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ABSTRACT
Many online data sets grow incrementally over time as new
entries are slowly added and existing entries are deleted or
modified. Taking advantage of this incrementality, systems
for incremental bulk data processing, such as Google’s Per-
colator, can achieve efficient updates. This efficiency, how-
ever, comes at the price of losing compatibility with the
simple programming models offered by non-incremental sys-
tems, e.g., MapReduce, and more importantly, requires the
programmer to implement application-specific dynamic/ in-
cremental algorithms, ultimately increasing algorithm and
code complexity.

In this paper, we describe the architecture, implementa-
tion, and evaluation of a generic MapReduce framework,
named Incoop, for incremental computations. Incoop de-
tects changes to the inputs and enables the automatic up-
date of the outputs by employing an efficient, fine-grained
result re-use mechanism. To achieve efficiency without sacri-
ficing transparency, we adopt recent advances in the area of
programming languages to identify systematically the short-
comings of task-level memoization approaches, and address
them using several novel techniques such as a storage system
to store the input of consecutive runs, a contraction phase
that make the incremental computation of the reduce tasks
more efficient, and a scheduling algorithm for Hadoop that
is aware of the location of previously computed results.

We implemented Incoop by extending the Hadoop frame-
work, and evaluated it with a variety of applications, in-
cluding two case studies of higher-level services: incremen-
tal query (based on Pig) and log processing systems. Our
results show significant performance improvements without
changing a single line of application code.

1. INTRODUCTION
As computer systems produce and collect increasing amounts

of data, analyzing it becomes an integral part of improving
the services provided by Internet companies. In this con-
text, the MapReduce framework offers techniques for con-
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venient, distributed processing of data by enabling a simple
programming model that eliminates the burden of imple-
menting a complex logic or infrastructure for parallelization,
data transfer, scalability, fault tolerance and scheduling.

An important property of the workloads processed by MapRe-
duce applications is that they are often incremental by na-
ture; i.e., MapReduce jobs often run repeatedly with small
changes in their input. For instance, search engines will pe-
riodically crawl the Web and perform various computations
on this input, such as computing a Web index or the PageR-
ank metric, often with very small modifications, e.g., at a
ratio of ten to thousand, in the overall input [17, 12].

This incremental nature of data suggests that perform-
ing large-scale computations incrementally can improve ef-
ficiency dramatically. Broadly speaking there are two ap-
proaches to achieve such efficient incremental updates. The
first approach would be to devise systems that provide the
programmer with facilities to store and use state across suc-
cessive runs so that only computations that are affected by
the changes to the input would need to be executed. This
is precisely the strategy taken by major Internet compa-
nies who developed systems like Percolator [17] or CBP [12].
This approach, however, requires adopting a new program-
ming model and a new API that differs from the one used
by MapReduce. These new programming APIs also require
the programmer to devise a way to process updates effi-
ciently, which can increase algorithmic and software com-
plexity. For example, research in the algorithms commu-
nity on algorithms for dynamically or incrementally chang-
ing data show that such algorithms can be very complex
even for problems that are relatively straightforward in the
non-incremental case [6, 8]. The second approach would
be to develop systems that can reuse the results of prior
computation transparently. This approach would shift the
complexity of incremental processing from the programmer
to the processing system, essentially keeping the spirit of
high-level models such as MapReduce. A few proposals have
taken this approach, e.g., DryadInc [18], and Nectar [9], in
the context of the Dryad system by providing techniques for
task-level or LINQ expression-level memoization.

In this paper we present a system called Incoop, which
allows existing MapReduce programs, not designed for in-
cremental processing, to execute transparently in an incre-
mental manner. In Incoop, computations can respond au-
tomatically and efficiently to modifications to their input
data by reusing intermediate results from previous compu-
tations, and incrementally updating the output according to
the changes in the input. To achieve efficiency, Incoop relies
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on memoization but goes beyond the straightforward task-
level application of this technique by performing a stable
partitioning of the input and by reducing the granularity of
tasks to maximize result re-use. Furthermore, Incoop em-
ploys affinity-based scheduling techniques to further improve
the performance of the system.

In particular, the design of Incoop contains the follow-
ing new techniques that we incorporated into the Hadoop
MapReduce framework, and which we show to be instru-
mental in achieving efficient incremental computations.

• Incremental HDFS. Instead of relying on HDFS to
store the input to MapReduce jobs, we devise a file
system called Inc-HDFS that provides mechanisms to
identify similarities in the input data of consecutive job
runs. The idea is to split the input into chunks whose
boundaries depend on the file contents so that small
changes to input do not change all chunk boundaries.
Inc-HDFS therefore partitions the input in a way that
maximizes the opportunities for reusing results from
previous computations, while preserving compatibility
with HDFS, by offering the same interface and seman-
tics.

• Contraction phase. We propose techniques for con-
trolling the granularity of tasks so that large tasks can
be divided into smaller subtasks that can be re-used
even when the large tasks cannot. This is particu-
larly challenging in Reduce tasks, whose granularity
depends solely on their input. Our solution is to intro-
duce a new Contraction phase that leverages Combiner
functions, normally used to reduce network traffic by
anticipating a small part of the processing done by Re-
ducer tasks, to control the granularity of the Reduce
tasks.

• Memoization-aware scheduler. To improve effec-
tiveness of memoization, we propose an affinity-based
scheduler that uses a work stealing algorithm to min-
imize the amount of data movement across machines.
Our new scheduler strikes a balance between exploit-
ing the locality of previously computed results and
executing tasks on any available machine to prevent
straggling effects.

• Use cases. We employ Incoop to demonstrate two
important use cases of incremental processing: incre-
mental log processing, where we use Incoop to build a
framework to incrementally process logs as more en-
tries are added to them; and incremental query pro-
cessing, where we layer the Pig framework on top of
Incoop to enable relational query processing on con-
tinuously arriving data.

We implemented Incoop and evaluated it using five MapRe-
duce applications and the two use cases. Our results show
that we achieve significant performance gains, while incur-
ring only a modest penalty during runs that cannot take ad-
vantage of memoizing of previous results, namely the initial
run of a particular job. The results also show the effective-
ness of the individual techniques we propose.

The rest of this paper is organized as follows. Section 2
presents a system overview of Incoop. The system design
is detailed in Sections 3, 4, and 5. We present an analy-
sis in Section 6, our system implementation and its exper-
imental evaluation in Section 7. Finally, related work and

conclusions are discussed in Section 8 and Section 9, respec-
tively. Due to space restrictions, we cover the two case stud-
ies (Appx A) and the proofs for the analytic performance
study (Appx B) in appendices.

2. SYSTEM OVERVIEW
This section presents the goals, basic approach, and main

challenges the underlie the design of Incoop.

2.1 Goals
Our goal is to devise a system for large-scale data pro-

cessing that is able to realize the performance benefits of in-
cremental computations, while keeping the application com-
plexity and development effort low. Specifically, we aim to
achieve transparency and efficiency.

• Transparency. A transparent solution can be ap-
plied to existing bulk data processing programs with-
out changing them. This (i) makes the approach au-
tomatically applicable to all existing programs while
preserving the full generality of the approach, and (ii)
requires no additional effort from the programmer to
devise and implement an efficient incremental update
algorithm.

