [33, 5], focus on synchronizing two replicas.

In our implementation, we use a simple threshold to
detect stragglers: whenever a task runs more than 1.4×
longer than the median task in its job stage, we mark it as
slow. More refined algorithms could also be used, but we
show that this method still works well enough to recover
from stragglers within a second.

5.3 Master Recovery

A final requirement to run Spark Streaming 24/7 was
to tolerate failures of Spark’s master. We do this by (1)
writing the state of the computation reliably when start-
ing each timestep and (2) having workers connect to a
new master and report their RDD partitions to it when
the old master fails. A key aspect of D-Streams that sim-
plifies recovery is that there is no problem if a given
RDD is computed twice. Because operations are deter-
ministic, such an outcome is similar to recovering from
a failure.7 This means that it is fine to lose some running
tasks while the master reconnects, as they can be redone.

7 One subtle issue here is output operators; we have designed op-
erators like save to be idempotent, so that the operator outputs each
timestep’s worth of data to a known path, and does not overwrite pre-
vious data if that timestep was already computed.

431

Our current implementation stores D-Stream meta-
data in HDFS, writing (1) the graph of the user’s D-
Streams and Scala function objects representing user
code, (2) the time of the last checkpoint, and (3) the
IDs of RDDs since the checkpoint in an HDFS file that
is updated through an atomic rename on each timestep.
Upon recovery, the new master reads this file to find
where it left off, and reconnects to the workers to de-
termine which RDD partitions are in memory on each
one. It then resumes processing each timestep missed.
Although we have not yet optimized the recovery pro-
cess, it is reasonably fast, with a 100-node cluster re-
suming work in 12 seconds.

6 Evaluation
We evaluated Spark Streaming using both several bench-
mark applications and by porting two real applications
to it: a commercial video distribution monitoring system
and a machine learning algorithm for estimating traffic
conditions from automobile GPS data [18]. These latter
applications also leverage D-Streams’ unification with
batch processing, as we shall discuss.

6.1 Performance

We tested the performance of the system using three ap-
plications of increasing complexity: Grep, which finds
the number of input strings matching a pattern; Word-
Count, which performs a sliding window count over 30s;
and TopKCount, which finds the k most frequent words
over the past 30s. The latter two applications used the in-
cremental reduceByWindow operator. We first report the
raw scaling performance of Spark Streaming, and then
compare it against two widely used streaming systems,
S4 from Yahoo! and Storm from Twitter [28, 36]. We
ran these applications on “m1.xlarge” nodes on Amazon
EC2, each with 4 cores and 15 GB RAM.

Figure 8 reports the maximum throughput that Spark
Streaming can sustain while keeping the end-to-end la-
tency below a given target. By “end-to-end latency,” we
mean the time from when records are sent to the system
to when results incorporating them appear. Thus, the la-
tency includes the time to wait for a new input batch to
start. For a 1 second latency target, we use 500 ms input
intervals, while for a 2 s target, we use 1 s intervals. In
both cases, we used 100-byte input records.

We see that Spark Streaming scales nearly linearly to
100 nodes, and can process up to 6 GB/s (64M records/s)
at sub-second latency on 100 nodes for Grep, or 2.3 GB/s
(25M records/s) for the other, more CPU-intensive jobs.8

Allowing a larger latency improves throughput slightly,
but even the performance at sub-second latency is high.

8 Grep was network-bound due to the cost to replicate the input
data to multiple nodes—we could not get the EC2 network to send
more than 68 MB/s per node. WordCount and TopK were more CPU-
heavy, as they do more string processing (hashes & comparisons).

0
1
2
3
4
5
6
7

0 50 100

TopKCount

1 sec 2 sec

0
1
2
3
4
5
6
7

0 50 100
Nodes in Cluster

WordCount

1 sec 2 sec

0
1
2
3
4
5
6
7

0 50 100

C
lu

st
er

 T
hh

ro
ug

hp
ut

(G

B
/s

)

Grep

1 sec
2 sec

Figure 8: Maximum throughput attainable under a
given latency bound (1 s or 2 s) by Spark Streaming.

