
Kineograph: Taking the Pulse of a
Fast-Changing and Connected World

Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan
Miao, Xuetian Weng, Ming Wu, Fan Yang, Lidong

Zhou, Feng Zhao and Enhong Chen

Presented by Petko Georgiev

19 February 2013

Motivation

• User Generated Content

• Rich Connections

• Fast streaming of graph updates

• Timely response to graph changes needed!

Kineograph’s solution

Distributed in-memory graph storage

+

Consistent periodical graph snapshots

+

Incremental graph computations

Kineograph’s solution

Kineograph

• Parallelism
• Consistency
• Scalability
• Fault tolerance

Kineograph’s
API

Incremental
Graph

Computation

Results

System Overview

Storage Layer

Distributed
key/value store

Logical
partitions

Ingest Nodes

Transactions of
graph updates

Might span
multiple logical

partitions

Progress Table

Epoch Commit

Incoming updates
are not blocked

Atomicity is
guaranteed

Periodically
take snapshots

Computation Layer

• Vertex-centric approach

Push vs. Pull Model

Push
value0: T

initialize

updateFunction(vertex)

trigger(oldval: T, newval: T): boolean

accumulator(accumValue: T,update: T): T

Pull
value0: T

initialize

updateFunction(vertex,
 List[readonly-vertex])

TunkRank Push Model Example

• graph: user mentions

• initialize: for new out edges mark vertex

• updateFunction(vertex):

– send difference of new and previous rank to
neighbors

• accumulator: sum operation

• trigger(oldval, newval):

 abs(oldval - newval) > ɛ

Implemented Applications

• TunkRank (push)

• Shortest Paths (push)

• K-exposure (pull)

Fault Tolerance

• Ingest nodes – incarnation numbers

• Storage layer replication of logical partitions

• Computation layer

– Roll back and re-execute on failure

– No computation on replicas!

– Primary/backup replication for results

Evaluation

• Throughput (# tweets per second)

• Timeliness

Evaluation: Graph Update Throughput

Fig. 9. Graph update throughput
(32 graph nodes, 10-second snapshots)

Evaluation: Timeliness

Evaluation: Timeliness

Evaluation: Timeliness

Evaluation: Timeliness

Difference from Existing Work

• Streaming of graph updates

• Incremental computation on a global snapshot of
a graph model (vs. MapReduce, databases)

• Kineograph does not use locks (unlike Google
Percolator)

• Vertex-based processing model (like Pregel,
GraphLab) but with incremental computation

Critique and Future Work

• A nice combination of ideas

• Decaying not implemented and not evaluated

• Locality sensitive hashing?

• Choice of snapshot interval – any more concrete
justifications? Why exactly 10 seconds and not 12
or 8?

• Exact time for applying updates upon epoch
commit?

• How many snapshots backwards are stored?

