
Peter R. Pietzuch
prp@doc.ic.ac.uk

Drinking From The Fire Hose:
The Rise of Scalable

Stream Processing Systems

Peter Pietzuch

Large-Scale Distributed Systems Group
http://lsds.doc.ic.ac.uk

Cambridge MPhil – February 2013

Department of Computing

prp@doc.ic.ac.uk

2

The Data Deluge

• 150 Exabytes (billion GBs) created in 2005 alone
– Increased to 1200 Exabytes in 2010

• Many new sources of data become available
– Sensors, mobile devices
– Web feeds, social networking
– Cameras
– Databases
– Scientific instruments

• How can we make sense of all data ?
– Most data is not interesting
– New data supersedes old data
– Challenge is not only storage but also querying

3

Real Time Traffic Monitoring

4

• Instrumenting country’s transportation infrastructure

Many parties interested in data
– Road authorities, traffic

planners, emergency
services, commuters

– But access not everything:
Privacy

High-level queries
– “What is the best

time/route for my
commute through central
London between 7-8am?”

Time-EACM
(Cambridge)

Web/Social Feed Mining

5

Social Cascade
Detection

• Detection and reaction to social cascades

Fraud Detection

• How to detect identity fraud as it happens?

• Illegal use of mobile phone, credit card, etc.
– Offline: avoid aggravating customer
– Online: detect and intervene

• Huge volume of call records

• More sophisticated forms of fraud
– e.g. insider trading

• Supervision of laws and regulations
– e.g. Sabanes-Oxley, real-time risk analysis

6

Astronomic Data Processing

7

• Analysing transient cosmic events: γ-ray bursts

• Large Synoptic Survey
Telescope (LSST)

– Generates 1.28
Petabytes per year

Stream Processing to the Rescue!

• Stream data rates can be high
– High resource requirements for processing (clusters, data centres)

• Processing stream data has real-time aspect
– Latency of data processing matters
– Must be able to react to events as they occur

8

Process data streams on the fly without storage

Traditional Databases (Boring)

• Database Management System (DBMS):
• Data relatively static but queries dynamic

9

DBMS

Data

Queries Results

Index

– Persistent relations
• Random access
• Low update rate
• Unbounded disk storage

– One-time queries
• Finite query result
• Queries exploit (static) indices

Data Stream Processing System

• DSPS: Queries static but data dynamic
• Data represented as time-dependant data stream

10

DSPS

Queries

Stream Results

Working
Storage

– Transient streams
• Sequential access
• Potentially high rate
• Bounded main memory

– Continuous queries
• Produce time-dependant

result stream
• Indexing?

Overview

• Why Stream Processing?

• Stream Processing Models
– Streams, windows, operators
– Data mining of streams

• Stream Processing Systems
– Distributed Stream Processing
– Scalable Stream Processing in the Cloud

11

Stream Processing

• Need to define

1. Data model for streams

2. Processing (query) model for streams

12

Data Stream

• “A data stream is a real-time, continuous, ordered (implicitly
by arrival time or explicitly by timestamp) sequence of items.
It is impossible to control the order in which items arrive, nor is
it feasible to locally store a stream in its entirety.”
[Golab & Ozsu (SIGMOD 2003)]

• Relational model for stream structure?
– Can’t represent audio/video data
– Can’t represent analogue measurements

13

Relational Data Stream Model

• Streams consist of infinite sequence of tuples
– Tuples often have associated time stamp

• e.g. arrival time, time of reading, ...

• Tuples have fixed relational schema
– Set of attributes

14

id
temp
rain

id
temp
rain

id
temp
rain

id
temp
rain

id
temp
rain

id
temp
rain

id
temp
rain

id
temp
rain

id
temp
rain

id
temp
rain

time

id = 27182
temp = 24 C
rain = 20mm

sensor output

Sensors data stream

Sensors(id, temp, rain)

t1 t2 t3 t4 ...

Stream Relational Model

• Window converts stream to dynamic relation
– Similar to maintaining view
– Use regular relational algebra operators on tuples
– Can combine streams and relations in single query

15

Streams Relations

Window specification

Special operators:
Istream, Dstream, Rstream

Any relational
query

window

Sliding Window I

• How many tuples should we process each time?

