
jAnUARY 2012  |   VOL.  55  |   nO.  1   |   CoMMuniCations of the aCM     117

Doi:10.1145/2063176.2063204

Networking Named Content
By Van Jacobson, Diana K. Smetters, James D. Thornton, Michael Plass, Nick Briggs, and Rebecca Braynard

Current network use is dominated by content distribu-
tion and retrieval yet current networking protocols are 
designed for conversations between hosts. Accessing 
content and services requires mapping from the what 
that users care about to the network’s where. We present 
Content-Centric Networking (CCN) which uses content 
chunks as a  primitive—decoupling location from identity, 
security and access, and retrieving chunks of content by 
name. Using new approaches to routing named content, 
derived from IP, CCN simultaneously achieves scalability, 
security, and performance. We describe our implementa-
tion of the architecture’s basic features and demonstrate 
its performance and resilience with secure file downloads 
and VoIP calls.

1. intRoDuCtion
The engineering principles and architecture of today’s 
Internet were created in the 1960s and 1970s. The prob-
lem networking aimed to solve was resource sharing—
remotely using scarce and expensive devices like card 
readers or high-speed tape drives or even supercomput-
ers. The communication model that resulted is a conver-
sation between exactly two machines, one wishing to use 
the resource and one providing access to it. Thus IP pack-
ets contain two identifiers (addresses), one for the source 
and one for the destination host, and almost all the traf-
fic on the Internet consists of TCP conversations between 
pairs of hosts.

In the 50 years since the creation of packet network-
ing, computers and their attachments have become cheap, 
ubiquitous commodities. The connectivity offered by the 
Internet and low storage costs enable access to a staggering 
amount of new content—500EB were created in 2008 alone.7 
People value the Internet for what content it contains, but 
communication is still in terms of where.

We see a number of issues that affect users arising from 
this incompatibility between models.

•	 Availability: Fast, reliable content access requires awk-
ward, pre-planned, application-specific mechanisms 
like CDNs and P2P networks, and/or imposes excessive 
bandwidth costs.

•	 Security: Trust in content is easily misplaced, relying on 
untrustworthy location and connection information.

•	 Location-dependence: Mapping content to host locations 
complicates configuration as well as implementation of 
network services.

The direct, unified way to solve these problems is to 
replace where with what. Host-to-host conversations are a 
networking abstraction chosen to fit the problems of the 
1960s. We argue that named data is a better abstraction 
for today’s communication problems than named hosts. 

We introduce Content-Centric Networking (CCN), a commu-
nications architecture built on named data. CCN has no 
notion of host at its  lowest level—a packet “address” names 
content, not location. However, we preserve the design 
decisions that make TCP/IP simple, robust, and scalable.

Figure 1 compares the IP and CCN protocol stacks. 
Most layers of the stack reflect bilateral agreements; e.g., a 
layer 2 framing protocol is an agreement between the two 
ends of a physical link and a layer 4 transport protocol is 
an agreement between some producer and consumer. The 
only layer that requires universal agreement is layer 3, the 
network layer. Much of IP’s success is due to the simplicity 
of its network layer (the IP packet—the thin “waist” of the 
stack) and the weak demands it makes on layer 2, namely: 
stateless, unreliable, unordered, best-effort delivery. CCN’s 
network layer (Section 3) is similar to IP’s and makes fewer 
demands on layer 2, giving it many of the same attractive 
properties. Additionally, CCN can be layered over anything, 
including IP itself.

CCN departs from IP in a number of critical ways. Two 
of these, strategy and security, are shown as new layers in 
its protocol stack. CCN can take maximum advantage of 
multiple simultaneous connectivities (e.g., ethernet and 
3G and bluetooth and 802.11) due to its simpler relation-
ship with layer 2. The strategy layer (Section 3.3) makes 
the fine-grained, dynamic optimization choices needed 
to best exploit multiple connectivities under changing 
conditions. CCN secures content itself (Section 4), rather 
than the connections over which it travels, thereby avoid-
ing many of the host-based vulnerabilities that plague IP 
networking.

