Drinking From The Fire Hose:
The Rise of Distributed Stream Processing Systems

Peter Pietzuch
prp@doc.ic.ac.uk

Large-Scale Distributed Systems Group
http://lsds.doc.ic.ac.uk

Cambridge MPhil – February 2012
The Data Deluge

150 Exabytes (billion GBs) created in 2005 alone
 - Increased to 1200 Exabytes in 2010

Many new sources of data become available
 - Sensors, mobile devices
 - Web feeds, social networking
 - Cameras
 - Databases
 - Scientific instruments

How can we make sense of all data?
 - Most data is not interesting
 - New data supersedes old data
 - Challenge is not only storage but also querying
Real Time Traffic Monitoring

Instrumenting country’s transportation infrastructure

Many parties interested in data
- Road authorities, traffic planners, emergency services, commuters
- But access not everything: Privacy

High-level queries
- “What is the best time/route for my commute through central London between 7-8am?”
Web/Social Feed Mining

Social Cascade Detection

Detection and reaction to social cascades
Fraud Detection

How to detect identity fraud as it happens?

Illegal use of mobile phone, credit card, etc.
- Offline: avoid aggravating customer
- Online: detect and intervene

Huge volume of call records

More sophisticated forms of fraud
- e.g. insider trading

Supervision of laws and regulations
- e.g. Sabanes-Oxley, real-time risk analysis
Astronomic Data Processing

Analysing transient cosmic events: γ-ray bursts

Large Synoptic Survey Telescope (LSST)
- Generates 1.28 Petabytes per year
Using sensors to understand geological evolution
- Many sources: 400 seismometers, 1000 GPS stations, ...
Stream Processing to the Rescue!

Process data streams on the fly without storage

Stream data rates can be high
- High resource requirements for processing (clusters, data centres)

Processing stream data has real-time aspect
- Latency of data processing matters
- Must be able to react to events as they occur
Traditional Databases (Boring)

- Database Management System (DBMS):
 - Data relatively static but queries dynamic
 - Persistent relations
 - Random access
 - Low update rate
 - Unbounded disk storage
 - One-time queries
 - Finite query result
 - Queries exploit (static) indices
Data Stream Processing System

- DSPS: Queries static but data dynamic
- Data represented as time-dependent data stream

- Working Storage
 - Transient streams
 - Sequential access
 - Potentially high rate
 - Bounded main memory
 - Continuous queries
 - Produce time-dependent result stream
 - Indexing?
Overview

Why Stream Processing?

Stream Processing Models
- Streams, windows, operators
- Data mining of streams

Implementation of Stream Processing Systems
- Distributed Stream Processing
- Stream Processing in the Cloud?
Stream Processing

Need to define

1. Data model for streams

2. Processing (query) model for streams
“A **data stream** is a real-time, continuous, ordered (implicitly by arrival time or explicitly by timestamp) **sequence of items**. It is impossible to control the order in which items arrive, nor is it feasible to locally store a stream in its entirety.”

[Golab & Oszu (SIGMOD 2003)]

Relational model for stream structure?
- Can’t represent audio/video data
- Can’t represent analogue measurements
Relational Data Stream Model

Streams consist of infinite sequence of tuples
- Tuples often have associated time stamp
 - e.g. arrival time, time of reading, ...

Tuples have fixed relational schema
- Set of attributes

<table>
<thead>
<tr>
<th>id</th>
<th>temp</th>
<th>rain</th>
</tr>
</thead>
<tbody>
<tr>
<td>27182</td>
<td>24°C</td>
<td>20mm</td>
</tr>
</tbody>
</table>

Sensors data stream

<table>
<thead>
<tr>
<th>id</th>
<th>temp</th>
<th>rain</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>temp</td>
<td>rain</td>
</tr>
</tbody>
</table>

Sensors data stream
Stream Relational Model

Window converts stream to dynamic relation
- Similar to maintaining view
- Use regular relational algebra operators on tuples
- Can combine streams and relations in single query
How many tuples should we process each time?

Process tuples in window-sized batches

Time-based window with size τ at current time t

$[t - \tau : t]$
$[t : t]$

Sensors [Range τ seconds]
Sensors [Now]

Count-based window with size n:

last n tuples

Sensors [Rows n]

```
+-----+-----+-----+-----+-----+-----+-----+-----+-----+
| temp| rain| temp| rain| temp| rain| temp| rain| temp| rain|
+-----+-----+-----+-----+-----+-----+-----+-----+-----+

window
```

now
Sliding Window II

How often should we evaluate the window?