Comparison with Commercial Systems Spark
Streaming’s per-node throughput of 640,000 records/s
for Grep and 250,000 records/s for TopKCount on
4-core nodes is comparable to the speeds reported
for commercial single-node streaming systems. For
example, Oracle CEP reports a throughput of 1 million
records/s on a 16-core machine [30], StreamBase
reports 245,000 records/s on 8 cores [39], and Esper
reports 500,000 records/s on 4 cores [12]. While there
is no reason to expect D-Streams to be slower or faster
per-node, the key advantage is that Spark Streaming
scales nearly linearly to 100 nodes.

Comparison with S4 and Storm We also compared
Spark Streaming against two open source distributed
streaming systems, S4 and Storm. Both are continuous
operators systems that do not offer consistency across
nodes and have limited fault tolerance guarantees (S4
has none, while Storm guarantees at-least-once deliv-
ery of records). We implemented our three applications
in both systems, but found that S4 was limited in the
number of records/second it could process per node (at
most 7500 records/s for Grep and 1000 for WordCount),
which made it almost 10× slower than Spark and Storm.
Because Storm was faster, we also tested it on a 30-node
cluster, using both 100-byte and 1000-byte records.

We compare Storm with Spark Streaming in Figure 9,
reporting the throughput Spark attains at sub-second la-
tency. We see that Storm is still adversely affected by
smaller record sizes, capping out at 115K records/s/n-
ode for Grep for 100-byte records, compared to 670K
for Spark. This is despite taking several precautions in
our Storm implementation to improve performance, in-
cluding sending “batched” updates from Grep every 100
input records and having the “reduce” nodes in Word-
Count and TopK only send out new counts every second,
instead of each time a count changes. Storm was faster
with 1000-byte records, but still 2× slower than Spark.

6.2 Fault and Straggler Recovery

We evaluated fault recovery under various conditions us-
ing the WordCount and Grep applications. We used 1-
second batches with input data residing in HDFS, and
set the data rate to 20 MB/s/node for WordCount and

432

0
5

10
15
20
25
30

100 1000
Record Size (bytes)

TopKCount

0
5

10
15
20
25
30

100 1000
Record Size (bytes)

WordCount

Spark Streaming Storm

0
10
20
30
40
50
60
70

100 1000

Th
ro

ug
hp

ut
 (M

B
/s

/n
od

e)

Record Size (bytes)

Grep

Figure 9: Throughput vs Storm on 30 nodes.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Befo
re

fai
lur

e

On f
ail

ure

Nex
t 3

s

Sec
on

d 3
s

Thir
d 3

s

Fou
rth

 3s

Fifth
 3s

Sixt
h 3

s

Grep, 2 failures

Grep, 1 failure

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Befo
re

fai
lur

e

On f
ail

ure

Nex
t 3

s

Sec
on

d 3
s

Thir
d 3

s

Fou
rth

 3s

Fifth
 3s

Sixt
h 3

s

Pr
oc

es
si

ng
 T

im
e

(s
)

WC, 2 failures

WC, 1 failure

Figure 10: Interval processing times for WordCount
(WC) and Grep under failures. We show the aver-
age time to process each 1s batch of data before a
failure, during the interval of the failure, and during
3-second periods after. Results are over 5 runs.

80 MB/s/node for Grep, which led to a roughly equal
per-interval processing time of 0.58s for WordCount and
0.54s for Grep. Because the WordCount job performs an
incremental reduceByKey, its lineage graph grows indef-
initely (since each interval subtracts data from 30 sec-
onds in the past), so we gave it a checkpoint interval of
10 seconds. We ran the tests on 20 four-core nodes, using
150 map tasks and 10 reduce tasks per job.

We first report recovery times under these these base
conditions, in Figure 10. The plot shows the average pro-
cessing time of 1-second data intervals before the failure,
during the interval of failure, and during 3-second peri-
ods thereafter, for either 1 or 2 concurrent failures. (The
processing for these later periods is delayed while recov-
ering data for the interval of failure, so we show how the
system restabilizes.) We see that recovery is fast, with
delays of at most 1 second even for two failures and
a 10s checkpoint interval. WordCount’s recovery takes
longer because it has to recompute data going far back,
whereas Grep just loses four tasks on each failed node.

Varying the Checkpoint Interval Figure 11 shows
the effect of changing WordCount’s checkpoint interval.
Even when checkpointing every 30s, results are delayed
at most 3.5s. With 2s checkpoints, the system recovers
in just 0.15s, while still paying less than full replication.