A previous version of this paper was published in 
Proceedings of ACM's CoNEXT Conference 2009 (Rome, 
Italy, Dec. 1–4, 2009), ACM, NY.
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figure 1. CCn moves the universal component of the network stack 
from iP packets to named content chunks.
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2. CCn noDe MoDeL
CCN communication is driven by the consumers of data. 
There are two CCN packet types, Interest and Data 
(Figure 2). A consumer asks for content by broadcasting its 
Interest over all available interfaces. Any node hearing the 
Interest and having data that satisfies it can respond with 
a Data packet (content chunk). Data is transmitted only in 
response to an Interest and consumes that Interest.a 
Since both Interest and Data identify the content chunks 
being exchanged by name, multiple nodes interested in 
the same content can share transmissions over a broadcast 
medium using standard  multicast suppression techniques.3

Data “satisfies” an Interest if the ContentName 
(CCN name) in the Interest packet is a prefix of the 
ContentName in the Data packet. CCN names are 
opaque, binary objects composed of a (explicitly identi-
fied) sequence of components (see Figure 3). Names are 
typically hierarchical, so this prefix  match is equivalent to 
saying that the Data packet is in the name subtree speci-
fied by the Interest packet (see Section 3.2). IP uses 
this convention to resolve the 〈net, subnet, host〉 hierarchi-
cal structure of IP addresses and experience has shown 
it allows for efficient, distributed hierarchical aggrega-
tion of routing and forwarding state while allowing for 
fast lookups.b One implication of this matching is that 

Interests may be received for content that does not yet 
exist—allowing a publisher to generate that content on 
the fly in response to a particular query. Such active names 
allow CCN to transparently support a mix of statically 
cached and dynamically generated content, as is common 
in today’s Web. Name prefixes may also be context-depen-
dent such as /ThisRoom/projector to exchange information 
with the display projector in the current room or /Local/
Friends to exchange information with any friends in the 
local (e.g., broadcast) environment.c

The basic operation of a CCN node is very similar to an IP 
node: A packet arrives on a face, a longest-match look-up is 
done on its name, and then an action is performed based on 
the result of that lookup.d The core CCN packet forwarding 
engine has three main data structures: the FIB (Forwarding 
Information Base), ContentStore (buffer memory), and 
PIT (Pending Interest Table).

The FIB is used to forward Interest packets toward 
potential source(s) of matching Data. It is almost iden-
tical to an IP FIB except it allows for a list of outgoing 
faces rather than a single one. This reflects the fact that 
CCN is not restricted to forwarding on a spanning tree. It 
allows multiple sources for data and can query them all 
in parallel.

The ContentStore is the same as the buffer memory 
of an IP router but has a different replacement policy. 
Since each IP packet belongs to a single point-to-point 
conversation, it has no further value after being for-
warded downstream. Thus IP “forgets” about a packet and 
recycles its buffer immediately after forwarding (MRU 
replacement). CCN packets are idempotent, self-identify-
ing, and self-authenticating, so each packet is potentially 
useful to many consumers (e.g., many hosts reading the 
same newspaper or watching the same YouTube video). 
To maximize the probability of sharing, which minimizes 
upstream bandwidth demand and downstream latency, 
CCN remembers arriving Data packets as long as possible 
(LRU or LFU replacement).

The PIT tracks Interests forwarded upstream toward 
content source(s), so returned Data can be sent down-
stream to its requester(s). In CCN, only Interest packets 
are routed, and as they propagate upstream toward poten-
tial Data sources, they leave a trail of “bread crumbs” for 
a matching Data packet to follow back to the original 
requester(s). Each PIT entry is a “bread crumb.” PIT entries 
are erased immediately after being used to forward a match-
ing Data packet (Data “consumes” an Interest). PIT 
entries for Interests that never find a matching Data are 
eventually timed out (a “soft state” model—consumers are 
responsible for re-expressing an Interest if they still want 
the Data).

a Interest and Data packets are thus one-for-one and maintain a strict 
flow balance. A similar flow balance between data and ack packets is what 
gives TCP its scalability and adaptability8 but, unlike TCP, CCN’s model 
works for many-to-many multipoint delivery (see Section 3.1).
b While CCN names are variable length and usually longer than IP address-
es, they can be looked up as efficiently. The structure of an IP address is not 
 explicit but instead implicitly specified by the contents of a node’s forwarding 
table. Thus it is very difficult to apply modern O(1) hashing techniques to IP 
lookups. Instead, log(n) radix tree search (software) or parallel but expensive 
TCAMs (high end hardware) are typically used. Since the CCN name structure 
is explicit, ContentNames can easily be hashed for efficient lookup.
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figure 2. CCn packet types.
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figure 3. example data name.

