
Peter R. Pietzuch
prp@doc.ic.ac.uk

Drinking From The Fire Hose:
The Rise of Distributed

Stream Processing Systems

Peter Pietzuch

Large-Scale Distributed Systems Group
http://lsds.doc.ic.ac.uk

Cambridge MPhil – February 2012

Department of Computing

prp@doc.ic.ac.uk

2

The Data Deluge

•  150 Exabytes (billion GBs) created in 2005 alone
–  Increased to 1200 Exabytes in 2010

• Many new sources of data become available
–  Sensors, mobile devices
–  Web feeds, social networking
–  Cameras
–  Databases
–  Scientific instruments

• E How can we make sense of all data ?
–  Most data is not interesting
–  New data supersedes old data
–  Challenge is not only storage but also querying

3

Real Time Traffic Monitoring

4

•  Instrumenting country’s transportation infrastructure

Many parties interested in data
–  Road authorities, traffic

planners, emergency
services, commuters

–  But access not everything:
Privacy

High-level queries
–  “What is the best time/

route for my commute
through central London
between 7-8am?”

Time-EACM
(Cambridge)

Web/Social Feed Mining

5

Social Cascade
Detection

• Detection and reaction to social cascades

Fraud Detection

• How to detect identity fraud as it happens?

•  Illegal use of mobile phone, credit card, etc.
–  Offline: avoid aggravating customer
–  Online: detect and intervene

• Huge volume of call records

• More sophisticated forms of fraud
–  e.g. insider trading

• Supervision of laws and regulations
–  e.g. Sabanes-Oxley, real-time risk analysis

6

Astronomic Data Processing

7

• Analysing transient cosmic events: γ-ray bursts

•  Large Synoptic Survey
Telescope (LSST)

–  Generates 1.28
Petabytes per year

8

Global Sensor Applications: EarthScope

• Using sensors to understand geological evolution
–  Many sources: 400 seismometers, 1000 GPS stations, …

http://www.earthscope.org

E How do you process all this data?

Stream Processing to the Rescue!

• Stream data rates can be high
–  High resource requirements for processing (clusters, data centres)

• Processing stream data has real-time aspect
–  Latency of data processing matters
–  Must be able to react to events as they occur

9

 Process data streams on the fly without storage

Traditional Databases (Boring)

• Database Management System (DBMS):
•  Data relatively static but queries dynamic

10

DBMS

Data

Queries Results

Index

–  Persistent relations
•  Random access
•  Low update rate
• Unbounded disk storage

–  One-time queries
•  Finite query result
• Queries exploit (static) indices

Data Stream Processing System

• DSPS: Queries static but data dynamic
•  Data represented as time-dependant data stream

11

DSPS

Queries

Stream Results

Working
Storage

–  Transient streams
•  Sequential access
•  Potentially high rate
•  Bounded main memory

–  Continuous queries
•  Produce time-dependant

result stream
•  Indexing?

Overview

• Why Stream Processing?

• Stream Processing Models
–  Streams, windows, operators
–  Data mining of streams

•  Implementation of Stream Processing Systems
–  Distributed Stream Processing
–  Stream Processing in the Cloud?

12

Stream Processing

• Need to define

 1. Data model for streams

 2. Processing (query) model for streams

13

Data Stream

• “A data stream is a real-time, continuous, ordered (implicitly
by arrival time or explicitly by timestamp) sequence of items.
It is impossible to control the order in which items arrive, nor is
it feasible to locally store a stream in its entirety.”
[Golab & Ozsu (SIGMOD 2003)]

• Relational model for stream structure?
–  Can’t represent audio/video data
–  Can’t represent analogue measurements

14

Relational Data Stream Model

• Streams consist of infinite sequence of tuples
–  Tuples often have associated time stamp

•  e.g. arrival time, time of reading, ...

• Tuples have fixed relational schema
–  Set of attributes

15

id
temp
rain

id
temp
rain

id
temp
rain

id
temp
rain

id
temp
rain

id
temp
rain

id
temp
rain

id
temp
rain

id
temp
rain

id
temp
rain

time

id = 27182
temp = 24 C
rain = 20mm

sensor output

Sensors data stream

Sensors(id, temp, rain)

t1 t2 t3 t4 ...

Stream Relational Model

• Window converts stream to dynamic relation
–  Similar to maintaining view
–  Use regular relational algebra operators on tuples
–  Can combine streams and relations in single query

16

Streams Relations

Window specification

Special operators:
Istream, Dstream, Rstream

Any relational
query

window

Sliding Window I

• How many tuples should we process each time?

• Process tuples in window-sized batches
Time-based window with size τ at current time t

[t - τ : t] Sensors [Range τ seconds]
 [t : t] Sensors [Now]

Count-based window with size n:

last n tuples Sensors [Rows n]

17

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

now

Sliding Window II

• How often should we evaluate the window?