Varying the Number of Nodes To see the effect of
parallelism, we also tried the WordCount application on

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Before
failure

On
failure

Next 3s Second
3s

Third
3s

Fourth
3s

Fifth 3s Sixth
3s

Pr
oc

es
si

ng
 T

im
e

(s
) 30s checkpoints

10s checkpoints
2s checkpoints

Figure 11: Effect of checkpoint time in WordCount.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Before
failure

On
failure

Next 3s Second
3s

Third
3s

Fourth
3s

Fifth 3s Sixth
3s

Pr
oc

es
si

ng
 T

im
e

(s
) 30s ckpts, 20 nodes

30s ckpts, 40 nodes
10s ckpts, 20 nodes
10s ckpts, 40 nodes

Figure 12: Recovery of WordCount on 20 & 40 nodes.

40 nodes. As Figure 12 shows, doubling the nodes re-
duces the recovery time in half. While it may seem sur-
prising that there is so much parallelism given the linear
dependency chain of the sliding reduceByWindow oper-
ator in WordCount, the parallelism comes because the
local aggregations on each timestep can be done in par-
allel (see Figure 4), and these are the bulk of the work.

Straggler Mitigation Finally, we tried slowing down
one of the nodes instead of killing it, by launching a
60-thread process that overloaded the CPU. Figure 13
shows the per-interval processing times without the
straggler, with the straggler but with speculative exe-
cution (backup tasks) disabled, and with the straggler
and speculation enabled. Speculation improves the re-
sponse time significantly. Note that our current imple-
mentation does not attempt to remember straggler nodes
across time, so these improvements occur despite repeat-
edly launching new tasks on the slow node. This shows
that even unexpected stragglers can be handled quickly.
A full implementation would blacklist slow nodes.

6.3 Real Applications

We evaluated the expressiveness of D-Streams by port-
ing two real applications. Both applications are signif-
icantly more complex than the test programs shown so
far, and both took advantage of D-Streams to perform
batch or interactive processing in addition to streaming.

6.3.1 Video Distribution Monitoring

Conviva provides a commercial management platform
for video distribution over the Internet. One feature of
this platform is the ability to track the performance
across different geographic regions, CDNs, client de-
vices, and ISPs, which allows the broadcasters to quickly

433

0.55 0.54

3.02 2.40

1.00
0.64

0.0

1.0

2.0

3.0

4.0

WordCount Grep

Pr
oc

es
si

ng
 T

im
e

(s
)

No straggler

Straggler, no
speculation

Straggler, with
speculation

Figure 13: Processing time of intervals in Grep and
WordCount in normal operation, as well as in the
presence of a straggler, with and without speculation.

0

1

2

3

4

0 32 64

A
ct

iv
e

se
ss

io
ns

(m

ill
io

ns
)

Nodes in Cluster

(a) Scalability

0
50

100
150
200
250

Query 1 Query 2 Query 3 R
es

po
ns

e
tim

e
(m

s)

(b) Ad-hoc queries

Figure 14: Results for the video application. (a) shows
the number of client sessions supported vs. clus-
ter size. (b) shows the performance of three ad-hoc
queries from the Spark shell, which count (1) all ac-
tive sessions, (2) sessions for a specific customer, and
(3) sessions that have experienced a failure.

idenify and respond to delivery problems. The system re-
ceives events from video players and uses them to com-
pute more than fifty metrics, including complex metrics
such as unique viewers and session-level metrics such as
buffering ratio, over different grouping categories.

The current application is implemented in two sys-
tems: a custom-built distributed streaming system for
live data, and a Hadoop/Hive implementation for histor-
ical data and ad-hoc queries. Having both live and his-
torical data is crucial because customers often want to
go back in time to debug an issue, but implementing the
application on these two separate systems creates signif-
icant challenges. First, the two implementations have to
be kept in sync to ensure that they compute metrics in the
same way. Second, there is a lag of several minutes min-
utes before data makes it through a sequence of Hadoop
import jobs into a form ready for ad-hoc queries.

We ported the application to D-Streams by wrapping
the map and reduce implementations in the Hadoop ver-
sion. Using a 500-line Spark Streaming program and an
additional 700-line wrapper that executed Hadoop jobs
within Spark, we were able to compute all the metrics
(a 2-stage MapReduce job) in batches as small as 2 sec-
onds. Our code uses the track operator described in Sec-
tion 3.3 to build a session state object for each client ID
and update it as events arrive, followed by a sliding re-
duceByKey to aggregate the metrics over sessions.