• Efficiency. One of the lessons to take away from
the work on programming language support for the
automatic incrementalization of single-machine pro-
grams [2] is that this transparent incremental process-
ing can often be asymptotically more efficient (often
by a linear factor) than complete, from-scratch re-
computation. At the scale of the bulk data process-
ing jobs that run in today’s data centers, these asymp-
totic improvements can translate to huge speedups and
cluster utilization savings. We aim to realize such
speedups in practice.

Even though it would be possible to devise solutions that
work with various types of data processing systems, in this
paper, we target the MapReduce model, which has emerged
as a de facto standard for programming bulk data processing
jobs. The remainder of this section presents an overview
of the challenges in the design of Incoop, an extension of
Hadoop that provides transparent incremental computation
of bulk data processing tasks.

Our design adapts the principles of self-adjusting compu-
tation (§ 8) to the MapReduce paradigm and the Hadoop
framework. The idea of self-adjusting computations is to
keep track of the dependencies between the inputs and out-
puts of different parts of a single-machine computation, and
only rebuild the parts of the computation affected by changes.
In particular, a computation graph records the dependen-
cies between data and between (sub)computations. Nodes
of the computation graph represent subcomputations and
edges between nodes represent update-use relationships, i.e.,
dependencies, between computations: there is an edge from
one node to another if the latter subcomputation uses some
data generated by the former. To change the input dy-
namically, the programmer indicates which parts of the in-
put were added, deleted, and modified (using a special-
purpose interface) and the computation graph is used to
determine the subcomputations (nodes) that are affected by
these changes. The affected subcomputations are then ex-
ecuted, which can recursively make new subcomputations
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Figure 1: Basic design of Incoop

affected, while subcomputations that remain unaffected are
re-used by a form of computation memoization.

Although self-adjusting computation offers a general-purpose
framework for developing computations that can perform
incremental updates efficiently, it has not been applied to
a distributed setting. In addition, the approach does not
support transparent application, and its efficiency critically
depends on certain properties of the computation. In the
rest of this section, we briefly outline these challenges and
how we overcome them.

2.2 Challenges: Transparency
Self-adjusting computation traditionally requires the pro-

grammer to annotate programs with specific language prim-
itives. These primitives help the compiler and the run-time
system identify dependencies between data and computa-
tions. Similarly the interface for making changes to the in-
put help identify the “edits” to the input, i.e., how the input
changes. To adapt this approach to the MapReduce model
without having to require programmer annotations, we need
to address some important questions.

Input changes. Our goal of transparency, coupled with the
fact that the file system used to store inputs to MapReduce
computations (HDFS) is an append-only file system, makes
it impossible to convey changes to the input (other than
appending new data). To maintain a backwards-compatible
interface, but still allow for incremental processing, we allow
for both the inputs and the outputs of consecutive runs to be
stored in separate HDFS files. Alternatively, we also allow
for new data to be periodically appended to the input, e.g.,
when repeatedly processing a log that grows throughout the
system lifetime (Appx A.1). Throughout the description we
will consider the first approach, since it is more general.

Programmer annotations. To eliminate annotations from
program code, we specialize self-adjusting computation tech-
niques to the MapReduce framework by exploiting the struc-
ture of MapReduce computations. Specifically, we exploit
the fact that the framework implicitly keeps track of the de-
pendencies between the various tasks, which form a natural
unit of sub-computation.

Based on these ideas, we arrive at a simple design that
we use as a starting point, which is depicted in Figure 1,
and can be described at a high-level as follows. We add a
memoization server that aids in locating the results of parts
of previous computations. The responsibility of this server

is to store a mapping from the input of a previously run
task to the location of the respective output. During a run,
whenever a task completes, its output is stored persistently,
and a mapping from the input to the location of the output
is stored in the memoization server. Then, whenever a task
runs, the memoization server is queried to check if the inputs
to the task match those of a previous run of the computation.
If so, we re-use the outputs that were kept from that previous
run. This way only the parts of the computation affected
by inputs changes are re-computed. Finally, we periodically
identify and purge old entries from the memoization server
to ensure that storage doesn’t grow without bounds.

2.3 Challenges: Efficiency
To achieve efficient dynamic updates, we must ensure that

the MapReduce computations remain stable under small
changes to their input. Specifically, we define stability as fol-
lows. Consider performing MapReduce computations with
inputs I and I ′ and consider the set of tasks that are exe-
cuted, denoted T and T ′ respectively. We say that a task
t ∈ T ′ is not matched if t 6∈ T , i.e., the task that is performed
with the second inputs I ′ is not performed with the same
input. We say that a MapReduce computation is stable if
the time required to executed the unmatched tasks is small,
ideally, sub-linear in the size of the input. More informally,
a MapReduce computation is stable if when executed with
similar inputs, the set of tasks that are executed are also
similar, i.e., many tasks are repeated.

Achieving stability in MapReduce requires overcoming sev-
eral important challenges: a) making a small change to the
input can change the input to many tasks ultimately lead-
ing to a large number of unmatched tasks; b) even if a small
number of tasks are affected, the tasks themselves can re-
quire a large time to execute. To solve these problems, we
propose techniques for (1) performing a stable partitioning
of the input; (2) controlling the granularity and stability of
the Map and Reduce tasks; (3) finding efficient scheduling
mechanisms for identifying the affinity of tasks to machines
to maximize benefits of result re-use. We briefly summarize
our design decisions below.

Stable Input Partitions. To see why the standard MapRe-
duce approach to input partitioning leads to unstable com-
putations, consider inserting a single record in the beginning
of an input file. Since the input is partitioned into fixed-sized
chunks, this small change will shift each partition point by
one record, effectively changing the input to each map task.
In general, when the record is inserted at some position,
all chunks that follow that position will have to shift by
one, and thus on average nearly half of all tasks will be un-
matched. The problem only gets more complicated as we
allow more complex changes, where for example the order
of records may be permuted; such changes can be common
for instance, if a crawler uses a depth-first strategy to crawl
the web, and a single link changing can move an entire sub-
tree’s position in the input file. One possible solution to
this problem would be to compute the differences between
the two inputs files and update somehow the computation by
using this difference directly. This would, however, require
running a polynomial-time algorithm, (e.g., an edit-distance
algorithm) to find the difference.

Our solution is to use a stable partitioning technique that
enables maximal overlap between the set of data chunks
created with similar inputs. Maximizing the overlap be-
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Figure 2: File chunking strategies in HDFS and Inc-HDFS

tween data-chunks in turn enables maximizing the number
of matched Map tasks. To support stable partitioning we
propose a file system, called Inc-HDFS that we describe in
Section 3.

Granularity control. We maximize the overlap between
Map tasks by using a stable partitioning technique for cre-
ating the input data chunks. The input to the Reduce tasks,
however, is directly determined by the outputs of the Map
tasks, because the key-value pairs with the same key are
processed together by the same Reduce task. This raises a
problem if, for example, a single new key-value pair is added
to a Reduce task that processes a large number of values,
deeming these large tasks to be unmatched. Furthermore,
even if we found a way of dividing large Reduce tasks into
multiple pieces, this would not solve the problem in case such
tasks depended on each other, e.g., if the input of a task de-
pended on the output of the previous. Thus, we need a way
to reduce not only the task size but also eliminate poten-
tially long (often linear-size) dependencies between parts of
the Reduce tasks. In other words, we need to control gran-
ularity without increasing the number of unmatched tasks.