1. Output new result tuples as soon as available
 – Difficult to implement efficiently

2. Slide window by s seconds (or m tuples)

<table>
<thead>
<tr>
<th>Sensors</th>
<th>[Slide s seconds]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sliding window:</td>
<td>$s < \tau$</td>
</tr>
<tr>
<td>Tumbling window:</td>
<td>$s = \tau$</td>
</tr>
</tbody>
</table>

![Diagram showing sliding and tumbling windows with data points for temperature and rain over time.](image)
Continuous Query Language (CQL)

Based on SQL with streaming constructs
- Tuple- and time-based windows
- Sampling primitives

Apart from that regular SQL syntax

```sql
SELECT temp
FROM Sensors [Range 1 hour]
WHERE temp > 42;
```

```sql
SELECT *
FROM S1 [Rows 1000],
     S2 [Range 2 mins]
WHERE S1.A = S2.A
  AND S1.A > 42;
```
Join Processing

Naturally supports joins over windows

```
SELECT *
FROM S1, S2
WHERE S1.a = S2.b;
```

Only meaningful with window specification for streams
- Otherwise requires unbounded state!

```
SELECT S.id, S.rain
FROM Sensors [Rows 10] as S, Faulty [Range 1 day] as F
WHERE S.rain > 10 AND F.id != S.id;
```
Converting Relations ➔ Streams

Define mapping from relation back to stream
- Assumes discrete, monotonically increasing timestamps \(\tau, \tau+1, \tau+2, \tau+3, \ldots \)

\(\text{Istream}(R) \)
- Stream of all tuples \((r, \tau)\) where \(r \in R\) at time \(\tau\) but \(r \notin R\) at time \(\tau-1\)

\(\text{Dstream}(R) \)
- Stream of all tuples \((r, \tau)\) where \(r \in R\) at time \(\tau-1\) but \(r \notin R\) at time \(\tau\)

\(\text{Rstream}(R) \)
- Stream of all tuples \((r, \tau)\) where \(r \in R\) at time \(\tau\)
Data Mining in Streams
Stream Data Mining

Often continuous queries relate to long-term characteristics of streams
- Frequency of stock trades, number of invalid sensor readings, ...

May have insufficient memory to evaluate query
- Consider stream with window of 10^9 integers
 - Can store this in 4GB of memory
- What about 10^6 such streams?
 - Cannot keep all windows in memory

Need to compress data in windows
Limitations of Window Compression

Consider window compression for following query:

```
SELECT SUM(num)
FROM Numbers [Rows 10^9];
```

Assume that W can be compressed as $C(W) = W_C$

- Then $W_1 \neq W_2$ must exist, with $C(W_1) = C(W_2)$
- Let t be oldest time in window for which W_1 and W_2 differ:

- For W_1: subtract $W_1(t) = 3$; for W_2: subtract $W_2(t) = 4$
 - Cannot distinguish between cases from $C(W_1) = C(W_2)$
 - No correct compression scheme $C(W)$ possible
Approximate Sum Calculation

Keep sums \sum_i for each n tuples in window

- Compression ratio is $1/n$

$$\sum w = \sum_1 + \sum_2 + \ldots + \sum_{\text{incomplete}}$$

- Estimate of window sum $\sum w$ is total of group sums \sum_i

Now v_1 leaves window and v_{2n+3} arrives:

$$\sum w = \frac{(n-1/n) \cdot \sum_1}{3 \text{ tuples}} + \sum_2 + \ldots + \sum_{\text{incomplete}}$$

- Accuracy of approximation depends on variance
Counting Bits

Assume sliding window \(W \) of size \(N \) contains bits 1 and 0

- How many 1s are there in the most recent \(k \) bits? \((1 \leq k \leq N)\)

Could answer question trivially with \(O(N) \) storage

- But can we approximate answer with, say, logarithmic storage?
Approximate Counting with Buckets

Divide window into multiple **buckets** $B(m, t)$

- $B(m, t)$ contains 2^m 1s and starts at t
- Size of buckets does not decrease as t increases
- Either one or two buckets for each size m
- Largest bucket only partially filled

Estimate sum of last k tuples Σ_k:

$\Sigma_k = \{\text{sizes of buckets within } k\} + \frac{1}{2} \{\text{last partial bucket}\}$

$\Sigma_N = 2^0 + 2^0 + 2^1 + 2^2 + \frac{1}{2} \times 2^3 = 12$ (exact answer: 13)
Maintaining Buckets

Discard/merge buckets as window slides

- Discard largest bucket once outside of window
- Create new bucket $B(0,1)$ for new tuple if 1
- Merge buckets to restore invariant of at most 2 buckets of each size m
Space Complexity

Need $O(\log N)$ buckets for window of size N

Need $O(\log N)$ bits to represent bucket $B(m, t)$:
- m is power of 2, so representable as $\log_2 m$
 m can be represented with $O(\log \log N)$ bits
- t is representable as $t \mod N$
 t can be represented with $O(\log N)$ bits

Overall window compressed to $O(\log^2 N)$ bits
DSPS Implementation
General DSPS Architecture

Source: Golab & Ozsu 2003
Continuous queries are long-running

- properties of base streams may change
 - Tuple distribution, arrival characteristics, query load, available CPU, memory and disk resources, system conditions, ...