0

500

1000

1500

2000

0 25 50 75 100 G
PS

 o
bs

er
va

tio
ns

pe

r s
ec

on
d

Nodes in Cluster

Figure 15: Scalability of the Mobile Millennium job.

We measured the scaling performance of the applica-
tion and found that on 64 quad-core EC2 nodes, it could
process enough events to support 3.8 million concur-
rent viewers, which exceeds the peak load experienced
at Conviva so far. Figure 14(a) shows the scaling.

In addition, we used D-Streams to add a new feature
not present in the original application: ad-hoc queries on
the live stream state. As shown in Figure 14(b), Spark
Streaming can run ad-hoc queries from a Scala shell in
less than a second on the RDDs representing session
state. Our cluster could easily keep ten minutes of data
in RAM, closing the gap between historical and live pro-
cessing, and allowing a single codebase to do both.

6.3.2 Crowdsourced Traffic Estimation

We applied the D-Streams to the Mobile Millennium
traffic information system [18], a machine learning
based project to estimate automobile traffic conditions in
cities. While measuring traffic for highways is straight-
forward due to dedicated sensors, arterial roads (the
roads in a city) lack such infrastructure. Mobile Millen-
nium attacks this problem by using crowdsourced GPS
data from fleets of GPS-equipped cars (e.g., taxi cabs)
and cellphones running a mobile application.

Traffic estimation from GPS data is challenging, be-
cause the data is noisy (due to GPS inaccuracy near
tall buildings) and sparse (the system only receives one
measurement from each car per minute). Mobile Millen-
nium uses a highly compute-intensive expectation max-
imization (EM) algorithm to infer the conditions, using
Markov Chain Monte Carlo and a traffic model to esti-
mate a travel time distribution for each road link. The
previous implementation [18] was an iterative batch job
in Spark that ran over 30-minute windows of data.

We ported this application to Spark Streaming using
an online version of the EM algorithm that merges in
new data every 5 seconds. The implementation was 260
lines of Spark Streaming code, and wrapped the existing
map and reduce functions in the offline program. In ad-
dition, we found that only using the real-time data could
cause overfitting, because the data received in five sec-
onds is so sparse. We took advantage of D-Streams to
also combine this data with historical data from the same
time during the past ten days to resolve this problem.

Figure 15 shows the performance of the algorithm on

434

up to 80 quad-core EC2 nodes. The algorithm scales
nearly perfectly because it is CPU-bound, and provides
answers more than 10× faster than the batch version.9

7 Discussion
We have presented discretized streams (D-Streams), a
new stream processing model for clusters. By breaking
computations into short, deterministic tasks and stor-
ing state in lineage-based data structures (RDDs), D-
Streams can use powerful recovery mechanisms, similar
to those in batch systems, to handle faults and stragglers.

Perhaps the main limitation of D-Streams is that they
have a fixed minimum latency due to batching data.
However, we have shown that total delay can still be
as low as 1–2 seconds, which is enough for many real-
world use cases. Interestingly, even some continuous op-
erator systems, such as Borealis and TimeStream [5, 32],
add delays to ensure determinism: Borealis’s SUnion
operator and TimeStream’s HashPartition wait to batch
data at “heartbeat” boundaries so that operators with
multiple parents see input in a deterministic order. Thus,
D-Streams’ latency is in a similar range to these systems,
while offering significantly more efficient recovery.

Beyond their recovery benefits, we believe that the
most important aspect of D-Streams is that they show
that streaming, batch and interactive computations can
be unified in the same platform. As “big” data becomes
the only size of data at which certain applications can
operate (e.g., spam detection on large websites), organi-
zations will need the tools to write both lower-latency
applications and more interactive ones that use this data,
not just the periodic batch jobs used so far. D-Streams
integrate these modes of computation at a deep level, in
that they follow not only a similar API but also the same
data structures and fault tolerance model as batch jobs.
This enables rich features like combining streams with
offline data or running ad-hoc queries on stream state.

Finally, while we presented a basic implementation of
D-Streams, there are several areas for future work:

Expressiveness: In general, as the D-Stream abstraction
is primarily an execution strategy, it should be possible
to run most streaming algorithms within them, by sim-
ply “batching” the execution of the algorithm into steps
and emitting state across them. It would be interesting
to port languages like streaming SQL [4] or Complex
Event Processing models [13] over them.