We solve this problem by performing an additional Con-
traction phase where Reduce tasks are combined hierarchi-
cally in a tree-like fashion; this both controls the task size
and ensures that no long dependencies between tasks arise
(all paths in the tree will be of logarithmic length). Section 4
describes our proposed approach.

Scheduling. To enable efficient re-use of matched compu-
tations, it is important to schedule a task on the machine
that holds the memoized data it uses. We achieve this by
extending the scheduling algorithm used by Hadoop with
a notion of affinity, that allows the scheduler to take into
account “affinities” between machines and tasks by keeping
a record of which nodes have executed which tasks. This
simple approach will minimize the movement of memoized
intermediate results by ensuring that data movement is lo-
calized to the node. However, this solution results in an
overall degradation of job performance by introducing strag-
glers [20], since a strict affinity of tasks results in determin-
istic scheduling and prevents a lightly loaded node to steal
work from a slow node’s task queue. We therefore propose
a hybrid scheduling policy that strikes a balance between
work-stealing and affinity to the memoized results. The de-
tailed description of the modified scheduler is covered in Sec-
tion 5.

The next three sections describe how the design of Incoop
addresses the aforementioned challenges.

3. INCREMENTAL HDFS
We propose Incremental HDFS (Inc-HDFS) as a distributed

file system that assists Incoop in performing incremental

computations efficiently. Inc-HDFS extends the Hadoop dis-
tributed file system (HDFS) to enable stable partitioning
of the input via content-based chunking, which was intro-
duced in LBFS [14] for data deduplication. At a high-level,
content-based chunking defines chunk boundaries only based
on the local input contents, instead of static chunk sizes.
As a result, even with incremental changes, the chunking
changes by a small amount and hence thus the inputs to
MapReduce tasks remain stable, i.e., similar to those of the
previous run. Figure 2 illustrates a comparison of the chunk-
ing strategies between standard HDFS and incHDFS.

To perform content-based chunking we scan the entire file
using a fixed-width sliding window. For each file position,
we read the window contents, and compute a Rabin finger-
print. If the fingerprinted content matches a certain pattern,
which we term a marker, we place a chunk boundary at that
position. A limitation of this approach is that it may create
chunks that are too small or too large, given that markers
will not be evenly spaced, and that the chunk size depends
solely on the input and only the average size can be con-
trolled by the system. To address this, we add a constraint
of having a minimum and maximum chunk size. Thus, after
we find a marker mi at position pi, we skip a fixed offset O

in the input sequence and continue to search for a marker
starting at position pi +O. In addition, we bound the chunk
length by setting a marker after M content bytes when no
marker was found before that. Despite the possibility of
affecting stability by either missing important markers due
to skipping the initial offset, or consecutively use the maxi-
mum length in an unaligned manner, we found this scheme
to work well in practice, in that such occurrences were very
rare and had a minor impact on performance.

Chunking could be performed either during the creation
of the input or when the input is read by the Map task.
We choose the former approach for two main reasons. First,
the additional cost for chunking can be amortized when the
chunking and the actual generation of the input data can
be performed in parallel. This is particularly advantageous
when the process for input data generation is not limited by
the storage throughput. The second reason is that when the
input is first written to HDFS, it is already present in the
main memory of the node that writes the input, and hence,
this node can perform the chunking without additional ac-
cesses to the data.

In order to leverage the common availability of multicores
during the chunking process, we parallelized the search for
markers in the input data. Our implementation uses multi-
ple threads that each search for markers in the input starting
at different positions. The markers found can not be used
directly to define the chunk boundaries, since some of them
might be skipped in the sequential marker search. Instead,
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we collect the markers in a list, and iterate over the list to
determine the markers that are skipped and those that de-
fine the actual chunk boundaries. Our experimental evalua-
tion (§ 7.4) highlights the importance of these optimizations
in keeping the performance of Inc-HDFS very close to its
original HDFS counterpart.

4. INCREMENTAL MAPREDUCE
We describe the incremental MapReduce part of the in-

frastructure by separately considering how Map and Reduce
tasks handle incremental inputs.

Incremental Map. Given that Inc-HDFS already provides
the necessary control over the alignment and granularity of
the input parts that are provided to Map tasks, the job of
the incremental Map tasks becomes simplified, since they
can implement task-level memoization without having to
worry about finding finer-grained, misaligned, or misplaced
opportunities for reusing previous results. Specifically, after
a Map task runs, we store its results persistently (instead of
discarding it after task execution) and insert a correspond-
ing reference to the result at the memoization server.

Instances of incremental Map tasks take advantage of pre-
viously stored results by querying the memoization server.
If they find that the result has already been computed, they
fetch the result from the location of their memoized output,
and conclude. This is illustrated in Figure 3 where part (a)
describes the first run of an Incoop job, and part (b) describe
what happens in a subsequent run where Split-2 is modified
(hence replaced by Split-4) and the Map tasks for splits 1
and 3 need not be re-executed.

Incremental Reduce. The Reduce function processes the
output of the Map function grouped by the keys of the gener-
ated key-value pairs. More precisely, for a subset of all keys,
each Reduce retrieves the key-value pairs generated by all
Map tasks and applies the Reduce function. To ensure effi-
cient memoization of Reduce tasks, we perform memoization
at two levels: first as a coarse-grained memoization of entire
Reduce tasks, and second as a fine-grained memoization of
novel Contraction tasks as described below.

As with Map tasks, we remember the results of a Reduce
task by storing persistently and locally their result and by
inserting a mapping from a collision-resistant hash of the in-
put to the location of the output in the memoization server.
Since a Reduce task receives input from n Map tasks, the
key stored in the memoization server consists of the hashes
of the outputs from all n Map task that collectively form
the input to the Reduce task. When executing a Reduce

task, instead of immediately copying the output from the
Map tasks, the Reduce task consults Map tasks for their re-
spective hashes to determine if the Reduce task has already
been computed in previous run. If so, that output is directly
fetched from the location stored in the memoization server,
which avoids the re-execution of that task.

This task-level memoization has a crucial limitation. Since
Reduce tasks can be large, when not re-used due to a change
in a small subset of its input, this can result in inefficient
incremental updates. Furthermore, the larger the tasks, the
more likely that its input will include some changed data and
thus the less likely that it will be re-used. Since each Re-
duce processes all values that are produced for a given key
and since the number of such values only depends on the
computation and its input, we cannot control the size of the
input to a reduce by partitioning the input. This ultimately
hinders stability. We therefore need a way to decrease the
granularity of Reduce tasks. This, however, is challenging
because we must avoid creating long chain of dependencies
between the smaller tasks — such dependencies will force
the execution of many subtasks ultimately destroying the
initial goal.

To reduce the granularity of Reduce tasks effectively, we
propose a new Contraction Phase, which is run by Reduce
tasks. To this end, we take advantage of a feature of the
original MapReduce and the Hadoop frameworks [7] that
was designed for a completely different purpose: Combiners.
Combiners are meant to save bandwidth by offloading part
of the computation performed by the reducer to the Map
task. With this mechanism, the programmer of the task
specifies a separate Combiner function, which is executed
on the machine that runs the Map task, and pre-processes
various 〈key,value〉 pairs, merging them into a smaller num-
ber of pairs. The signature of the combiner function has
the same input and output types (a sequence of 〈key,value〉
pairs) and, very often, Combiners and Reducers perform
very similar work.