c This last example would use the explicit identity information created by 
CCN signing to allow friends to rendezvous via a fixed name rather than via 
complex enumeration or probing strategies, i.e., the name says what they 
want to communicate and the signature says who they are in the context of 
the name, e.g., “a friend in the local environment.”
d We use the term face rather than interface because packets are not only for-
warded over hardware network interfaces but also exchanged directly with 
application processes within a machine, as described in Section 5.
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When Interest packets arrive on a face, a longest-
match lookup is done on the ContentName. (Full details 
for Interest and Data packet processing are described 
in Jacobson et al.,11 we provide a short overview of 
Interest processing here.) When an Interest arrives 
on a face, if there is a matching ContentObject in the 
ContentStore, it will be returned on the same face the 
Interest arrived on. If there is no ContentObject avail-
able, the PIT is checked for an existing pending Interest. 
If there is already a matching entry, the arrival face for the 
new Interest is added to the list of faces in the PIT entry 
used to send ContentObjects to requesters when they 
arrive. If there is not already an existing PIT entry, the FIB 
table is checked for forwarding information. If there is a cor-
responding entry, the Interest is forwarded and added to 
the PIT.

Data packet processing is relatively simple since Data 
is not routed but simply follows the chain of PIT entries 
back to the original requester(s). A longest-match lookup 
of a Data packet’s ContentName is done upon arrival. 
A ContentStore match means the Data is a duplicate, so 
it is discarded. A FIB match means there are no matching 
PIT entries, so the Data is unsolicited and it is discarded.e 
A PIT match (there may be more than one) means the Data 
was solicited by Interest(s) sent by this node. The Data 
is (optionally) validated (see Section 4.1) then added to the 
ContentStore. A new list of faces is created with the union 
of the matching PIT entry face lists minus the Data packet 
arrival face. The Data packet is then sent out each face on 
this new list.

The multipoint nature of Interest-based data retrieval 
provides flexibility to maintain communication in highly 
dynamic environments. Any node with access to multiple 
networks can serve as a content router between them. Using 
its cache, a mobile node may serve as the network medium 
between disconnected areas, or provide delayed connectivity 
over intermittent links. The Interest/Data exchange also 
functions whenever there is local connectivity. For example, 
two colleagues with laptops and ad hoc wireless could share 
corporate documents normally in an isolated location with 
no connectivity to the Internet or their organization.

3. tRansPoRt anD RoutinG
CCN transport is designed to operate on top of unreliable 
packet delivery services, including the highly dynamic 
connectivity of mobile and ubiquitous computing. Thus 
Interests, Data, or both might be lost or damaged in tran-
sit, or requested data might be temporarily unavailable. To 
provide reliable, resilient delivery, CCN Interests not 
satisfied in some reasonable period of time must be retrans-
mitted. Unlike TCP, CCN senders are stateless and the 
final consumer is responsible for reexpressing unsatisfied 

Interests if it still wants the data. A receiver’s strategy 
layer is responsible for retransmission on a particular face 
(since it knows the timeout for the upstream node(s) on the 
face) as well as selecting which and how many of the avail-
able communication interfaces to use for sending inter-
ests, how many unsatisfied interests should be allowed, the 
 relative priority of different interests, etc.

3.1. Reliability and flow control
One Interest retrieves at most one Data packet. This 
basic rule ensures that flow balance is maintained in the net-
work and allows efficient communication between varied 
machines over networks of widely different speeds. Just as 
in TCP, however, it is possible to overlap data and requests. 
Multiple Interests may be issued at once, before Data 
arrives to consume the first. The Interests serve the role 
of window advertisements in TCP. A recipient can dynami-
cally vary the window size by changing the number of 
Interests it issues. We show the effect of such pipelining 
later in Section 5.2. Since CCN packets are independently 
named, the pipeline does not stall on a loss—the equivalent 
of TCP SACK is intrinsic.

In a large network, the end-to-end nature of TCP con-
versations means there are many points between sender 
and receiver where congestion can occur from conversa-
tion aggregation even though each conversation operates 
in flow balance. The effect of this congestion is delay and 
packet loss. The TCP solution is for endpoints to dynami-
cally adjust their window sizes to keep the aggregate traf-
fic volume below the level where congestion occurs.8 The 
need for this congestion control is a result of TCP’s flow 
balance being end-to-end. In CCN, by contrast, all com-
munication is local, so there are no points between sender 
and receiver that are not involved in their balance. Since 
CCN flow balance is maintained at each hop, there is no 
need for additional congestion control techniques in the 
middle of a path. This is not the same as hop-by-hop flow 
control, where backpressure between adjacent nodes is 
used to adjust resource sharing among continuous flows. 
CCN does not have link FIFO queues but rather LRU mem-
ory (cache) decoupling hop-by-hop feedback control loops 
and damping oscillations.