• Process tuples in window-sized batches
Time-based window with size τ at current time t

[t - τ : t] Sensors [Range τ seconds]
[t : t] Sensors [Now]

Count-based window with size n:
last n tuples Sensors [Rows n]

16

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

now

Sliding Window II

• How often should we evaluate the window?

• 1. Output new result tuples as soon as available
– Difficult to implement efficiently

• 2. Slide window by s seconds (or m tuples)
• Sensors [Slide s seconds]

Sliding window: s < τ
Tumbling window: s = τ

17

window

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

s

Continuous Query Language (CQL)

• Based on SQL with streaming constructs
– Tuple- and time-based windows
– Sampling primitives

•
Apart from that regular SQL syntax

18

SELECT temp
FROM Sensors [Range 1 hour]
WHERE temp > 42;

SELECT *
FROM S1 [Rows 1000],

S2 [Range 2 mins]
WHERE S1.A = S2.A

AND S1.A > 42;

Join Processing

• Naturally supports joins over windows

• Only meaningful with window specification for streams
– Otherwise requires unbounded state!

19

SELECT S.id, S.rain
FROM Sensors [Rows 10] as S, Faulty [Range 1 day] as F
WHERE S.rain > 10 AND F.id != S.id;

Sensors(time, id, temp, rain) Faulty(time, id)

SELECT *
FROM S1, S2
WHERE S1.a = S2.b;

Converting Relations Streams

• Define mapping from relation back to stream
– Assumes discrete, monotonically increasing timestamps
τ, τ+1, τ+2, τ+3, ...

• Istream(R)
– Stream of all tuples (r, τ) where r∈R at time τ but r∉R at time τ-1

• Dstream(R)
– Stream of all tuples (r, τ) where r∈R at time τ-1 but r∉R at time τ

• Rstream(R)
– Stream of all tuples (r, τ) where r∈R at time τ

20

Data Mining in Streams

21

Stream Data Mining

• Often continuous queries relate to long-term characteristics of
streams

– Frequency of stock trades, number of invalid sensor readings, ...

• May have insufficient memory to evaluate query
– Consider stream with window of 109 integers

• Can store this in 4GB of memory

– What about 106 such streams?
• Cannot keep all windows in memory

• Need to compress data in windows

22

Limitations of Window Compression

• Consider window compression for following query:

• Assume that W can be compressed as C(W) = WC
– Then W1 ≠ W2 must exist, with C(W1) = C(W2)
– Let t be oldest time in window for which W1 and W2 differ:

– For W1: subtract W1(t) = 3; for W2: subtract W2(t) = 4
• Cannot distinguish between cases from C(W1) = C(W2)

– No correct compression scheme C(W) possible 23

SELECT SUM(num)
FROM Numbers [Rows 109];

3 5 8 9 2 3 9 7 8 9

4 5 8 2 0 7 0 7 2 1

W1

W2

t

Approximate Sum Calculation

• Keep sums Σi for each n tuples in window
– Compression ratio is 1/n

– Estimate of window sum ΣW is total of group sums Σi

• Now v1 leaves window and v2n+3 arrives:

– Accuracy of approximation depends on variance
24

v1 v2 ... vn vn+1 vn+2 ... v2n ... v2n+1 v2n+2

n tuples

+

2 tuples
(incomplete group)

Σ1 Σ2 Σincomplete+ ... +

n tuples

ΣW=

+(n-1/n) * Σ1 Σ2 Σincomplete+ ... +ΣW=

3 tuples
(incomplete group)

Counting Bits

• Assume sliding window W of size N contains bits 1 and 0
– How many 1s are there in the most recent k bits?

(1 ≤ k ≤ N)

• Could answer question trivially with O(N) storage
– But can we approximate answer with, say, logarithmic storage?