We use Combiners to break up larger Reduce tasks into
many applications of the Combine function, which allows us
to perform memoization at a much finer granularity. More
precisely, we split the Reduce input into chunks, and apply
the Combine function to each chunk. Then we again form
chunks from the Combine result and recursively apply the
Combine function to these new chunks. The data size gets
smaller in each iteration, and finally, we apply the Reduce
function to the output of the last level of Combiners. This
approach enables us to memoize the results of the Combiners
and, when the input to the Reducer is changed, only a subset
of the Combiners have to be re-executed rather than a full
Reduce task.

This new usage of Combiners is compatible with the origi-
nal Combiner interface, since both the input and the output
of Combiners is a set of tuples that can be passed to the
Reducer task. However, semantically, Combiners were only
meant to optionally run once, and therefore the correctness
of the computation it performs only is only required to be
maintained across a single Combiner invocation, that is:

R ◦ C ◦ M = R ◦ M

where R, C, and M represent the Reducer, Combiner and
Map function, respectively. Our new usage of Combiner
function require a slightly different requirement:

R ◦ Cn ◦ M = R ◦ M,∀n > 0
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Even though it is theoretically possible to write a Com-
biner that meets the original requirement but not the new
one, in practice, all of the Combiner functions we found until
today obeyed the new requirement.

Stability of the Contraction Phase. An important de-
sign question is how to partition the input to the Contraction
phase into chunks that are processed by different Combin-
ers. In this case, the same issue that arose at the Map
phase needs to be handled: if a part of the input to the
Contraction phase is removed or a new part is added, then
partitioning the input by offset would undermine the sta-
bility of the depence graph, since that small change could
cause a large recomputation. This problem is illustrated in
Figure 4, which shows two consecutive runs of the same Re-
ducer, where a new map task (#2) is added to the set of map
tasks that produce values associated with the key being pro-
cessed by this Reducer. In this case, a simple partitioning
of the input, e.g., into groups with a fixed number of input
files, would cause all groups of files to become different from
one run to the next, due to the insertion of one new file near
the beginning of the sequence.

To solve this, we again rely on content-based chunking,
and apply it to every level of the tree of combiners that
forms the Contraction phase. The way we perform content-
based chunking in the Contraction phase differs slightly from
the approach we took in Inc-HDFS, due to both efficiency
and simplicity reasons. In particular, given that the Hadoop
framework splits the input to the contraction phase into mul-
tiple files coming from different Mappers, we restrict chunk
boundaries to be at file boundaries, i.e., chunking can only
group entire files. This way we leverage the existing par-
titioning of the input, which simplifies the implementation
and avoids re-processing this input: we use the hash of each
input file to determine if a marker is present, i.e., if that
input file should be the last of a set of files that is given to a
single Combiner. In particular, we test if that hash modulo
a pre-determined integer M is equal to a constant k < M .
This way the input file contents do not need to be scanned
to partition this input.

Figure 4 also illustrates how content-based chunking ob-
viates the alignment problem. In this example, the content-
based marker that delimits the boundaries between groups
of input files is present in outputs #5, 7, and 14, but not the
remaining ones. Therefore, inserting a new map output will
change the first group of inputs but none of the remaining
ones. In this figure we can also see how this change propa-
gates to the final output. In particular, this change will lead
to executing a new Combiner (labelled 1-2-3-5), and the final
Reducer. The results for all of the remaining Combiners are
reused without needing to re-execute them. This technique
is then repeated across all levels of the tree.

5. MEMOIZATION-AWARE SCHEDULER
The Hadoop scheduler assigns Map and Reduce tasks to

nodes for efficient execution, taking into account machine
availability, cluster topology, and the locality of input data.
The Hadoop scheduler, however, is not well-suited for in-
cremental computations because it does not consider the
locality of previously computed results.

To enable efficient re-use of previously run tasks, tasks
should preferentially be scheduled on the same node where
some or all of the data they use is stored. This is important,

for instance, in case the Contraction phase needs to run us-
ing a combination of newly computed and memoized results,
which happens when only a part of its inputs have changed.
In addition to this requirement, the scheduler also has to
provide some flexibility by allowing tasks to be scheduled
on nodes that do not hold memoized results, otherwise it
can lead to the presence of stragglers, i.e., individual poorly
performing nodes that can drastically delay the overall job
completion [20].

Based on these requirements, Incoop includes a new memo-
ization-aware scheduler that strikes a balance between ex-
ploiting the locality of memoized results, and incorporating
some flexibility to minimize the straggler effect. The main
policy that the scheduler tries to implement is a location-
aware policy that prevents the unnecessary movement of
data, but at the same time it implements a simple work-
stealing algorithm to adapt to varying resource availabil-
ity. The scheduler works by maintaining a separate task
queue for each node in the cluster (instead of a single task
queue for all nodes), where each queue contains the tasks
that should run in that node to maximally exploit the loca-
tion of memoized results. Whenever a node requests more
work, the scheduler dequeues the first task from the cor-
responding queue and assigns the task to the node for ex-
ecution. In case the corresponding queue for the request-
ing node is empty, the scheduler tries to steal work from
other task queues. The scheduling algorithm searches the
task queues of other nodes, and steals a pending task from
the task queue with maximum length. If there are multiple
queues of maximum length, the scheduler steals the task that
has the least amount memoized intermediate results. The
scheduler thus takes the location of the memoized results
into account, but falls back to a work-stealing approach to
avoid stragglers and nodes running idle. Our experimental
evaluation (§7.6) shows the effectiveness of our approach.

6. ANALYSIS OF INCOOP
We analyze the asymptotic efficiency of Incoop. We con-

sider two different runs: the initial-run of an Incoop compu-
tation, where we perform a computation with some input I ,
and a subsequent run or a dynamic update where we change
the input from I to I ′ and perform the same computation
with the new input. In the common case, we perform a sin-
gle initial run followed by many dynamic updates. Using
the information stored (e.g., inputs and outputs of tasks),
each dynamic update identifies and executes the tasks that
operate on the fresh (including changed) data while re-using
the results of those that remain unaffected.

For the initial run, we define the overhead as the slow-
down of Incoop compared to a conventional implementation
of MapReduce such as with Hadoop. We show that the over-
head depends on communications costs and if these are con-
stant (i.e., independent of the input size), which they often
are, it is also a constant. Our experiments (Section 7) show
the overhead to be relatively small. We show that dynamic
updates are dominated by the time it takes to execute fresh
tasks that are affected by the changes to the input data,
which for a certain class of computations and small changes
is logarithmic in the size of the input.

In the analysis, we use the following terminology to re-
fer to the three different types of computational tasks that
form an Incoop computation: Map tasks, Contraction tasks
(applications of the Combiner function), and Reduce tasks.
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Figure 4: Stability of the Contraction phase

Our approach relies on computing hashes for (chunks of)
data and communicating with a memoization server. We
write th for the time it takes to hash data and tm for the
time it takes to send a simple, short message (exact con-
tents to be specified later) to the memoization server. Our
bounds depend on the total number of map tasks, written
NM and the total number of reduce tasks written NR. We
write ni and nO to denote the total size of the input and
output respectively, nm to denote the total number of key-
value pairs emitted the Map phase, and nmk to denote the
set of distinct keys emitted by the Map phase.