Setting the batch interval: Given any application, set-
ting an appropriate batch interval is very important as it
directly determines the trade-off between the end-to-end
latency and the throughput of the streaming workload.

9 Note that the raw rate of records/second for this algorithm is lower
than in our other programs because it performs far more work for each
record, drawing 300 Markov Chain Monte Carlo samples per record.

Currently, a developer has to explore this trade-off and
determine the batch interval manually. It may be possi-
ble for the system to tune it automatically.

Memory usage: Our model of stateful stream process-
ing generates new a RDD to store each operator’s state
after each batch of data is processed. In our current im-
plementation, this will incur a higher memory usage than
continuous operators with mutable state. Storing differ-
ent versions of the state RDDs is essential for the system
perform lineage-based fault recovery. However, it may
be possible to reduce the memory usage by storing only
the deltas between these state RDDs.

Approximate results: In addition to recomputing lost
work, another way to handle a failure is to return ap-
proximate partial results. D-Streams provide the oppor-
tunity to compute partial results by simply launching a
task before its parents are all done, and offer lineage data
to know which parents were missing.

8 Related Work
Streaming Databases Streaming databases such as
Aurora, Telegraph, Borealis, and STREAM [7, 8, 5, 4]
were the earliest academic systems to study streaming,
and pioneered concepts such as windows and incremen-
tal operators. However, distributed streaming databases,
such as Borealis, used replication or upstream backup
for recovery [19]. We make two contributions over them.

First, D-Streams provide a more efficient recovery
mechanism, parallel recovery, that runs faster than up-
stream backup without the cost of replication. Parallel
recovery is feasible because D-Streams discretize com-
putations into stateless, deterministic tasks. In contrast,
streaming databases use a stateful continous operator
model, and require complex protocols for both replica-
tion (e.g., Borealis’s DPC [5] or Flux [33]) and upstream
backup [19]. The only parallel recovery protocol we are
aware of, by Hwang et al [20], only tolerates one node
failure, and cannot handle stragglers.

Second, D-Streams also tolerate stragglers, using
speculative execution [11]. Straggler mitigation is dif-
ficult in continuous operator models because each node
has mutable state that cannot be rebuilt on another node
without a costly serial replay process.

Large-scale Streaming While several recent systems
enable streaming computation with high-level APIs sim-
ilar to D-Streams, they also lack the fault and straggler
recovery benefits of the discretized stream model.

TimeStream [32] runs the continuous, stateful opera-
tors in Microsoft StreamInsight [2] on a cluster. It uses
a recovery mechanism similar to upstream backup that
tracks which upstream data each operator depends on
and replays it serially through a new copy of the opera-
tor. Recovery thus happens on a single node for each op-

435

erator, and takes time proportional to that operator’s pro-
cessing window (e.g., 30 seconds for a 30-second slid-
ing window) [32]. In contrast, D-Streams use stateless
transformations and explicitly put state in data structures
(RDDs) that can (1) be checkpointed asynchronously to
bound recovery time and (2) be rebuilt in parallel, ex-
ploiting parallelism across data partitions and timesteps
to recover in sub-second time. D-Streams can also han-
dle stragglers, while TimeStream does not.

Naiad [26, 27] automatically incrementalizes data
flow computations written in LINQ and is unique in
also being able to incrementalize iterative computations.
However, it uses traditional synchronous checkpointing
for fault tolerance, and cannot respond to stragglers.

MillWheel [1] runs stateful computations using an
event-driven API but handles reliability by writing all
state to a replicated storage system like BigTable.

MapReduce Online [10] is a streaming Hadoop run-
time that pushes records between maps and reduces and
uses upstream backup for reliability. However, it cannot
recover reduce tasks with long-lived state (the user must
manually checkpoint such state into an external system),
and does not handle stragglers. Meteor Shower [40] also
uses upstream backup, and can take tens of seconds to
recover state. iMR [24] offers a MapReduce API for log
processing, but can lose data on failure. Percolator [31]
runs incremental computations using triggers, but does
not offer high-level operators like map and join or con-
sistency guarantees across nodes.

Finally, to our knowledge, none of these systems sup-
port combining streaming with batch and interactive
queries, like D-Streams do. Some streaming databases
have supported combining tables and streams [14].

