Caching and Mobility Support in a Publish-Subscribe Internet Architecture

George Xylomenos, Xenofon Vasilakos, Christos Tsilopoulos, Vasilios A. Siris, and George C. Polyzos

Presented by Max Nicosia

Motivation

- Need for Mobility
- Change in usage model
 - From sharing Resources -> Info (regardless of end-point hosting it)

PSI claims:

- Scaling not affected by addressing or routing assumptions
- Supports native multicasting
- Asynchronous nature and caching help with MN handoff

Architecture Overview

Naming:

- Scope Identifier (SID)
- Rendezvous Identifier (RID)

Network Primitives:

- Publish
- Subscribe

Architecture Overview (cont)

Functions (3):

- Rendezvous
- Topology Management
- Forwarding

Example Retrieval

Steps:

- 1. Producer publishes item
- 2. Consumer subscribes
- 3. Subscription is propagated to the Rendezvous Function
- Topology Manager constructs forwarding path -> Forwarding Identifier (FID) and returns it to Publisher (notification)
- 5. Publisher starts transmission

Network Design

- 4 Types of Elements:
- 1. Hosts
- 2. Forwarding Nodes (FNs)
- 3. Rendezvous Nodes (RNs)
- 4. Topology Managers (TNs)

Key Benefits (Hosts behind gateway RN):

- Increased security and privacy
- Reduced control overhead and rendezvous traffic

Forwarding

- Using LIPSIN
 - On-path links encoded in fixed size bit string (Bloom Filter) -> FID
 - Included in packet
- Packets can be delivered over multicast trees by adding tree links to the FID
 No extra state in the network is required
- Topology Managers can enforce routing policies

RENE and Topology Management

- Made out of multiple RNs
 Built from FNs and RNs talking to TMs
 Link State Announcements (LSA)
- Topologies built used for intra-domain routing
- TMs send FIDs with paths

Transport

- RNs maintain list of subscribers (state)
- New subscribers are added to FID
- Documents (reliable delivery)
 TMs compute bidirectional FIDs
- Push-based
- Pull-based

Caching and Replication

- On-path Caching
- Off-path Caching
- Content Replication

On-path Caching

- Requests can be served by FNs on the path
- Prevent feedback implosion of multicast errors
- Possible to use on the Internet at the Application layer
 Requires proxy server for Browser

Off-path Caching

- Take advantage that any node can serve request
- RENE can decides to cache or not to cache info
- Additional overhead -> announce to local RENE
- Hard to achieve on the Internet as it needs coordination between various application-level caches

Content Replication

- Used to minimise inter-domain traffic and improve user experience
- Does not rely on DNS tricks like on the Internet
- Can also exploit off-path caching

Mobility and Caching

- Decoupling from Time and Space
- Re-issue subscriptions for missed data
 - RENE takes care of redirection to caches
- Micro-mobility:
 - Use off-path caches to support MNs -> requests forwarded after handoff to cache
 - Assigned based on topology or forecasting
- Macro-mobility:
 - Set caches in neighbouring networks (expensive)

Conclusions

- Information-centric architecture
- Individually identified items can be cached at Network Layer
- Asynchronous nature of PSI make it mobile-ready
- Constantly evolving architecture

Critique

- No performance analysis about the impact on the network on various conditions
 - Possibly not very applicable in many cases
- Privacy concerns about data being replicated without any control

Questions?