3.2. sequencing
TCP conversations between hosts identify data by simple 
sequence numbers. CCN needs something more sophis-
ticated because consumers are requesting individual 
content chunks from large collections of data and many 
recipients may share the same Data packets. Locating and 
sharing data is facilitated by using hierarchical, aggregat-
able names that are at least partly meaningful to humans 
and reflect some organizational structure of their origin, 
rather than just the sequence in an ephemeral conversa-
tion. Despite this extra richness in CCN names, their trans-
port function in Interests is exactly the same as that of 
sequence numbers in TCP ACKs: specifying the next Data 
the recipient requires.

Before explaining how the next Data is identified, we 
first describe the names in more detail. As mentioned, 

e “Unsolicited” Data can arise from malicious behavior, Data arriving 
from multiple sources, or multiple paths from a single source. In the latter 
cases the first copy of the Data that arrives consumes the Interest, so 
duplicate(s) will not find a PIT entry. In all cases the Data should be discard-
ed since that preserves flow balance and helps guarantee stable operation 
under arbitrary load.
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because CCN’s forwarding model is a strict superset of the IP 
model with fewer restrictions (no restriction on multi-source, 
multi-destination needed to avoid looping) and the same 
semantics relevant to routing (hierarchical name aggregation 
with longest-match lookup). CCN provides an excellent vehi-
cle to implement a routing protocol’s transport: at the heart 
of most routing transport protocols is something very simi-
lar to CCN’s information-oriented guided-diffusion flooding 
model, since they have to function in the pre-topology phase 
where peer identities and locations are not known. CCN’s 
robust information security model enables almost automatic 
routing infrastructure protection.

4. Content-BaseD seCuRity
CCN is built on the notion of content-based security: protec-
tion and trust are properties of the content itself, not of the 
connections over which it travels. Current IP networks trust 
content based on the server id and the connection type used 
for retrieval. This intertwines content and network infra-
structure security, thereby forcing clients to retrieve content 
from the original source to trust it. In CCN all content is dig-
itally signed and private content is encrypted. Embodying 
security in content, not hosts, reduces the trust burden 
on network intermediaries, opening the network to wide 
participation.h This section gives an overview of CCN’s core 
security design. Additional background and motivation are 
described in Smetters and Jacobson.19

4.1. Content validation
Rich and robust content-based security models can be con-
structed if a consumer can assess just three things about 
any content object2, 5, 18: integrity (is the object intact and 
complete), pertinence (what question does it answer), and 
provenance (who claims this is an answer). TCP/IP’s a 16-bit 
checksum provides explicit, though weak, integrity, but per-
tinence and provenance are, at best, implicit in the source 
and destination addresses. CCN’s pertinence is explicit in 
the ContentName and provenance explicit in the key used 
to sign the packet (“signed info” in Figure 2). Thus the pack-
et’s signature both checks integrity and authenticates the 
binding between name, key, and content. Standard public 
key signatures are used, so anyone, not just the communica-
tion endpoints, can validate them.

Consumers generally validate content in the context of 
an application and user dependent trust model (Section 4.2). 
Anything can validate that a Data was signed by the key it 
claims was used to generate its signature, even without 
attaching any real-world meaning to that key. This mini-
mal verification is useful to detect packet corruption and 
to defend against network attacks. For example, consum-
ers can request content by publisher as well as by name in 
the face of spurious or malicious data. To prevent work-
factor attacks, no node is obligated to validate every Data. 

names are hierarchically structured so that an individual 
name is composed of a number of components. Each compo-
nent is composed of a number of arbitrary octets—variable-
length binary values that have no meaning to CCN transport. 
Names must be meaningful to some higher layer(s) in the 
stack to be useful, but the transport imposes no restrictions 
except the component structure. Binary encodings of inte-
gers or other complex values may be used directly without 
conversion to text for transmission. Name components may 
even be encrypted for privacy. For notational convenience 
we present names like URIs with '/' characters separating 
components, as in Figure 3, but these delimiters are not part 
of the names and are not included in the packet encodings. 
This example illustrates the application-level conventions 
currently used to capture temporal evolution of the content (a 
version marker, _v, encoded as FD followed by an integer ver-
sion number) and its segmentation (a segment marker, _s, 
encoded as 00 followed by an integer value which might 
be a block or byte number or the frame number of the first 
video frame in the packet). The final component of every 
Data packet name implicitly includes a SHA256 digest of 
the packet.f

An Interest can specify precisely what content chunk 
is required but in most cases the full name of the next Data 
is not known, so the consumer specifies it relative to some-
thing whose name is known. This is possible because the 
CCN name tree can be totally ordered (siblings are arranged 
in lexicographic order) and thus relations like next and 
previous can be unambiguously interpreted by the CCN 
transport without any knowledge of name semantics.