Message Queueing Systems Systems like Storm, S4,
and Flume [36, 28, 3] offer a message passing model
where users write stateful code to process records, but
they generally have limited fault tolerance guarantees.
For example, Storm ensures “at-least-once” delivery of
messages using upstream backup at the source, but re-
quires the user to manually handle the recovery of state,
e.g., by keeping all state in a replicated database [37].
Trident [25] provides a functional API similar to LINQ
on top of Storm that manages state automatically. How-
ever, Trident does this by storing all state in a replicated
database to provide fault tolerance, which is expensive.

Incremental Processing CBP [23] and Comet [17]
provide “bulk incremental processing” on traditional
MapReduce platforms by running MapReduce jobs on
new data every few minutes. While these systems ben-
efit from the scalability and fault/straggler tolerance of
MapReduce within each timestep, they store all state in
a replicated, on-disk filesystem across timesteps, incur-
ring high overheads and latencies of tens of seconds to

minutes. In contrast, D-Streams can keep state unrepli-
cated in memory using RDDs and can recover it across
timesteps using lineage, yielding order-of-magnitude
lower latencies. Incoop [6] modifies Hadoop to support
incremental recomputation of job outputs when an input
file changes, and also includes a mechanism for strag-
gler recovery, but it still uses replicated on-disk storage
between timesteps, and does not offer an explicit stream-
ing interface with concepts like windows.

Parallel Recovery Our parallel recovery mechanism
is conceptually similar to techniques in MapReduce,
GFS, and RAMCloud [11, 15, 29], which all leverage
partitioning of recovery work on failure. Our contribu-
tion is to show how to structure a streaming computation
to allow the use of this mechanism across data partitions
and time, and to show that it can be implemented at a
small enough timescale for stream processing.

9 Conclusion
We have proposed D-Streams, a new model for dis-
tributed streaming computation that enables fast (often
sub-second) recovery from both faults and stragglers
without the overhead of replication. D-Streams forgo
conventional streaming wisdom by batching data into
small timesteps. This enables powerful recovery mecha-
nisms that exploit parallelism across data partitions and
time. We showed that D-Streams can support a wide
range of operators and can attain high per-node through-
put, linear scaling to 100 nodes, sub-second latency, and
sub-second fault recovery. Finally, because D-Streams
use the same execution model as batch platforms, they
compose seamlessly with batch and interactive queries.
We used this capability in Spark Streaming to let users
combine these models in powerful ways, and showed
how it can add rich features to two real applications.

Spark Streaming is open source, and is now included
in Spark at http://spark-project.org.

10 Acknowledgements
We thank the SOSP reviewers and our shepherd for
their detailed feedback. This research was supported in
part by NSF CISE Expeditions award CCF-1139158 and
DARPA XData Award FA8750-12-2-0331, a Google
PhD Fellowship, and gifts from Amazon Web Services,
Google, SAP, Cisco, Clearstory Data, Cloudera, Erics-
son, Facebook, FitWave, General Electric, Hortonworks,
Huawei, Intel, Microsoft, NetApp, Oracle, Samsung,
Splunk, VMware, WANdisco and Yahoo!.

References
[1] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak,

J. Haberman, R. Lax, S. McVeety, D. Mills,
P. Nordstrom, and S. Whittle. MillWheel: Fault-

436

http://spark-project.org

tolerant stream processing at internet scale. In
VLDB, 2013.

[2] M. H. Ali, C. Gerea, B. S. Raman, B. Sezgin,
T. Tarnavski, T. Verona, P. Wang, P. Zabback,
A. Ananthanarayan, A. Kirilov, M. Lu, A. Raiz-
man, R. Krishnan, R. Schindlauer, T. Grabs,
S. Bjeletich, B. Chandramouli, J. Goldstein,
S. Bhat, Y. Li, V. Di Nicola, X. Wang, D. Maier,
S. Grell, O. Nano, and I. Santos. Microsoft CEP
server and online behavioral targeting. Proc. VLDB
Endow., 2(2):1558, Aug. 2009.

[3] Apache Flume. http://incubator.apache.org/flume/.
[4] A. Arasu, B. Babcock, S. Babu, M. Datar,

K. Ito, I. Nishizawa, J. Rosenstein, and J. Widom.
STREAM: The Stanford stream data management
system. SIGMOD 2003.

[5] M. Balazinska, H. Balakrishnan, S. R. Madden,
and M. Stonebraker. Fault-tolerance in the Borealis
distributed stream processing system. ACM Trans.
Database Syst., 2008.