For our time bounds, we will additionally assume that
each Map, Combine, and Reduce function performs work
that is asymptotically linear in the size of their inputs. We
will additionally assume that the Combine function is mono-
tonic, i.e., it produces and output that is no greater than its
input. This assumption is satisfied in many applications,
because Combiners often reduce the size of the data (e.g., a
Combine function to compute the sum of values takes mul-
tiple values and outputs a single value).

Due to space restrictions, we present the complete proofs
in Appendix B and here we only state our final theorems.

Theorem 1 (Initial Run:Time and Overhead).
Assuming that Map, Combine, and Reduce functions take
time asymptotically linear in their input size and that Com-
bine functions are monotonic, the total time for performing
an Incremental MapReduce computation in Incoop with an
input of size ni, where nmkey-value pairs are emitted by the
Map phase is O(tmemo ·(NM +NR +NC)) = O(tmemo ·(ni +
nm)). This results in an overhead of O(tmemo) = O(th +tm)
over conventional MapReduce.

Theorem 2 (Initial Run: Space). The total storage
space for performing an Incoop computation with an input
of size ni, where nmkey-value pairs are emitted by the Map
phase, and where Combine is monotonic is O(ni +nm+nO).

Theorem 3 (Dynamic Update: Space and Time).
In Incoop, a dynamic update requires time

O

 

tmemo (NM + NC + NR) +
X

a∈F

t(a)

!

.

The total storage requirement is the same as an initial run.

Theorem 4 (Number of Fresh Tasks). If the Map
function generates k key-value pairs from a single input record,

and the Combine function is monotonic, then the number of
fresh tasks is at most O(k log nm + k).

Taken together the last two theorems suggest that small
changes to data will lead to execution of a small number of
fresh tasks and based on the tradeoff between the memoiza-
tion costs and the cost of executing a fresh tasks, speedups
can be achieved in practice.

7. IMPLEMENTATION AND EVALUATION
We evaluate the effectiveness of Incoop for a variety of ap-

plications implemented in the traditional MapReduce pro-
gramming model. In particular, we will answer the following
questions:

• How does Incoop’s Inc-HDFS perform compared to
HDFS?(§7.4)

• What performance benefits does Incoop provide for in-
cremental workloads compared to the unmodified Hadoop
implementation? (§7.5)

• How effective are the optimizations we propose in im-
proving the overall performance of Incoop? (§7.6)

• What overheads does the memoization in Incoop im-
pose when tasks are executed for the first time? (§7.7)

7.1 Implementation
We built our prototype of Incoop based on Hadoop-0.20.2.

We implemented Inc-HDFS by extending HDFS with stable
input partitioning, and incremental MapReduce by extend-
ing Hadoop with a finer granuality control mechanism and
the memoization-aware scheduler.

The inc-HDFS file system provides the same semantics
and interface for accessing all native HDFS calls. It employs
a content-based chunking scheme which is computationally
more expensive than the fixed-size chunking used by HDFS.
As described in §3, the implementation minimizes the over-
head using two optimizations: (i) we skip parts of the file
contents when searching for chunk markers to reduce the
number of fingerprint computations and enforce a minimum
chunk size; and (ii) we parallelize the search for markers
across multiple cores. To implement these optimizations,
the data uploader client skips a fixed number of bytes after
the last marker is found, and then spawns multiple threads
that each compute the Rabin fingerprints over a sliding win-
dow on different parts of the content. For our experiments,
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Application Description

K-Means Clustering (K-

Means)

k-means clustering is a method of cluster analysis for partitioning n data points into k clusters, in
which each observation belongs to the cluster with the nearest mean.

Word-Count Word count determines the frequency of words in a document.
k-NN Classifier (KNN) k-nearest neighbors classifies objects based on the closest training examples in a feature space.
Co-occurrence Matrix
(CoMatrix)

Generates the Co-occurrence matrix, which is an N ×N matrix where N is number of unique words
in the corpus. A cell mij contains the number of times word wi co-occurs with word wj .

Bigram-Count (BiCount) Bigram count measures the prevalence of a subsequence of two items within a given sequence.

Table 1: Applications used in the performance evaluation

we set the number of bytes skipped to 40MB unless stated
otherwised.

We implemented the memoization server using a wrapper
around Memcached v1.4.5, which supports an in-memory
key-value store. Memcached runs as a daemon process on
the name node machine that acts as a directory server in
Hadoop. Intermediate results memoized across runs are
stored on inc-HDFS with the replication factor set to 1,
and, in case of data loss, the intermediate results are recom-
puted. A major issue with any implementation of memoiza-
tion is determining which intermediate results to remember
and which intermediate results to purge. As in self-adjusting
computation approaches, our approach is to cache the fresh
results from the “last run”, i.e., those results that were gen-
erated or used by the last execution, and purge all the other
obsolete results. This suffices to obtain the efficiency im-
provements proven in §7.7. We implement this strategy us-
ing a simple garbage collector that visits all cache entries
and purges the obsolete results.

7.2 Applications and Data Generation
For the experimental evaluation, we use a set of applica-

tions in fields like machine learning, natural language pro-
cessing, pattern recognition, and document analysis. Ta-
ble 1 lists these applications. We chose these applications to
demonstrate Incoop’s ability to efficiently execute both data-
intensive (WordCount, Co-Matrix, BiCount), and computation-
intensive (KNN and K-Means) jobs. In all cases, we did not
make any changes to the original code.

All data-intensive applications take as input documents
written in a natural language. In our benchmarks, we use a
publicly available dataset with the contents of Wikipedia1.
The computation-intensive applications take as input a set
of points in a d-dimensional space. We generate this data
synthetically by uniformly randomly selecting points from
a 50-dimensional unit cube. To ensure reasonable running
times, we chose all the input sizes such that the running
time of each job would be around one hour in our cluster.

7.3 Measurements
Work and (parallel) time. For comparing different runs,
we consider two types of measures, work and time, which are
standard measures of comparing efficiency in parallel appli-
cations. Work refers to the total amount of computation
performed by all tasks and measured as the total running of
all tasks. (Parallel) Time refers to the amount of (end-to-
end) time that it takes to complete a parallel computation.
It is well-known that under certain assumptions a compu-
tation with W work can be executed on P processors in

1Wikipedia data-set: http://wiki.dbpedia.org/

W
P

time plus some scheduling overheads; this is sometimes
called the work-time principle. Improvements in total work
often directly lead to improvements in time but also in other
resource consumptions, e.g., processors, power, etc. As we
describe in our experiments, our approach improves work
by avoiding unnecessary work, which translates to improve-
ments in run-time (and other resources).

Initial run and dynamic update. The most impor-
tant measurements we perform involve the comparison of
the execution of a MapReduce job with Hadoop and with
Incoop. For the Incoop measurements, we consider two dif-
ferent runs. The initial run refers to a run starting with
an empty memoization server that has no memoized results.
Such a run executes all tasks and populates the memoiza-
tion server by storing the performed computations and the
location of their results. The dynamic update refers to a run
of the same job with a different input but that happens after
the initial run, avoiding recomputation when possible.

Speedup. To assess the effectiveness of dynamic updates
we measure the work and time after modifying varying per-
centages of the input data and comparing them to those for
performing the same computation with Hadoop. We refer to
the ratio of the Hadoop run to the incremental run (Incoop
dynamic update) as speedup (in work and in time). When
modifying p% of the input data, we randomly choose p% of
the input chunks and replace them with new chunks of equal
size and newly generated contents.