3.3. Rich connectivity, mobility, and strategy
Machines today typically have multiple network interfaces 
and are increasingly mobile. Since IP is restricted to forward-
ing on spanning trees, it is difficult for IP to take advantage 
of more than one interface or adapt to the changes produced 
by rapid mobility. CCN packets cannot loop, so CCN can take 
full advantage of multiple interfaces. CCN talks about data, 
not to nodes, so it does not need to obtain or bind a layer 3 
identity (e.g., IP address) to a layer 2 identity such as a MAC 
address. Even when connectivity is rapidly changing, CCN 
exchanges packets as soon as it is physically possible to do so. 
Furthermore, since CCN Interests and Data are paired, 
each node gets fine grained, per-prefix, per-face performance 
information for adaptively choosing the “best” face for for-
warding Interests matching some prefix (see Section 5.3).g

3.4. Routing
Routing has recently experienced a resurgence of research 
activity. Today there are a variety of interesting and effective 
candidate solutions for most routing problems. Any routing 
scheme that works well for IP should also work well for CCN, 

f The digest component is not transmitted since it is derivable. It exists so 
that an Interest or a ContentName can unambiguously and exactly name 
any content chunk.
g In IP, route asymmetry generally makes it impossible for an interior node 
to learn if an interface or route is actually functioning since it only sees one 
side of a conversation.

h CCN signing and encryption may require consumers to retrieve keys. For 
TCP/IP this requires side information and special purpose application pro-
tocols but in CCN keys are simply ContentObjects like everything else 
and, in general, the mechanism and network state required to get a content 
chunk are sufficient to also get all of its keys.
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Evidence-based security. The CCN content model creates many 
secured relationships: Each piece of data is bound to its name 
and publisher’s key; names are implicitly bound to other 
names by the naming hierarchy and application-level naming 
conventions; publishers are bound to other publishers by the 
key certification graph. As a consumer accumulates content, 
this web of trusted relationships can be used to automatically 
infer trust in entire collections of content. For example, once 
trust has been established for the block of video shown in 
Figure 4, that decision can be applied to any block of any ver-
sion of /parc.com/george/videos/WidgetA.mpg signed by the 
same key. Similarly, a block of the video signed by a different 
key is automatically suspicious.

This notion can be extended beyond collections defined 
by naming hierarchy. As Section 3.2 notes, the full name of 
a ContentObject contains a cryptographic digest of its 
 contents (a self-certifying name4, 6, 14, 15) and the identity (key) 
of its publisher. Embedding a link using the full name of the 
target ContentObject creates a secure reference4, 12, 13, 17 that 
can resolve to only one object. Such references can be used to 
express delegation, saying that the publisher P of a link named 
N with target (N′, P′) intends the name N to refer to whatever 
publisher P′ refers to by target name N′. They can also be used 
to build up a network of trust in content where signed Data 
certify the other content chunks they securely reference. For 
example, having decided to trust the content of web page A, 
browsers may automatically trust the images, ads, etc., that 
A securely links to. This trust is fine-grained since the linked 
content is only considered valid within the context of A.

4.3. Content protection and access control
The primary means of controlling access to CCN content is 
encryption. CCN does not require trusted servers or directo-
ries to enforce access control policies: No matter who stum-
bles across private content, only authorized users are able to 
decrypt it.

Encryption of content, or even names or name compo-
nents, is completely transparent to the network—to CCN, it 
is all just named binary data (though efficient routing may 
require that some name components remain in the clear). 
Decryption keys are distributed as ContentObjects. 
Name conventions, encapsulated in programmer-friendly 
libraries, make it easy to find and decrypt the key needed by 
an authorized user to decrypt a given piece of content. CCN 
does not mandate any particular encryption or key distribu-
tion scheme. Arbitrary, application-appropriate access con-
trol models can be implemented simply by choosing how to 
encode and distribute decryption keys for particular content.

4.4. network security and denial-of-service
CCN’s design protects it from many classes of network attack. 
Authenticating all content, including routing and policy infor-
mation, prevents data from being spoofed or tampered with. 
It is difficult to target malicious packets at host vulnerabilities 
since CCN Interests address content, not hosts. Effective 
attacks against CCN must use denial of service to either hide 
legitimate content or drown it in a sea of spurious packets.