[6] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar,
and R. Pasquin. Incoop: MapReduce for incremen-
tal computations. In SOCC ’11, 2011.

[7] D. Carney, U. Çetintemel, M. Cherniack, C. Con-
vey, S. Lee, G. Seidman, M. Stonebraker, N. Tat-
bul, and S. Zdonik. Monitoring streams: a new
class of data management applications. In VLDB
’02, 2002.

[8] S. Chandrasekaran, O. Cooper, A. Deshpande,
M. J. Franklin, J. M. Hellerstein, W. Hong, S. Kr-
ishnamurthy, S. Madden, V. Raman, F. Reiss, and
M. Shah. TelegraphCQ: Continuous dataflow pro-
cessing for an uncertain world. In CIDR, 2003.

[9] M. Cherniack, H. Balakrishnan, M. Balazinska,
D. Carney, U. Cetintemel, Y. Xing, and S. B.
Zdonik. Scalable distributed stream processing. In
CIDR, 2003.

[10] T. Condie, N. Conway, P. Alvaro, and J. M. Heller-
stein. MapReduce online. NSDI, 2010.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In OSDI, 2004.

[12] EsperTech. Performance-related information.
http://esper.codehaus.org/esper/performance/
performance.html, Retrieved March 2013.

[13] EsperTech. Tutorial. http://esper.codehaus.org/
tutorials/tutorial/tutorial.html, Retrieved March
2013.

[14] M. Franklin, S. Krishnamurthy, N. Conway, A. Li,
A. Russakovsky, and N. Thombre. Continuous an-
alytics: Rethinking query processing in a network-
effect world. CIDR, 2009.

[15] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google File System. In Proceedings of SOSP ’03,
2003.

[16] J. Hammerbacher. Who is using flume in produc-
tion? http://www.quora.com/Flume/Who-is-using-
Flume-in-production/answer/Jeff-Hammerbacher.

[17] B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin,
and L. Zhou. Comet: batched stream processing
for data intensive distributed computing. In SoCC,
2010.

[18] T. Hunter, T. Moldovan, M. Zaharia, S. Merzgui,
J. Ma, M. J. Franklin, P. Abbeel, and A. M.
Bayen. Scaling the Mobile Millennium system in
the cloud. In SOCC ’11, 2011.

[19] J.-H. Hwang, M. Balazinska, A. Rasin,
U. Cetintemel, M. Stonebraker, and S. Zdonik.
High-availability algorithms for distributed stream
processing. In ICDE, 2005.

[20] J. hyon Hwang, Y. Xing, and S. Zdonik. A coop-
erative, self-configuring high-availability solution
for stream processing. In ICDE, 2007.

[21] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fet-
terly. Dryad: distributed data-parallel programs
from sequential building blocks. In EuroSys 07,
2007.

[22] S. Krishnamurthy, M. Franklin, J. Davis, D. Farina,
P. Golovko, A. Li, and N. Thombre. Continuous
analytics over discontinuous streams. In SIGMOD,
2010.

[23] D. Logothetis, C. Olston, B. Reed, K. C. Webb, and
K. Yocum. Stateful bulk processing for incremen-
tal analytics. SoCC, 2010.

[24] D. Logothetis, C. Trezzo, K. C. Webb, and
K. Yocum. In-situ MapReduce for log processing.
In USENIX ATC, 2011.

[25] N. Marz. Trident: a high-level ab-
straction for realtime computation.
http://engineering.twitter.com/2012/08/trident-
high-level-abstraction-for.html.

[26] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard.
Differential dataflow. In Conference on Innovative
Data Systems Research (CIDR), 2013.

[27] D. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. Naiad: A timely
dataflow system. In SOSP ’13, 2013.

[28] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari.
S4: Distributed stream computing platform. In Intl.
Workshop on Knowledge Discovery Using Cloud
and Distributed Computing Platforms (KDCloud),
2010.

[29] D. Ongaro, S. M. Rumble, R. Stutsman, J. K.
Ousterhout, and M. Rosenblum. Fast crash recov-
ery in RAMCloud. In SOSP, 2011.

[30] Oracle. Oracle complex event processing per-
formance. http://www.oracle.com/technetwork/
middleware/complex-event-processing/overview/
cepperformancewhitepaper-128060.pdf, 2008.