Hardware. Our measurements were gathered using a clus-
ter of 20 machines, running Linux with kernel 2.6.32 in 64-bit
mode, connected with gigabit ethernet. The name node and
the job tracker ran on a master machine which was equipped
with a 12-core Intel Xeon processor and 12 GB of RAM. The
data nodes and task trackers ran on the remaining 19 ma-
chines equipped with AMD Opteron-252 processors, 4GB of
RAM, and 225GB drives. We configured the task trackers
to use two Map and two Reduce slots per worker machine.

7.4 Incremental HDFS

Version Skip Offset
[MB]

Throughput
[MB/s]

HDFS - 34.41

Incremental HDFS
20 32.67
40 34.19
60 32.04

Table 2: Throughput of HDFS and Inc-HDFS

To evaluate the overhead introduced by the content-based
chunking in Inc-HDFS, we compare the throughput when
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uploading a dataset of 3 GB for HDFS and Inc-HDFS. In
HDFS the chunk size is fixed at 64MB, while in Inc-HDFS,
we vary the number of skipped bytes. The uploading client
machine was co-located with the name node of the cluster,
and we configured the parallel chunking code in Inc-HDFS
to use 12 threads, i.e., one thread per core. The results of the
experiments shown in Table 2 illustrate the effectiveness of
our performance optimizations. Compared to plain HDFS,
Inc-HDFS introduces only a minor throughput degradation
due to the fingerprint computation that is required to per-
form content-based chunking.

For a smaller skip offset of 20MB, inc-HDFS introduces
a more noticeable overhead because Rabin fingerprints are
computed for a larger fraction of the data, which results in a
degradation of overall throughput. On the other hand, for a
larger skip offset of 60MB, we again see a small performance
degradation despite the smaller computational overhead for
fingerprinting. This is due to the fact that a larger skip
offset increases the average chunk size, resulting in a lower
total number of chunks for an input file. As a consequence,
less work can be done in parallel towards the end of the
upload. For a skip offset of 40MB, however, the Inc-HDFS
throughput is similar to HDFS because it strikes a balance
between the computational overhead of fingerprint computa-
tions and opportunities for parallel processing of data blocks
during the upload to the distributed file system.

7.5 Run-Time Speedups
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Figure 5: Work speedups versus change size.
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Figure 6: Time speedups versus change size.
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Figure 7: Co-Matrix: Time versus input size

Figures 5 and 6 show the work and time speedups measure
as the work and time of the dynamic run with Incoop divided
by those with Hadoop. From these experimental results we
can observe the following: (i) Incoop achieves substantial
performance gains for all applications when there are incre-
mental changes to the input data. In particular, work and
time speedups vary between over a fold of 1000 and 3, for
incremental modifications ranging from 0% to 25% of data.
(ii). We observe higher speedups for computation-intensive
applications (K-Means, KNN) than for data-intensive appli-
cations (WordCount, Co-Matrix, BiCount). This is consis-
tent with the approach (and the analysis in Appendix B)
because the approach benefits computation-intensive tasks
by avoiding unnecessary computations by re-using results.
(iii). Both work and time speedups decrease as the size
of the incremental change increases because larger changes
allow fewer computation results from previous runs to be
re-used. With very small changes, however, speedups in to-
tal work are not realized fully as speedups in parallel time;
this is expected because decreasing the total amount of work
dramatically (e.g., by a factor 1000) reduces amount of par-
allelism, causing the scheduling overheads to be more pro-
nounced. Indeed, as the size of the incremental change in-
creases, the gap between the work speedup and time speedup
closes quickly.

The aforementioned examples all consider inputs of a fixed
size. We also ran experiments that varied the size inputs,
which show that similar results hold. In particular, Figure 7
illustrates the time to run Incoop and Hadoop under a single
chunk change for the Co-Matrix application as we double the
input size from our starting input size. This shows that the
relative improvements hold for various different input sizes.

7.6 Effectiveness of Optimizations
We evaluate the effectiveness of the optimizations in im-

proving the overall performance of Incoop by considering (i)
the granularity control with the introduction of the Contrac-
tion phase; and (ii) the scheduler modifications to minimize
unnecessary data movement.

Granularity control. To evaluate the effectiveness of the
Contraction phase, we consider the two different levels of
memoization in Incoop: (i) the coarse grained, task-level
memoization performed in the implementation denoted as
Task, and (ii) the fine-grained approach that adds the Con-
traction phase in the implementation denoted as Contrac-
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Figure 8: Performance gains comparison between Contraction and task variants

tion. Figure 8 shows our time measurements with CoMatrix

as a data-intensive application and KNN as a computation-
intensive application. The effectiveness of Contraction is
negligible with KNN while significant in CoMatrix. The rea-
son for negligible improvements with KNN is that in this ap-
plication, reducers perform relatively inexpensive tasks and
thus benefits little from the Contraction phase. The results
illustrate that even when not helpful, the Contraction phase
does not degrade efficiency and can significantly improve
performance for other applications.
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Figure 9: Effectiveness of scheduler optimizations.

Scheduler Modification. We now evaluate the effective-
ness of the scheduler modifications in improving the per-
formance of Incoop. The Incoop scheduler avoids unneces-
sary data movement by scheduling tasks on the nodes where
intermediate results from previous runs are stored. Also,
the scheduler employs a work stealing algorithm that allows
some task scheduling flexibility to avoid that nodes run idle
when runnable tasks are waiting. We show the performance
comparison of the Hadoop scheduler with the Incoop sched-
uler in Figure 9, where the Y-axis shows runtime relative to
the Hadoop scheduler. As evident from the figure, the In-
coop scheduler saves around 30% of time for data-intensive
applications, and almost 15% of time for compute-intensive
applications, which supports the necessity and effectiveness
of location-aware scheduling for memoization.

7.7 Overheads
The memoization performed in Incoop introduces runtime

overheads for the first run of tasks when no results from
previous runs can be reused. Also, memoizing intermediate
task results imposes an additional space usage. We mea-
sured both types, performance and space overhead, for each
application and present the results in Figure 10.

Performance overhead. We measure the worst-case per-
formance overhead by capturing the run-time for the first
job run with respect to Hadoop. Figure 10(a) depicts the
performance penalty for both the Task and the Contrac-

tion memoization based approach. The overhead varies
from 5% − 22%, and, as expected, it is lower for computa-
tion intensive applications such as K-Means, KNN, since their
run-time is dominated by the actual processing time rather
than storing, retrieving and transferring data. For the data
intensive applications such as WordCount, Co-Matrix, Bi-

Count, the first run with Task level memoization is faster
than Contraction memoization. This difference in perfor-
mance can be attributed to the extra processing overheads
for all levels of the tree formed in the Contraction phase.
Importantly, this performance overhead is a one-time cost
and the subsequent runs benefit with high speedup.

Space overhead. We measure the space overhead relative
to input size by quantifying the space used for remember-
ing the intermediate computation results. Figure 10(b) il-
lustrates the space overhead as a factor of the input data
size with Task- and Contraction-level memoization. The re-
sults show that the Contraction-level memoization requires
more space, which was expected because it stores results for
all levels of the Contraction tree. Overall, space overhead
varies substantially depending on the application, and can
be as high as a 9X factor (CoMatrix application). However,
our approach for garbage collection (Section 7.1) prevents
the storage utilization from growing over time.

8. RELATED WORK
Our work builds on contributions from several different

fields, which we briefly survey.