25

1 1 0 0 1 0 1 0 0 0 1 0 1 1

size N most
recent
tuple

W

• Divide window into multiple buckets B(m, t)
– B(m, t) contains 2m 1s and starts at t
– Size of buckets does not decrease as t increases
– Either one or two buckets for each size m
– Largest bucket only partially filled

• Estimate sum of last k tuples Σk:
Σk = {sizes of buckets within k} + ½ {last partial bucket}
ΣN = 20 + 20 + 21 + 22 + ½ * 23 = 12 (exact answer: 13)

Approximate Counting with Buckets

26

1 1 1 1 1 1 0 1 1 1 1 1 0 1 1

B(0,1)B(0,2)B(1,4)B(2,6)B(3,11)

• Discard/merge buckets as window slides

– Discard largest bucket once outside of window
– Create new bucket B(0,1) for new tuple if 1
– Merge buckets to restore invariant of at most 2 buckets of each size m

Maintaining Buckets

27

1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1

B(0,1)B(0,2)B(1,4)B(2,6)B(3,11)

X

1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1

B(0,1)B(1,2)
(merged)

B(1,5)B(2,7)B(3,12)

X

Space Complexity

• Need O(log N) buckets for window of size N

• Need O(log N) bits to represent bucket B(m, t):
– m is power of 2, so representable as log2 m

m can be represented with O(log log N) bits
– t is representable as t mod N

t can be represented with O(log N) bits

• Overall window compressed to O(log2 N) bits

28

Stream Processing Systems

29

General DSPS Architecture

30

So
ur

ce
:

G
ol

ab
&

 O
zs

u
20

03

Stream Query Execution

• Continuous queries are long-running
properties of base streams may change

– Tuple distribution, arrival characteristics, query load, available CPU,
memory and disk resources, system conditions, ...

• Solution: Use adaptive query plans
– Monitor system conditions
– Re-optimise query plans at run-time

• DBMS didn’t quite have this problem...

31

Query Plan Execution

• Executed query plans include:
– Operators
– Queues between operators
– State/“Synposis” (windows, ...)
– Base streams

• Challenges
– State may get large (e.g. large windows)

32

SELECT *
FROM S1 [Rows 1000],

S2 [Range 2 mins]
WHERE S1.A = S2.A

AND S1.A > 42;

So
ur

ce
:

ST
RE

AM
 p

ro
je

ct

Operator Scheduling

• Need scheduler to invoke operators (for time slice)
– Scheduling must be adaptive

• Different scheduling disciplines possible:
1. Round-robin
2. Minimise queue length
3. Minimise tuple delay
4. Combination of the above

33

Load Shedding

• DSMS must handle overload:
Tuples arrive faster than processing rate

• Two options when overloaded:
1. Load shedding: Drop tuples

• Much research on deciding which
tuples to drop: c.f. result correctness
and resource relief

• e.g. sample tuples from stream

2. Approximate processing:
Replace operators with
approximate processing
• Saves resources

34

Distributed DSPS

35

Distributed DSPS

• Interconnect multiple DSPSs with network
– Better scalability, handles geographically distributed stream sources

• Interconnect on LAN or Internet?
– Different assumptions about time and failure models

36

Scientific
instruments

Traffic
monitors

Mobile
sensing
devices

Queries

RFID
tags

Body
sensor
networks

Queries

Stream Processing to the Rescue!

37

Process data streams on-the-fly:
Apache S4, Twitter Storm, Nokia Dempsy, …

Exploit intra-query parallelism for scale out

Most interesting operators are stateful

Query Planning in DSPS

• Query Plan
– Operator placement
– Stream connections
– Resource allocation: CPU,

network bandwidth, ...

• State-of-the-art planners
– Based on heuristics

(eg IBM’s SODA)

– Assume over-provisioned system
• Simplifies query planning
• Not true when you pay for

resources...

38

 final
stream

Planning Challenges

• Premature exhaustion of resources
multi-resource constraints

• Waste of resources due to query
overlap reuse streams

39

SQPR: Stream Query Planning with Reuse [ICDE’11]

• Unified optimisation problem for
– query admission
– operator allocation
– stream reuse

• This is hard!
– Solve approximate problem to obtain tractable solution

40

maximise:
λ1 * (no of satisfied queries) – λ2 * (CPU usage) – λ3 * (net usage) – λ4 * (balance load)
subject to constraints:

1. availability: streams for operators exist on nodes
2. resource: allocations within resource limits
3. demand: final query streams are generated eventually
4. acyclicity: all streams come from real sources

