Incoop: MapReduce for Incremental Computation

Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umat A. Acar, Rafael Pasquini

Presented by Albert Kim
Background

- MapReduce revolutionized bulk data processing
 - Highly scalable and simple
- Many datasets are constantly changing
 - Examples: web index, log processing
- Need to deal with incremental changes
Goal

MapReduce-like framework that can deal with incremental changes to the input transparently and efficiently

3 Key Ideas:
• Transparency
• Efficiency
• MapReduce-like
Overview

• Memoization
• Record each input/output for every map and reduce task (memoization server)
• In future iterations, only run map and reduce tasks if their input has changed
Incremental Map

• Easy for in-place modification, but what about insertions or deletions? *(stability)*

• Instead of using, fixed-offset partitioning, use content-based partitioning

• Content-based partitioning: decides partition boundaries based on local input content
 – Same content = same boundaries
Incremental Map

• Scan file using sliding window and compute fingerprint for each window

• If fingerprint matches *marker* pattern, it is a partition boundary

• Can have min/max offsets to make sure partitions aren’t too small/big
Incremental Map
Incremental Reduce

• Reduce tasks can be large, and changing one input will force the task to rerun (*granularity*)

• Need a way to split up reduce tasks: **Combiners**

• New *Contraction Phase* which groups input into chunks
Incremental Reduce

• Now we can memoize input/output to combiner tasks and reduce tasks

• How do we partition reduce tasks into combiner groups?
 – Use content-based partitioning again!
Incremental Reduce
Memoization-Aware Scheduler

- Augment scheduler to take into account memoization locality while still flexible enough to deal with stragglers
- Simple work-stealing algorithm
 - Each node has queue of tasks
 - Tasks are assigned to queue based on memoization locality
 - Nodes steal work from largest queues with minimum memoization locality
Evaluation

<table>
<thead>
<tr>
<th>Version</th>
<th>Skip Offset [MB]</th>
<th>Throughput [MB/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDFS</td>
<td>-</td>
<td>34.41</td>
</tr>
<tr>
<td>Incremental HDFS</td>
<td>20</td>
<td>32.67</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>34.19</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>32.04</td>
</tr>
</tbody>
</table>

- 20 MB generates too many fingerprints
- 60 MB means not enough parallelization within one file
 - Increase file size?
 - Process more than one file at a time?
Evaluation

- Work – total computation done by system
- Time – end-to-end time taken to finish job

Figure 5: Work speedups versus change size Figure 6: Time speedups versus change size.
Evaluation

(a) Co-occurrence Matrix

(b) k-NN Classifier

Figure 8: Performance gains comparison between Contraction and task variants
Evaluation

Figure 9: Effectiveness of scheduler optimizations.
Evaluation

(a) Performance overhead for the first job run

(b) Space overhead

Figure 10: Overheads imposed by Incoop in comparison to Hadoop
Related Work

• Programming language-based approaches
 – Assumes sequential, non-distributed, uniprocessor model
• Google’s Percolator, Yahoo!’s CBP
 – Not transparent to programmer
• DryadInc, Nectar, Haloop
 – Incoops uses effective content-based stability partitioning
 – Incoop has MapReduce-like framework
Comments

• Overall nice work!
• Transparency
 – Need to write combiners
• How do you get a good marker pattern?
 – Preprocess the data?
• What granularity did they change data for evaluation
• Graph on end-to-end time for initial run + update run would be nice
• Would be nice to compare with Percolator