Solution: Use **adaptive query plans**

- Monitor system conditions
- Re-optimise query plans at run-time

DBMS didn’t quite have this problem...
Query Plan Execution

Executed query plans include:

- **Operators**
- **Queues** between operators
- **State**/“Synopsis” (windows, ...)
- **Base streams**

```
SELECT *
FROM S1 [Rows 1000],
     S2 [Range 2 mins]
WHERE S1.A = S2.A
AND S1.A > 42;
```

Challenges

- State may get large (e.g. large windows)
Operator Scheduling

Need scheduler to invoke operators (for time slice)
- Scheduling must be adaptive

Different scheduling disciplines possible:
1. Round-robin
2. Minimise queue length
3. Minimise tuple delay
4. Combination of the above
Load Shedding

DSMS must handle overload:
Tuples arrive faster than processing rate

Two options when overloaded:

1. **Load shedding**: Drop tuples
 - Much research on deciding which tuples to drop: c.f. result correctness and resource relief
 - e.g. sample tuples from stream

2. **Approximate processing**: Replace operators with approximate processing
 - Saves resources
Distributed DSSPS
Distributed DSPS

Interconnect multiple DSPSs with network
- Better scalability, handles geographically distributed stream sources

Interconnect on LAN or Internet?
- Different assumptions about time and failure models
Query Planning in DSSP

Query Plan
- Operator placement
- Stream connections
- Resource allocation: CPU, network bandwidth, ...

State-of-the-art planners
- Based on heuristics (eg IBM’s SODA)
- Assume over-provisioned system
 - Simplifies query planning
 - Not true when you pay for resources...
Planning Challenges

Waste of resources due to query overlap → reuse streams

Premature exhaustion of resources → multi-resource constraints
Optimisation Model

Unified optimisation problem for
- query admission
- operator allocation
- stream reuse

maximise:
\[\lambda_1 \times \text{(no of satisfied queries)} - \lambda_2 \times \text{(CPU usage)} - \lambda_3 \times \text{(net usage)} - \lambda_4 \times \text{(balance load)} \]

subject to constraints:
1. availability: streams for operators exist on nodes
2. resource: allocations within resource limits
3. demand: final query streams are generated eventually
4. acyclicity: all streams come from real sources

This is hard!
- Solve approximate problem to obtain tractable solution

Evangelia Kalyvianaki, Wolfram Wiesemann, Quang Hieu Vu and Peter Pietzuch, “SQPR: Stream Query Planning with Reuse”, IEEE International Conference on Data Engineering (ICDE), Hannover, Germany, April 2011
Tractable Optimisation Model

Idea: Only optimise over streams related to new query
- Add *relay* operators to work around constraints under reuse
Stream Processing in the Cloud
Stream Processing in the Cloud

Scalability: Scale horizontally across 1000 VMs to support
- larger number of queries
- high stream rates

Elasticity: Dynamically tune number of processing servers
- Tune n to affect stream processing throughput
Load Balancing with the Cloud

Idea: Using cloud resources for handling peak processing demand

- Network latency to cloud major issue
- Partitioning granularity important

📍 How do you perform stream processing in the cloud?
Existing workloads have peaks and troughs
 - Scope for improvement in terms of **elasticity and adaptability**

Current solutions in distributed stream processing
 - **Over-provisioning** to handle peak demand
 - **Load-shedding** to discard data during peaks
The Map/Reduce Hammer?

Strawman idea:
- Adapt batch processing model
- Pipelined implementation of map/reduce

Partitioning granularity?
- Window = job?
- Apache Hadoop has large per job overhead

Stream processing semantics?

Data exchange based on distributed file system
Two Layers: Dispatching and Processing

Structured architecture for stream processing
- Separates stream partitioning from computation
- Partitioning reduces amount of data for computation

Simple function in each operators:

1. Stream partitioning performed by dispatching layer
 - Identify relevant data for queries
 - Partitioning of data streams and multicast to multiple operators

2. Computation done by processing layer
 - Execution of query operators
SEEP: Scalable & Elastic Event Processing

Decompose queries into multiple stream processing operators
- System exploits intra-query parallelism

Adapt to variations in workload by scaling out
SEEP: Scalable & Elastic Event Processing

Partition and merge streams to utilise more hosts
Twitter Storm & Yahoo S4

- Java framework for implementing stream processing applications
- Hides stream “plumbing” from developers
- Uses *Zookeeper* for coordination

Twitter Storm (https://github.com/nathanmarz/storm)
- Focus on *fault-tolerance*: acknowledgement of processed tuples
- *Spouts* produce data; *bolts* process data
- Different mechanisms for stream partitioning and bolt parallelisation

This is just the beginning... lots of open challenges...
Conclusions

Stream processing will grow in importance
- Handling the data deluge
- Just provide a view/window on subset of data
- Enables real-time response and decision making

Principled models to express stream processing semantics
- Enables automatic optimisation of queries, e.g. finding parallelism
- What is the right model?

Resource allocation matters due to long running queries
- High stream rates and many queries require scalable systems
- Handling overload becomes crucial requirement
- Volatile workloads benefit from elastic DSPS in cloud environments
Thank You! Any Questions?

Peter Pietzuch
<prp@doc.ic.ac.uk>
http://lsds.doc.ic.ac.uk