TCP/IP content originates at some server and an attacker 
can easily hide it by placing a filter anywhere on the single 

In particular, CCN content routers may choose to check all, 
some or none, as their resources allow, and dynamically 
adapt in response to detected attack or consumer advice.

4.2. Managing trust
Although CCN moves data in a peer-to-peer fashion, it 
provides end-to-end security between content publisher 
and consumer. Consumers determine whether received 
content is acceptable or trustworthy. CCN’s trust is con-
textual, narrowly determined in the context of particu-
lar content and the purpose for which it will be used. 
Different consumers can even use different trust models 
for the same content. For example, a bank might require 
that a deed be signed by someone authorized by the courts 
while a backup server might only care that its signature 
validates. This model is more flexible and scalable than 
mandating a one-size-fits-all approach such as trusting 
any publisher who has paid an annual fee to some root 
certifying authority.

The basic primitive of content-based security— 
authenticated bindings from names to content—can be 
used to implement mechanisms for establishing higher-
level trust. CCN’s signed bindings between names and 
content act in essence to certify that Data. For example, 
when a name refers to an individual or organization 
and the content is a public key, the result is essentially 
a digital certificate. This allows CCN to support tradi-
tional mechanisms such as hierarchical PKI for estab-
lishing trust in keys. CCN also supports more general, 
non-hierarchical models such as SDSI2, 5, 18 where keys are 
mapped to identities via locally controlled namespaces. 
For example, the members of an organization might be 
recognized because their keys are certified by the orga-
nization itself, not because they are validated by a third-
party like Verisign. If we know and trust one of parc.com’s 
employees, we get their key any time we receive content 
from them and by following its key locators (certification 
chain) can easily get the key of parc.com (Figure 4). Thus, 
starting from a small number of public keys authenti-
cated using a variety of user-friendly mechanisms (e.g., 
personal contact, organizational membership, public 
experience16, 20), one can use SDSI’s model to infer trust 
in a large number of publishers.

figure 4. CCn trust establishment can associate content namespaces 
with publisher keys.

Signed by parc.com/george

/parc.com/george/videos/WidgetA.mpg/v3/s0/0x3fdc96a4...
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could in certain cases be digitally signed, enabling policy 
routing to limit what namespaces or how often particular 
signers may query.

5. eVaLuation
In this section we describe and evaluate the performance 
of our prototype CCN implementation. Our current imple-
mentation encodes packets in the ccnb compact binary 
XML representation using dictionary-based tag compres-
sion. Our CCN forwarder, ccnd, is implemented in C as a 
userspace daemon. Interest and Data packets are encap-
sulated in UDP for forwarding over existing networks via 
broadcast, multicast, or unicast.

Most of the mechanics of using CCN (ccnd communica-
tion, key management, signing, basic encryption and trust 
management) are embodied in a CCN library. This library, 
implemented in Java and C, encapsulates common conven-
tions for names and data such as encoding segmentation and 
versioning in names and representing information about 
keys for encryption and trust management. These conven-
tions are organized into profiles representing application-
specific protocols layered over basic CCN Interest-Data.

This architecture has two implications. First, the security 
perimeter around sensitive data is pushed into the applica-
tion; content is decrypted only inside an application that has 
rights to it and never inside the OS networking stack or on 
disk. Second, much of the work of using CCN in an applica-
tion consists of specifying the naming and data conventions 
to be agreed upon between publishers and consumers.

All components run on Linux, Mac OS X™, Solaris™, 
FreeBSD, NetBSD, and Microsoft Windows™. Cryptographic 
operations are provided by OpenSSL and Java.

5.1. Data transfer efficiency
TCP is good at moving data. For bulk data transfer over ter-
restrial paths it routinely delivers app-to-app data through-
put near the theoretical maximum (the bottleneck link 
bandwidth). TCP “fills the pipe” because its variable window 
size allows for enough data in transit to fill the bandwidth × 
delay product of the path plus all of the intermediate store-
and-forward buffer stages.9 CCN’s ability to have multiple 
Interests outstanding gives it the same capability (see 
Section 3.1) and we expect its data transfer performance to be 
similar to TCP’s.