Evangelia Kalyvianaki, Wolfram Wiesemann, Quang Hieu Vu and Peter Pietzuch,
“SQPR: Stream Query Planning with Reuse”, IEEE International
Conference on Data Engineering (ICDE), Hannover, Germany, April 2011

Tractable Optimisation Model

• Idea: Only optimise over streams related to new query
– Add relay operators to work around constraints under reuse

41

Scalable Stream Processing

42

Stream Processing in the Cloud

• Clouds provide virtually infinite pools of resources
– Fast and cheap access to new machines for operators

• In a utility-based pricing model:

– Needlessly overprovisioning system is expense
– Using too few resources leads to poor performance

43

How do you use the optimal number of resources?

Challenges in Cloud-Based Stream Processing

• Intra-query parallelism
– Provisioning for workload peaks unnecessarily conservative

• Failure resilience
– Active fault-tolerance requires 2x resources
– Passive fault-tolerance leads to

long recovery times

44

0%

20%

40%

60%

80%

100%

09/07 09/08 09/09 09/10 09/11 09/12 09/13

U
til

is
at

io
n Dynamic scale out:

increase resources
when peaks appear

Hybrid fault-tolerance:
low resource overhead
with fast recovery

Date

Stateful operators:
both mechanisms must support stateful operators

Co
ur

te
sy

 o
f M

SR
C

SEEP Stream Processing System [SIGMOD’13]

• Operator State Management in stream processing

• Two state-aware mechanisms:
1. Dynamic Operator Scale Out
2. Upstream Backup with Checkpointing (UBC)

• Evaluation results

45

Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter Pietzuch, "Integrating
Scale Out and Fault Tolerance in Stream Processing using Operator State Management”,
ACM International Conference on Management of Data (SIGMOD), New York, NY, June 2013

Operator State Management

• State cannot be lost, or stream results are affected

• On scale out:
– Partition operator state correctly, maintaining consistency

• On failure recovery:
– Restore state of failed operator

– Define primitives for state management and build other mechanisms on
top of them

46

Make operator state an external entity that can be managed by
the stream processing system

State Management

• What is state in stream processing system?

– Need to externalise processing state of operators 47

A

C

B

Processing state Routing state Buffer state

State Management Primitives

48

Takes snapshot of state and makes it
externally available

Restore

Backup

A

B

Checkpoint

Partition

Moves copy of state from one
operator to another

Splits state in a semantically correct
fashion for parallel processing

State Partitioning

• Processing state modeled as (key, value) dictionary

• State partitioned according to key k of tuples
– Same key used to partition incoming streams

• Tuples will be routed to correct operator
– x is splitting key that partitions state

B

0-x

x-n

stream 0-n stream 0-x

stream x-n

49

K1-V1
K2-V2
K3-V3

…
Kn-Vn

A

A

State Management in Action

50

EC2 stats

fault
detector

scale out
coordinator

deployment manager

query manager

queries

bottleneck detector
scaling policyVM pool

faults

UB+C
coordinator

1

2

1. Dynamic Scale Out: Detect bottleneck, remove by adding
new parallelised operator

2. Failure Recovery: Detect failure, replace with new operator

Dynamic Scale Out: Detecting bottlenecks

CPU
utilisation

report

35%
85%

30%

Local infrastructure
view

35% 85% 30%

Bottleneck

Bottleneck
detector

The VM Pool: Adding operators

• Problem: Allocating new VMs takes minutes...

52

Bottleneck
detector

Monitoring
information

Cloud
provider

VM1 VM2Virtual Machine Pool

Decision to scale-out

Bottleneck detected

Select pre-provisioned VM
(order of secs)

Provision VM from cloud
(order of mins)

VM3

Add new VM to pool

VM2

VM3 (dynamic pool size)

Scaling Out Stateful Operators

53

A

A

Periodically, stateful operators checkpoint and back up
state to designated upstream backup node

AA

A

For scale out, backup node already has state
of operator to be parallelised

B

A

B

A

B

Checkpoint

Backup

Partition

Restore

Finally, upstream operators replay unprocessed
tuples to update checkpointed state

Passive Fault-Tolerance Model

• Recreate operator state by replaying tuples after failure
– Send acknowledgements upstream for tuples processed downstream