Dynamic algorithms. In the algorithms community, re-
searchers designed dynamic algorithms that permit modifi-
cations or dynamic changes to their input, and efficiently
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Figure 10: Overheads imposed by Incoop in comparison to Hadoop

update their output when such changes occur. Several sur-
veys illustrate the vast literature on dynamic algorithms [6].
This research shows that dynamic algorithms can be asymp-
totically, often by a near-linear factor, more efficient than
their conventional counterparts. In large-scale systems, this
asymptotic difference can yield significant speedups. Dy-
namic algorithms can, however, be difficult to develop and
implement even for simple problems; some problems took
years of research to solve and many remain open.

Programming language-based approaches. In the pro-
gramming languages community, researchers developed in-
cremental computation techniques to achieve automatic in-
crementalization. The basic idea is to automatically trans-
late a program that is conventionally defined as mapping
between an input and an output to a program that permits
modifications to its input while updating its output. In-
cremental computation attracted significant attention and
many techniques have been proposed (e.g. [19]). Being au-
tomatic and hiding the mechanism for incrementalization,
this approach can dramatically simplify software develop-
ment. Building on this work, more recent proposals for
self-adjusting computation [1] are based on general-purpose
techniques for expressing incremental computation at a high-
level and deriving efficient executables by using compilers
specifically developed for this purpose. However, existing
approaches to self-adjusting computation consider sequen-
tial, non-distributed, and uniprocessor computation models
(e.g. [10]) and therefore are not applicable to the distributed
execution model of the MapReduce framework.

Incremental database view maintenance. There is
substantial work from the database community on incre-
mentally updating a database view (i.e., a predetermined
query on the database) as the database contents evolve. The
techniques used by these systems can either directly oper-
ate on the database internals to perform these incremental
updates, or rely on SQL queries that efficiently compute
the modifications to the database view, and that are issued
upon the execution of a database trigger [5]. Even though
Incoop shares the same goals and principles with incremental
view maintenance, it differs substantially in the techniques
that are employed, since the latter exploits database-specific
mechanisms and semantics.

Large-scale incremental parallel data processing. There

are several systems for performing incremental parallel com-
putations with large data sets. We broadly divide them
into two categories: non-transparent and transparent ap-
proaches. Examples of non-transparent systems include Google’s
Percolator [17], which is now used to maintain their web in-
dex. In Percolator, the programmer writes a program in
an event-driven programming model, where an application
is structured as a series of observers. Observers are triggered
by the system whenever user-specified data changes.Similarly,
Yahoo!’s continuous bulk processing (CBP) [12] proposes a
new data-parallel programming model, inspired by MapRe-
duce, which introduces new primitives to store and reuse
prior state for incremental processing. In particular, loop-
back flows redirect the output of a stage as the input for
subsequent runs. Despite the performance benefits these
systems brought, there are two drawbacks with these ap-
proaches that are addressed by our proposal. The first is
that they depart from the MapReduce programming paradigm
and therefore require changes to the large existing base of
MapReduce programs. The second, more fundamental prob-
lem is that they require the programmer to devise a dynamic
algorithm in order to efficiently process data in an incremen-
tal manner.

Examples of transparent approaches include DryadInc [18],
which extends Dryad to automatically identify redundant
computations by caching previously executed tasks. One
limitation of this basic approach is that it can only reuse
common identical sub-DAGs of the original computation,
which can be insufficient to achieve efficient updates. To im-
prove efficiency the paper suggests the programmers specify
additional merge functions. Another similar system called
Nectar [9] caches prior results at the coarser granularity of
entire LINQ sub-expressions. The technique used to achieve
this is to automatically rewrite LINQ programs to facilitate
caching. Finally, although not fully transparent, Haloop [4]
provides task-level memoization techniques for memoization
in the context of iterative data processing applications. The
major difference between the aforementioned transparent
approaches and our proposal is that we use a well-understood
set of principles from related work to eliminate the cases
where task-level memoization provides poor efficiency. To
this end, we provide techniques for increasing the effective-
ness of task-level memoization via stable input partitions
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and by using a more fine-grained memoization strategy than
the granularity of Map and Reduce tasks.

Our own short position paper [3] makes the case for ap-
plying techniques inspired by self-adjusting computation to
large-scale data processing in general, and uses MapReduce
as an example. This position paper, however, models MapRe-
duce in a sequential, single-machine implementation of self-
adjusting computation called CEAL [10], and does not offer
anything close to a full scale distributed design and imple-
mentation such as we describe here.

Stream processing systems. Comet [11] introduces the
Batched Stream Processing (BSP) model, where input data
is modeled as a stream, with queries being triggered upon
bulk appends to the stream. In particular, the interface
provided by Comet enables exploiting temporal and spatial
correlations in recurring computations by defining the no-
tion of a query series. Within a query series, the execution
will automatically leverage the intermediate results of previ-
ous invocations of the same query on an overlapping window
of the data, thereby exploiting temporal correlations. Fur-
ther, by aligning multiple query series to execute together
when new bulk updates occur, Comet exploits spatial cor-
relations by removing redundant I/O or computation across
those queries. In contrast to Comet, we are compatible with
the MapReduce model and focus on several aspects like con-
trolling task granularity or input partitioning that do not
arise in Comet’s model.

NOVA [15] is a workflow manager recently proposed by
Yahoo!, designed for the incremental execution of Pig pro-
grams upon continually-arriving data. NOVA introduces a
new layer called the workflow manager on the top of the
Pig/Hadoop framework. Much like the work on incremen-
tal view maintenance, the workflow manager rewrites the
computation in such a way that identifies the parts of the
computation affected by incremental changes and produces
the necessary update function that runs on top of the exist-
ing Pig/Hadoop framework. However, as noted by the au-
thors of NOVA, an alternative, more efficient design would
be to modify the underlying Hadoop system to support this
functionality. In our work, and particularly with our case
study of incremental processing of Pig queries, we explore
precisely this alternative design of adding lower-level sup-
port for reusing previous results. Furthermore, our work
is broader in that it transparently benefits all MapReduce
computations, and not only continuous Pig queries.

9. CONCLUSION
In this paper, we presented Incoop, a novel MapReduce

framework for large-scale incremental computations. Incoop
proposes several novel techniques to maximize the re-use of
results from a previous computation. In particular, Incoop
incorporates content-based chunking to the file system to
detect incremental changes in the input file and to parti-
tion the data so as to maximize re-use, it adds a contraction
phase to control the granularity of tasks in the reduce phase,
and a new scheduler that takes the location of previously
computed results into account. We implemented Incoop as
an extension to Hadoop. Our performance evaluation shows
that Incoop can improve efficiency in incremental runs (com-
mon case), at a modest cost in the initial, first run (uncom-
mon case) where no computations can be reused.
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APPENDIX

A. CASE STUDIES
The success of MapReduce paradigm enables our approach

to transparently benefit an enormous variety of bulk data
processing workflows. In particular, and aside from the
large number of existing MapReduce programs, MapReduce
is also being used as an execution engine for other systems.
In this case, Incoop will also transparently benefit programs
written for these systems.

In this section, we showcase two workflows where we use
Incoop to transparently benefit applications and systems
whose importance has justified the development of specific
solutions for efficient incremental processing in their context,
namely incremental log processing and incremental query
processing.