To test this we measured the time needed to transfer a 
6MB file as a function of the window size (TCP) and num-
ber of outstanding Interests (CCN). The tests were run 
between two Linux hosts connected by 100 Mbps links to our 
campus ethernet. For the TCP tests the file was transferred 
using the test tool ttcp. For the CCN tests the file was pre-
staged into the memory of the source’s ccnd by requesting 
it locally.k This resulted in 6278 individually named, signed 
CCN Data packets (ContentObjects) each with 1KB of 
data (the resulting object sizes were around 1350 bytes).

shortest path between the targeted set of clients and that 
server. CCN content can be supplied by anything that 
has a copy and every CCN node can use any and all of its 
interfaces simultaneously to locate and retrieve a copy. 
Thus  hiding content is exponentially more difficult for the 
attacker. It must establish a filtering perimeter around its 
targets that covers all paths to all possible copies of the con-
sent. Any copy that makes it through the perimeter imme-
diately becomes a new source that will virally propagate the 
content to all interested clients.

Drowning (DDoS) attacks can be mounted against sources 
of CCN content but are substantially more difficult than 
they are with TCP/IP. The flow balance between Interest 
and Data prevents any sort of Data flooding, so attackers 
must attack via Interest packets. Say an attacker mar-
shals a horde of zombies to simultaneously generate inter-
ests in some ContentName. If they all use the same name, 
the Interests will be aggregated (at most one pending 
Interest in a name is ever forwarded over any link) and no 
flood will result. So they must all use different names under 
the targeted prefix. If the different names refer to actual 
ContentObjects, those objects will be cached everywhere 
along the paths from the content source(s) to the zombies; 
thus the flood near the source will quickly clear as Interests 
are satisfied by downstream cached copies of the Data.i 
If the zombie’s names are randomly generated then their 
Interests will never be satisfied by a matching Data and 
will time out. Thus every intermediate node learns that many 
bogus Interests are being generated for the targeted prefix. 
Nodes can decide to temporarily rate limit such Interests 
(similar to the push-back strategy used against TCP/IP DDoS) 
or simply prioritize them lower than Interests that are 
resulting in Data responses.j In either case the effect of the 
attack on legitimate traffic is minimized.

4.5. Policy controls
CCN also provides tools that allow an organization to 
exercise control over where their content will travel. 
Routers belonging to an organization or service provider 
can enforce policy-based routing, where content forward-
ing policy is associated with content name and signer. 
For example, PARC might have a “content firewall” that 
only allows Interests from the Internet to be satisfied 
if they are requesting content under the /parc.com/public 
namespace. An organization could also publish its policies 
about what keys can sign content under a particular name 
prefix (e.g., PARC could require that all content in the /
parc.com namespace be signed by a key certified by a /parc.
com root key), and have their content routers automatically 
drop content that does not meet those requirements, with-
out asking those routers to understand the semantics of 
the names or organizations involved. Finally, Interests 

i This does result in a distributed cache poisoning attack that must be 
 addressed in the CCN node’s cache replacement policy.
j A CCN content router has a limit on the number of pending Interests 
it will allow on any link (generally related to the bandwidth × delay product 
of that link). The router can choose if it wants to hold or discard arriving 
 Interests over the limit and how it selects Interests up to the limit.

k This was done so the measurement would reflect just communication 
costs and not the signing cost of CCN content production.
l Since CCN transacts in packet-sized content chunks, the TCP window size 
was divided by the amount of user data per packet to convert it to packets.
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node to complete the task. Multiple trials were run for each 
test configuration, varying the particular machines which 
participated as sinks.

Test results are shown in Figure 6. With a single sink, 
TCP’s better header efficiency allows it to complete faster 
than CCN. But as the number of sinks increases, TCP’s com-
pletion time increases linearly while the CCN performance 
stays constant. Note that since the performance penalty of 
using CCN vs. TCP is around 20% while the performance 
gain from sharing is integer multiples, there is a net per-
formance win from using CCN even when sharing ratios 
(hit rates) are low. The win is actually much larger than it 
appears from this test because it applies, independently, 
at every link in the network and completely alleviates the 
traffic concentrations we now see at popular content hubs 
and major peering points. For example, today a popular 
YouTube video will traverse the link between youtube.com 
and its ISP millions of times. If the video were distributed 
via CCN it would cross that link once. With the current 
architecture, peak traffic loads at aggregation points scale 
like the total consumption rate of popular content. With 
CCN they scale like the popular content creation rate, a 
number that, today, is exponentially lower.

5.3. Voice-over-CCn and the strategy layer
To demonstrate how CCN can support arbitrary point-
to-point protocols we have implemented Voice-over-IP 
(VoIP) on top of CCN (VoCCN). Complete details and perfor-
mance measurements are given in Jacobson et al.10 In this 
section we describe a test that uses a VoCCN call to demon-
strate the behavior and advantages of CCN’s strategy layer.