437

http://esper.codehaus.org/esper/performance/performance.html
http://esper.codehaus.org/esper/performance/performance.html
http://esper.codehaus.org/tutorials/tutorial/tutorial.html
http://esper.codehaus.org/tutorials/tutorial/tutorial.html
http://www.oracle.com/technetwork/middleware/complex-event-processing/overview/cepperformancewhitepaper-128060.pdf
http://www.oracle.com/technetwork/middleware/complex-event-processing/overview/cepperformancewhitepaper-128060.pdf
http://www.oracle.com/technetwork/middleware/complex-event-processing/overview/cepperformancewhitepaper-128060.pdf

[31] D. Peng and F. Dabek. Large-scale incremental
processing using distributed transactions and noti-
fications. In OSDI 2010.

[32] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang,
L. Zhou, Y. Yu, and Z. Zhang. Timestream: Reli-
able stream computation in the cloud. In EuroSys
’13, 2013.

[33] M. Shah, J. Hellerstein, and E. Brewer. Highly
available, fault-tolerant, parallel dataflows. SIG-
MOD, 2004.

[34] Z. Shao. Real-time analytics at Face-
book. XLDB 2011, http://www-conf.slac.
stanford.edu/xldb2011/talks/xldb2011 tue 0940
facebookrealtimeanalytics.pdf.

[35] U. Srivastava and J. Widom. Flexible time man-
agement in data stream systems. In PODS, 2004.

[36] Storm. https://github.com/nathanmarz/storm/wiki.
[37] Guaranteed message processing (Storm wiki).

https://github.com/nathanmarz/storm/wiki/
Guaranteeing-message-processing.

[38] K. Thomas, C. Grier, J. Ma, V. Paxson, and
D. Song. Design and evaluation of a real-time URL
spam filtering service. In IEEE Symposium on Se-
curity and Privacy, 2011.

[39] R. Tibbetts. Streambase performance &
scalability characterization. http://www.
streambase.com/wp-content/uploads/downloads/
StreamBase White Paper Performance and
Scalability Characterization.pdf, 2009.

[40] H. Wang, L.-S. Peh, E. Koukoumidis, S. Tao, and
M. C. Chan. Meteor shower: A reliable stream
processing system for commodity data centers. In
IPDPS ’12, 2012.

[41] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlings-
son, P. K. Gunda, and J. Currey. DryadLINQ:
A system for general-purpose distributed data-
parallel computing using a high-level language. In
OSDI ’08, 2008.

[42] M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauley, M. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster comput-
ing. In NSDI, 2012.

438

http://www-conf.slac.stanford.edu/xldb2011/talks/ xldb2011_tue_0940_facebookrealtimeanalytics.pdf
http://www-conf.slac.stanford.edu/xldb2011/talks/ xldb2011_tue_0940_facebookrealtimeanalytics.pdf
http://www-conf.slac.stanford.edu/xldb2011/talks/ xldb2011_tue_0940_facebookrealtimeanalytics.pdf
https://github.com/nathanmarz/storm/wiki
https://github.com/nathanmarz/storm/wiki/Guaranteeing-message-processing
https://github.com/nathanmarz/storm/wiki/Guaranteeing-message-processing
http://www.streambase.com/wp-content/uploads/downloads/StreamBase_White_Paper_ Performance_and_Scalability_Characterization.pdf
http://www.streambase.com/wp-content/uploads/downloads/StreamBase_White_Paper_ Performance_and_Scalability_Characterization.pdf
http://www.streambase.com/wp-content/uploads/downloads/StreamBase_White_Paper_ Performance_and_Scalability_Characterization.pdf
http://www.streambase.com/wp-content/uploads/downloads/StreamBase_White_Paper_ Performance_and_Scalability_Characterization.pdf

	Introduction
	Goals and Background
	Goals
	Previous Processing Models

	Discretized Streams (D-Streams)
	Computation Model
	Timing Considerations
	D-Stream API
	Consistency Semantics
	Unification with Batch & Interactive Processing
	Summary

	System Architecture
	Application Execution
	Optimizations for Stream Processing
	Memory Management

	Fault and Straggler Recovery
	Parallel Recovery
	Straggler Mitigation
	Master Recovery

	Evaluation
	Performance
	Fault and Straggler Recovery
	Real Applications
	Video Distribution Monitoring
	Crowdsourced Traffic Estimation

	Discussion
	Related Work
	Conclusion
	Acknowledgements