• 1. Output new result tuples as soon as available
–  Difficult to implement efficiently

• 2. Slide window by s seconds (or m tuples)

•  Sensors [Slide s seconds]
Sliding window: s < τ
Tumbling window: s = τ

18

window

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

temp
rain

s

Continuous Query Language (CQL)

• Based on SQL with streaming constructs
–  Tuple- and time-based windows
–  Sampling primitives

• 
Apart from that regular SQL syntax

19

SELECT temp
FROM Sensors [Range 1 hour]
WHERE temp > 42;

SELECT *
FROM S1 [Rows 1000],
 S2 [Range 2 mins]
WHERE S1.A = S2.A
 AND S1.A > 42;

Join Processing

• Naturally supports joins over windows

• Only meaningful with window specification for streams
–  Otherwise requires unbounded state!

20

SELECT S.id, S.rain
FROM Sensors [Rows 10] as S, Faulty [Range 1 day] as F
WHERE S.rain > 10 AND F.id != S.id;

Sensors(time, id, temp, rain) Faulty(time, id)

SELECT *
FROM S1, S2
WHERE S1.a = S2.b;

Converting Relations  Streams

• Define mapping from relation back to stream
–  Assumes discrete, monotonically increasing timestamps
τ, τ+1, τ+2, τ+3, ...

• Istream(R)
–  Stream of all tuples (r, τ) where r∈R at time τ but r∉R at time τ-1

• Dstream(R)
–  Stream of all tuples (r, τ) where r∈R at time τ-1 but r∉R at time τ

• Rstream(R)
–  Stream of all tuples (r, τ) where r∈R at time τ

21

Data Mining in Streams

22

Stream Data Mining

• Often continuous queries relate to long-term characteristics of
streams

–  Frequency of stock trades, number of invalid sensor readings, ...

• May have insufficient memory to evaluate query
–  Consider stream with window of 109 integers

•  Can store this in 4GB of memory

–  What about 106 such streams?
•  Cannot keep all windows in memory

•  Need to compress data in windows

23

Limitations of Window Compression

• Consider window compression for following query:

• Assume that W can be compressed as C(W) = WC
–  Then W1 ≠ W2 must exist, with C(W1) = C(W2)
–  Let t be oldest time in window for which W1 and W2 differ:

–  For W1: subtract W1(t) = 3; for W2: subtract W2(t) = 4
•  Cannot distinguish between cases from C(W1) = C(W2)

–  No correct compression scheme C(W) possible 24

SELECT SUM(num)
FROM Numbers [Rows 109];

3 5 8 9 2 3 9 7 8 9

4 5 8 2 0 7 0 7 2 1

W1

W2

t

Approximate Sum Calculation

• Keep sums Σi for each n tuples in window
–  Compression ratio is 1/n

–  Estimate of window sum ΣW is total of group sums Σi

• Now v1 leaves window and v2n+3 arrives:

–  Accuracy of approximation depends on variance
25

v1 v2 ... vn vn+1 vn+2 ... v2n ... v2n+1 v2n+2

n tuples

+

2 tuples
(incomplete group)

Σ1 Σ2 Σincomplete + ... +

n tuples

ΣW=

+ (n-1/n) * Σ1 Σ2 Σincomplete + ... + ΣW=

3 tuples
(incomplete group)

Counting Bits

• Assume sliding window W of size N contains bits 1 and 0
–  How many 1s are there in the most recent k bits?

(1 ≤ k ≤ N)

• Could answer question trivially with O(N) storage
–  But can we approximate answer with, say, logarithmic storage?

26

1 1 0 0 1 0 1 0 0 0 1 0 1 1

size N most
recent
tuple

W

• Divide window into multiple buckets B(m, t)
–  B(m, t) contains 2m 1s and starts at t
–  Size of buckets does not decrease as t increases
–  Either one or two buckets for each size m
–  Largest bucket only partially filled

• Estimate sum of last k tuples Σk:
Σk = {sizes of buckets within k} + ½ {last partial bucket}
ΣN = 20 + 20 + 21 + 22 + ½ * 23 = 12 (exact answer: 13)

Approximate Counting with Buckets

27

1 1 1 1 1 1 0 1 1 1 1 1 0 1 1

B(0,1) B(0,2) B(1,4) B(2,6) B(3,11)

• Discard/merge buckets as window slides

–  Discard largest bucket once outside of window
–  Create new bucket B(0,1) for new tuple if 1
–  Merge buckets to restore invariant of at most 2 buckets of each size m

Maintaining Buckets

28

1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1

B(0,1) B(0,2) B(1,4) B(2,6) B(3,11)

X

1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1

B(0,1) B(1,2)
(merged)

B(1,5) B(2,7) B(3,12)

X

Space Complexity

• Need O(log N) buckets for window of size N

• Need O(log N) bits to represent bucket B(m, t):
–  m is power of 2, so representable as log2 m

m can be represented with O(log log N) bits
–  t is representable as t mod N

t can be represented with O(log N) bits

• Overall window compressed to O(log2 N) bits

29

DSPS Implementation

30

General DSPS Architecture

31

So
ur

ce
:

G
ol

ab
 &

 O
zs

u
20

03

Stream Query Execution

• Continuous queries are long-running
 properties of base streams may change

–  Tuple distribution, arrival characteristics, query load, available CPU,
memory and disk resources, system conditions, ...