As described in Section 3.3, when the FIB contains 
 multiple faces for a content prefix, the strategy layer dynami-
cally chooses the best. It can do this because CCN can send 
the same Interest out multiple faces (since there is no 
danger of looping) and because a CCN node is guaranteed 
to see the Data sent in response to its Interest (unlike IP 
where the request and response paths may be almost entirely 
disjoint). These two properties allow the strategy layer to run 
experiments where an Interest is occasionally sent out 
all faces associated with the prefix. If a face responds faster 
than the current best, it will become the new best and be used 

Results can be seen in Figure 5.l CCN requires five times 
the pipelining of TCP, 20 packets vs. 4, to reach its through-
put asymptote. This is an artifact of the additional store-
and-forward stages introduced by our prototype’s totally 
unoptimized user-level implementation vs. Linux TCP’s 
highly optimized in-kernel implementation. TCP through-
put asymptotes to 90% of the link bandwidth, reflecting its 
header overhead (payload to packet size ratio). CCN asymp-
totes to 68% of the link bandwidth. Since this test encapsu-
lates CCN in IP/UDP, it has all the overhead of the TCP test 
plus an additional 22% for its own headers. Thus for this 
example the bulk data transfer efficiency of CCN is compa-
rable to TCP but lower due to its larger header overhead.m

5.2. Content distribution efficiency
The preceding sections compared CCN vs. TCP performance 
when CCN is used as a drop-in replacement for TCP, i.e., for 
point-to-point conversations with no data sharing. However, 
a major strength of CCN is that it offers automatic, transpar-
ent sharing of all data, essentially giving the performance of 
an optimally situated web proxy for all content but requiring 
no pre-arrangement or configuration.

To measure sharing performance we compared the total 
time taken to simultaneously retrieve multiple copies of a 
large data file over a network bottleneck using TCP and CCN. 
The test configuration is shown in the inset of Figure 6 and 
consisted of a source node connected over a 10 Mbps shared 
link to a cluster of six sink nodes all interconnected via 
1 Gbps links.n The machines were of various architectures 
(Intel, AMD, PowerPC G5) and operating systems (Mac OS X 
10.5.8, FreeBSD 7.2, NetBSD 5.0.1, Linux 2.6.27).

The sinks simultaneously pulled a 6MB data file from the 
source. For the TCP tests this file was made available via an 
http server on the source and retrieved by the sinks using 
curl. For the CCN tests this file was pre-staged as described 
in Section 5.1. For each test, the contents of the entire file 
were retrieved and we recorded the elapsed time for the last 

m Most of the CCN header size increase vs. TCP is due to its security annota-
tion (signature, witness, and key locator).
n We used a 10 Mbps bottleneck link to clearly show saturation behavior, 
even with only a small number of nodes.

figure 5. Bulk data transfer performance.
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figure 6. total transfer time vs. the number of sinks.
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6. ConCLusion
Today’s network use centers around moving content, but 
today’s networks still work in terms of host-to-host conver-
sations. CCN is a networking architecture built on IP’s engi-
neering principles, but using named content rather than 
host identifiers as its central abstraction. The result retains 
the simplicity and scalability of IP but offers much better 
security, delivery efficiency, and disruption tolerance. CCN 
is designed to replace IP, but can be incrementally deployed 
as an overlay—making its functional advantages available 
to applications without requiring universal adoption.

We implemented a prototype CCN network stack, and 
demonstrated its usefulness for both content distribution 
and point-to-point network protocols. We released this 
implementation as open source and it is available from 
Project CCNx™.1
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figure 7. CCn automatic failover.

 0

 10

 20

 30

 40

 50

 60

 70

0 20 40 60 80 100 120 140 160 180

R
at

e 
(p

kt
s/

s)

Time (s) from start of call

Link A traffic
Link B traffic

Link A
disconnected

Link B
disconnected

Link A
disconnected

Van Jacobson (van@parc.com), 
ParC, Palo alto, Ca.

James D. Thornton (jthornton@parc.com), 
ParC, Palo alto, Ca.

Michael Plass (plass@parc.com), 
ParC, Palo alto, Ca.

nick Briggs (briggs@parc.com), 
ParC, Palo alto, Ca.

Rebecca Braynard (rbraynar@parc.com), 
ParC, Palo alto, Ca.

Diana K. Smetters (smetters@alum.mit.
edu), now at google. work was done while 
at ParC.

© 2012 aCM 0001-0782/12/01 $10.00