• May result in long recovery times due to large buffers
– System is reprocessing streams after failure inefficient

Upstream
Backup

54

ACKs

data

Upstream Backup + Checkpointing

55

A
A

A

• Benefit from state management primitives
– Use periodically backed up state on upstream node to recover faster

A

A

State is restored and unprocessed tuples are replayed from buffer

Experimental Evaluation
• Goals

– Investigate effectiveness of scale out mechanism
– Recovery time after failure using UBC
– Overhead of state management

• Prototype system: Scalable and Elastic Event Processing (SEEP)
– Implemented in Java; Storm-like data flow model

• Sample queries + workload
– Linear Road Benchmark (LRB) to evaluate scale out [VLDB’04]

• Provides an increasing stream workload over time for given load factor
• Query with 8 operators; SLA: results < 5 secs

– Windowed word count query to evaluate fault tolerance
• Induce failure to observe performance impact

• Deployment on Amazon AWS EC2
– Sources and sinks on high-memory double extra large instances
– Operators on small instances

56

Scale Out: LRB Workload

57

Scales to load factor L=350
with 60 VMs on Amazon EC2
- Automated query parallelisation

L=512 highest report result [VLDB’12]

- Hand-crafted query on dedicated
cluster

Scale out leads to latency peaks,
but remains within LRB SLA

UB+C: Recovery Time

58

State backed up every
5 seconds in UB+C

Source Replay:
Upstream Backup with tuples

replayed by source only

UB+C achieves faster recovery, especially for fast stream rates

Tradeoff of Checkpointing Interval

59

Shorter checkpointing interval leads to faster recovery times
But also incurs more overhead, impacting tuple processing latency

Related Work

• Scalable stream processing systems
– Twitter Storm, Yahoo S4, Nokia Dempsey

Exploit operator parallelism mainly for stateless queries
– ParaSplit operator [VLDB’12]

Partition stream for intra-query parallelism

• Support for elasticity
– StreamCloud [TPDS’12]

Dynamic scale out/in for subset of relational stream operators
– Esc [ICCC’11]

Dynamic support for stateless scale out

• Resource-efficient fault tolerance models
– Active Replication at (almost) no cost [SRDS’11]

Use under-utilized machines to run operator replicas
– Discretized Streams [HotCloud’12]

Data is checkpointed and recovered in parallel in event of failure
60

Conclusions

61

• Stream processing will grow in importance
– Handling the data deluge
– Just provide a view/window on subset of data
– Enables real-time response and decision making

• Principled models to express stream processing semantics
– Enables automatic optimisation of queries, e.g. finding parallelism
– What is the right model?

• Resource allocation matters due to long running queries
– High stream rates and many queries require scalable systems
– Handling overload becomes crucial requirement
– Volatile workloads benefit from elastic DSPS in cloud environments

Thank You! Any Questions?

62

Peter Pietzuch
<prp@doc.ic.ac.uk>

http://lsds.doc.ic.ac.uk

Backup

63

64

Global Sensor Applications: EarthScope

• Using sensors to understand geological evolution
– Many sources: 400 seismometers, 1000 GPS stations, …

http://www.earthscope.org

?How do you process all this data?

Stream Processing in the Cloud

• Scalability: Scale horizontally across 1000 VMs to support
– larger number of queries
– high stream rates

• Elasticity: Dynamically tune number of processing servers
– Tune n to affect stream processing throughput

65

Stream ...

n servers in cloud DC

Results

Load Balancing with the Cloud

• Idea: Using cloud resources for handling peak processing
demand

– Network latency to cloud major issue
– Partitioning granularity important

• How do you perform stream processing in the cloud?
66

duolC

wodniwdessecorP wodniwdessecorpnU

recnalabdaoL
rossecorpmaertslacoL

redivorpmaertS

tneilC

eueuqtupnI

eueuqtuptuO

1

4
3

2

Typical Processing Workload

67

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

09/07 09/08 09/09 09/10 09/11 09/12 09/13

N
or

m
al

iz
ed

 d
is

k
I/O

 ra
te

So
ur

ce
:

“S
ie

rr
a:

 a
 p

ow
er

-p
ro

po
rt

io
na

l,
di

st
rib

ut
ed

st

or
ag

e
sy

st
em

.”
 M

SR
-T

R
-2

00
9-

15
3

• Existing workloads have peaks and troughs
– Scope for improvement in terms of elasticity and adaptability

• Current solutions in distributed stream processing
– Over-provisioning to handle peak demand
– Load-shedding to discard data during peaks

The Map/Reduce Hammer?