A.1 Incremental Log Processing
Log processing is an essential workflow in Internet com-

panies, where various logs are often analyzed in multiple
ways on a daily basis [13]. For example, in the area of click
log analysis, traces collected from various web server logs
are aggregated in a single repository and then processed for
various purposes, from simple statistics like counting clicks
per user, or more complex analyzes like click sessionization.

To perform incremental log processing, we integrated In-
coop with Apache Flume 2 – a distributed and reliable ser-
vice for efficiently collecting, aggregating, and moving large
amounts of log data. In our setup, Flume aggregates the
data and dumps it into the Inc-HDFS repository. Then, In-
coop performs the analytic processing incrementally, lever-
aging previously computed intermediate results.

We evaluate the performance of using Flume in conjuc-
tion with Incoop for incremental log processing by compar-
ing its runtime with the corresponding runtime when us-
ing Hadoop. For this experiment, we perform document
analysis on an initial set of logs, and then append new log
entries to the input, after which we process the resulting
larger collection of logs incrementally. In Figure 11, we de-
pict the speedup for running Incoop as a function of the size
of the new logs that are appended after the first run. In-
coop achieves a speedup of a factor of 4 to 2.5 with respect
to Hadoop when processing incremental log appends of a
size of 5% to 25% of the initial input size, respectively.

A.2 Incremental Query Processing
We showcase incremental query processing as another work-

flow that exemplifies the potential benefits of Incoop. Incre-
mental query processing is an important workflow in Inter-
net companies, where the same query is processed frequently
for an incrementally changing input data set [15]. We inte-
grated Incoop with Pig to evaluate the feasibility of incre-
mental query processing. Pig [16] is a platform to analyze
large data sets built upon Hadoop. Pig provides Pig Latin,
an easy-to-use high-level query language similar to SQL. The
ease of programming and scalability of Pig made the system
very popular for very large data analysis tasks, which are
conducted by major Internet companies today.

Since Pig programs are compiled down to multi-staged
MapReduce jobs, the integration of Incoop with Pig was
seamless, just by using Incoop as the underlying execution

2Apache Flume: https://github.com/cloudera/flume
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Figure 11: Speedup for incremental log processing

engine for incrementally executing the multi-staged MapRe-
duce jobs. We evaluate two Pig applications, word count and
the PigMix3 scalability benchmark, to measure the effective-
ness of Incoop. We observe a runtime overhead of around
15% for first run, and a speedup of a factor of around 3
for an incremental run with unmodified input. The detailed
result breakdown is shown in Table 3.

Application Features
M/R
stages

Overhead Speedup

Word Count
Group by,
Order by,
Filter

3 15.65 % 2.84

PigMix
scalabilty
benchmark

Group by,
Filter

1 14.5 % 3.33

Table 3: Results for incremental query processing

B. ANALYSIS OF INCOOP (PROOFS)

Theorem 5 (Initial Run:Time and Overhead).
Assuming that Map, Combine, and Reduce functions take
time asymptotically linear in their input size and that Com-
bine functions are monotonic, total time for performing an
Incremental MapReduce computation in Incoop with an in-
put of size ni, where nmkey-value pairs are emitted by the
Map phase is O(tmemo ·(NM +NR +NC)) = O(tmemo ·(ni +
nm)). This results in an overhead of O(tmemo) = O(th +tm)
over conventional MapReduce.

Proof. Memoizing a task requires 1) computing the hash
of each input, and 2) sending a message to the memoization
server containing the triple consisting of the task id, the
input hash and the location of the computed result. Given
the time for hashing an input chunk th and the time for
sending a message tm, this requires tmemo = th+tm ∈ O(th+
tm) time for each task of the job. Memoization therefore
causes O(th + tm) per task slowdown. To compute the total
slowdown we bound the number of tasks.

The number of Map and Reduce tasks in a particular job
can be derived from the input size and the number of distinct

3Apache PigMix: http://wiki.apache.org/pig/PigMix
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keys that are emitted by the Map function: the Map func-
tion is applied to splits that consist of one or more input
chunks, and each application of the Map function is per-
formed by one Map task. Hence, the number of Map tasks
NM is in the order of input size O(ni). In the Reduce phase,
each Reduce task processes all previously emitted key-value
pairs for at least one key, which results in at most NR = nmk

reduce tasks. To bound the number of contraction tasks, we
note that the contraction phase builds a tree whose leaves
are the output data chunks of the Map phase, whose inter-
nal nodes each has at least two children. Since there are at
most nmpairs output by the Map phase, the total number of
reduce tasks is bounded by nm. Hence the total number of
contraction tasks NC ∈ O(nm). Since the number of reduce
tasks is bounded by nmk ≤ nm , the total number of tasks
is O(ni + nm).

Theorem 6 (Initial Run: Space). Total storage space
for performing an Incoop computation with an input of size
ni, where nmkey-value pairs are emitted by the Map phase,
and where Combine is monotonic is O(ni + nm + nO).

Proof. In addition to the input and the output, Incre-
mental MapReduce requires additionally storing the output
of the map, contraction, and reduce tasks. Since Incoop only
keeps data from the most recent run (initial or dynamic run),
we only use storage for remembering the task output from
the most recent run. The output size of the map tasks is
bounded by nm. With monotonic Combine functions, the
size of the output of Combine tasks is bounded by O(nm).
Finally, the storage needed for reduce tasks is the bounded
by the size of the output.

Theorem 7 (Dynamic Update: Space and Time).
In Incoop, a dynamic update requires time

O

 

tmemo (NM + NC + NR) +
X

a∈F

t(a)

!

.

The total storage requirement is the same as an initial run.

Proof. Consider Incoop performing an initial run with
input I and changing the input to I ′ and then performing a
subsequent run (dynamic update). During the dynamic up-
date, tasks with the same type and input data will re-use the
memoized result of the previous, avoiding recomputation.
Thus, only the fresh tasks need to be executed, which takes

O

„

P

a∈F

t(a)

«

, where F is the set of changed or new (fresh)

Map, Contract and Reduce tasks, respectively, and t(·) de-
notes the processing time for a given task. Re-using tasks
will, however, require an additional check with the memo
server we will pay a cost of tmemo for all re-used tasks.

In the common case, we expect that execution of fresh
tasks to dominate the time for dynamic updates, because
tmemo is a relatively small constant. The time for dynamic
update is therefore likely to be determined by the number of
fresh tasks that are created as a result of a dynamic change.
It is in general difficult to bound the number of fresh tasks,
because it depends on the specifics of the application. As
a trivial example, consider, inserting a single key-value pair
to the input. In principle, the new pair can force the Map
function to generate a very large number of new key-value
pairs, which can then require performing many new reduce

tasks. In many cases, however, small changes to the input
lead only small changes in the output of the Map, Com-
bine, and Reduce functions, e.g., the Map function can use
one key-value pair to generate several new pairs, and the
Combine function will typically combine these, resulting in
a relatively small number of fresh tasks. As a specific case,
assume that the Map function generates k key-value pairs
from a single input record, and that the Combine function
monotonically reduces the number of key-value pairs.

Theorem 8 (Number of Fresh Tasks). If the Map
function generates k key-value pairs from a single input record,
and the Combine function is monotonic, then the number of
fresh tasks is at most O(k log nm + k).

Proof. At most k contraction tasks at each level of the
contraction tree will be fresh, and k fresh reduce tasks will
be needed. Since the depth of the contraction tree is nm, the
total number of fresh tasks will therefore be O(k log nm +
k) = O(k log nm).
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