68

• Strawman idea:
– Adapt batch processing model
– Pipelined implementation of map/reduce

• Partitioning granularity?
– Window = job?
– Apache Hadoop has large per job overhead

• Stream processing semantics?

• Data exchange based on distributed file system

Application Domains for Stream Processing

• Processing sensor data
– Readings of physical quantity from sensors
– Readings of RFID tags

• Scientific experiments
– Result streams from particle accelerators
– Photon sightings from radio telescopes

• Financial transactions
– Detection of credit card fraud
– Debit card transactions from shops
– Trades from stock markets

• Network monitoring
– Packet monitoring in intrusion detection systems

69

Detecting Transient Sky Objects

• Detection requires non-trivial processing
– Needs to happen within minutes
– Can’t express it in SQL

• Where do we do the computation?
– What data do we store?

• Often looking for needle in haystack

70

coordinate
transform

coordinate
transform

image
cleaning

image
merging

transient
object

detection

. . . .

. . . .

image
cleaning

gamma
burst

detection

Database Triggers

• Database triggers are stored queries
– Triggered by stream of updates

• Often written as event-condition-action rules
– Action can be any stored procedure

• Hard to support efficiently
– Difficult to take advantage of overlap between triggers
– Low performance with high update rates 71

CREATE TRIGGER PrizeStudent
AFTER UPDATE OF mark ON Exam
FOR EACH ROW
WHEN (mark > 80)
BEGIN

INSERT Prizes(name, mark)
VALUES (...)

END

window

Sliding Windows

• How many tuples should we process each time?

• Process tuples in window-sized batches
Time-based window with size τ at current time t

[t - τ : t] Sensors [Range τ seconds]
[t : t] Sensors [Now]

Count-based window with size n:
last n tuples Sensors [Rows n]

72

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

now

Memory Overhead

• Queues & State kept in memory
– Keep in memory for fast access
– Large state swapped out to disk?

• Goal: Minimise memory usage
1. Detect and exploit constraints on streams to reduce state
2. Share state within and between queries
3. Schedule operators intelligently to keep queues short

73

Exploiting Stream Constraints

• Exploit query semantics to bound windows
– Provide additional information about streams:

• Stream semantics
• Ordering
• Referential integrity

• Assume all sensors checked once a day:

74

SELECT S.id, S.rain
FROM Sensors [Rows 10] as S, Faulty as F
WHERE S.rain > 10 AND F.id != S.id;

Sensors(time, id, temp, rain) Faulty(time, id)

[Range 1 day]

Sharing State + Processing

• Base streams: Shared by all queries
– Maintain single maximum window

• Intermediate streams: Shared by some queries
– Share state and processing
– Reduce memory consumption of sliding

window aggregates

75

So
ur

ce
:

ST
RE

AM
 p

ro
je

ct

Open Questions

• Where will be the bottleneck in the system?
– Can we partition/filter the stream fast enough?

• Are EPMs expressive enough to be useful?
– Other computational models possible

• How can we adapt to workload changes?
– Migration of EPMs?

• Currently building a prototype system to play around with...

76

Space Complexity

• Need O(log N) buckets for window of size N

• Need O(log N) bits to represent bucket B(m, t):
– m is power of 2, so representable as log2 m

m can be represented with O(log log N) bits
– t is representable as t mod N

t can be represented with O(log N) bits

• Overall window compressed to O(log2 N) bits

• Estimation error at most 50%:
– Assume partial bucket has size m

Average contribution of partial bucket: ½ m
– Sum of smaller buckets: m/2 + m/4 + ... = m

Worst case: estimate too low by half
– Reduce error: keep between p and p+1 buckets of each size

77

This Talk

• Efficiency

• How can a stream processing
system allocate resources
efficiently?

• SQPR:
Stream Query Planning
with Reuse
– Initial allocation of processing

operators to machines in a
cluster

– Treat query planning as an
optimisation problem

• Scalability

• How can a stream processing
system scale to arbitrary
workloads?

• SEEP:
Scalable and Elastic
Stream Processing
– Elastic architecture for stream

processing in the cloud
– Two phase architecture: filtering

and transformation

78

SQPR Query Planner

• 1: wait until new query q arrives
• 2: if q is already satisfied then
• 3: reuse stream
• 4: else
• 5: add demand constraint for q
• 6: fix optimisation variables relating to unrelated streams
• 7: solve optimisation model (MILP problem) using

standard branch & bound techniques
• 8: update solution
• 9: notify hosts of changed streams and operators

79

Evaluation Results

• Custom simulator
– Workload based on multi-way

join queries
– CPU and network constrained

environments

• Prototype deployment with
DISSP platform

– 15 nodes with 10Mbps
network bandwidth

– Comparison with
IBM’s SODA scheduler

80

Planning Efficiency

• SQPR manages to place more queries than heuristics/SODA

81

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500

N
um

be
r o

f s
at

is
fie

d
qu

er
ie

s

Number of input queries

Optimistic estimation
Optimiser
Heuristic

 0

 50

 100

 150

 200

 250

 50 100 150 200 250

N
um

be
r o

f s
at

is
fie

d
qu

er
ie

s

Number of input queries

SQPR
SODA

Publish/Subscribe Layer

• Incoming streams broadcast
to P/S layer VMs

– Match predicates
(P1, P2, ..., Pn) on
incoming streams

– Matched tuples dispatched
to VMs in partitioning layer

• Inverted index created over predicates to speed up matching
– Predicates composed from language for efficient indexing
– Indexed according to matched attributes, operators and values
– Rich literature on efficient matching

• Stream augmentation with stored data

82

Partitioning Layer

• Event Processing Machines (EPMs)
transform streams

– Implemented as non-deterministic FSAs
– Composed of detection/aggregation states

• Each EPM instance contains state S derived
by tuples processed so far

• States linked by edge predicates (computed
in P/S layer)

• When matched tuples dispatched to EPM:
1. Makes transition to new state

• Transition might generate new EPM instances (non-determinism)

2. Aggregation function incorporates new tuple in S
3. On accepting state, state S becomes part of result stream

83

EPM Decomposition

• Decompose EPM into fragments hosted on different VMs
– Pipelines EPM execution

• Support EPMs with large state requirements

• Execute state transitions in parallel

84

query compile decompose

SELECT temp
FROM Sensors
[Range 1
hour]
WHERE temp >
42;

sy
nc

hr
on

is
at

io
n

Resource Allocation

• Allocate EPM fragments to VMs in partitioning layer
– Must balance CPU load across all VMs
– Observe network bandwidth constraints

85

Stream P/S

SEEP Architecture

86

Scratch

87

Two Layers: Dispatching and Processing

• Structured architecture for stream processing
– Separates stream partitioning from computation
– Partitioning reduces amount of data for computation

• Simple function in each operators:

• 1. Stream partitioning performed by dispatching layer
– Identify relevant data for queries
– Partitioning of data streams and multicast to multiple operators

• 2. Computation done by processing layer
– Execution of query operators

88

SEEP: Scalable & Elastic Event Processing

• Decompose queries into multiple stream processing operators
– System exploits intra-query parallelism

• Adapt to variations in workload by scaling out

Host

Host

Host

Operator

SEEP: Scalable & Elastic Event Processing

partitioning
merging

Host

Host

Host

Host

• Partition and merge streams to utilise more hosts

El
as

tic
ity

Twitter Storm & Yahoo S4

• Yahoo! S4 (http://incubator.apache.org/s4/)

– Java framework for implementing stream processing applications
– Hides stream “plumbing” from developers
– Uses Zookeeper for coordination

• Twitter Storm (https://github.com/nathanmarz/storm)

– Focus on fault-tolerance: acknowledgement of processed tuples
– Spouts produce data; bolts process data
– Different mechanisms for stream partitioning and bolt parallelisation

• This is just the beginning... lots of open challenges...

91