• Solution: Use adaptive query plans
–  Monitor system conditions
–  Re-optimise query plans at run-time

• DBMS didn’t quite have this problem...

32

Query Plan Execution

• Executed query plans include:
–  Operators
–  Queues between operators
–  State/“Synposis” (windows, ...)
–  Base streams

• Challenges
–  State may get large (e.g. large windows)

33

SELECT *
FROM S1 [Rows 1000],
 S2 [Range 2 mins]
WHERE S1.A = S2.A
 AND S1.A > 42;

So
ur

ce
:

ST
R
EA

M
 p

ro
je

ct

Operator Scheduling

• Need scheduler to invoke operators (for time slice)
–  Scheduling must be adaptive

• Different scheduling disciplines possible:
1.  Round-robin
2.  Minimise queue length
3.  Minimise tuple delay
4.  Combination of the above

34

Load Shedding

• DSMS must handle overload:
Tuples arrive faster than processing rate

• Two options when overloaded:
1.  Load shedding: Drop tuples

•  Much research on deciding which
tuples to drop: c.f. result correctness
and resource relief

•  e.g. sample tuples from stream

2.  Approximate processing:
Replace operators with
approximate processing
•  Saves resources

35

Distributed DSPS

36

Distributed DSPS

• Interconnect multiple DSPSs with network
–  Better scalability, handles geographically distributed stream sources

• Interconnect on LAN or Internet?
–  Different assumptions about time and failure models

37

Scientific
instruments

Webfeeds

Embedded
sensors Wireless

sensor
networks

Traffic
monitors

Mobile
sensing
devices

Queries

RFID
tags

Body
sensor
networks

Queries

Query Planning in DSPS

• Query Plan
–  Operator placement
–  Stream connections
–  Resource allocation: CPU,

network bandwidth, ...

• State-of-the-art planners
–  Based on heuristics

(eg IBM’s SODA)

–  Assume over-provisioned system
•  Simplifies query planning
•  Not true when you pay for

resources...

38

 final
stream

Planning Challenges

•  Premature exhaustion of resources
 multi-resource constraints

• Waste of resources due to query
overlap  reuse streams

39

Optimisation Model

• Unified optimisation problem for
–  query admission
–  operator allocation
–  stream reuse

• This is hard!
–  Solve approximate problem to obtain tractable solution

40

maximise:

λ1 * (no of satisfied queries) – λ2 * (CPU usage) – λ3 * (net usage) – λ4 * (balance load)

subject to constraints:
1.  availability: streams for operators exist on nodes
2.  resource: allocations within resource limits
3.  demand: final query streams are generated eventually
4.  acyclicity: all streams come from real sources

Evangelia Kalyvianaki, Wolfram Wiesemann, Quang Hieu Vu and Peter Pietzuch,
“SQPR: Stream Query Planning with Reuse”, IEEE International Conference on
Data Engineering (ICDE), Hannover, Germany, April 2011

Tractable Optimisation Model

•  Idea: Only optimise over streams related to new query
–  Add relay operators to work around constraints under reuse

41

Stream Processing in the Cloud

42

Stream Processing in the Cloud

• Scalability: Scale horizontally across 1000 VMs to support
–  larger number of queries
–  high stream rates

• Elasticity: Dynamically tune number of processing servers
–  Tune n to affect stream processing throughput

43

Stream ...

n servers in cloud DC

Results

Load Balancing with the Cloud

•  Idea: Using cloud resources for handling peak processing
demand

–  Network latency to cloud major issue
–  Partitioning granularity important

•  How do you perform stream processing in the cloud?
44

duolC

wodniwdessecorP wodniwdessecorpnU

recnalabdaoL
rossecorpmaertslacoL

redivorpmaertS

tneilC

eueuqtupnI

eueuqtuptuO

1

4
3

2

Typical Processing Workload

45

0%"
10%"
20%"
30%"
40%"
50%"
60%"
70%"
80%"
90%"
100%"

09/07" 09/08" 09/09" 09/10" 09/11" 09/12" 09/13"

N
or

m
al

iz
ed

 d
is

k
I/O

 ra
te
"

So
ur

ce
:

“S
ie

rr
a:

 a
 p

ow
er

-p
ro

po
rt

io
na

l,
di

st
rib

ut
ed

st

or
ag

e
sy

st
em

.”

M

SR
-T

R-
20

09
-1

53

• Existing workloads have peaks and troughs
–  Scope for improvement in terms of elasticity and adaptability

• Current solutions in distributed stream processing
–  Over-provisioning to handle peak demand
–  Load-shedding to discard data during peaks

The Map/Reduce Hammer?

46

• Strawman idea:
–  Adapt batch processing model
–  Pipelined implementation of map/reduce

• Partitioning granularity?
–  Window = job?
–  Apache Hadoop has large per job overhead

• Stream processing semantics?

• Data exchange based on distributed file system

Two Layers: Dispatching and Processing

• Structured architecture for stream processing
–  Separates stream partitioning from computation
–  Partitioning reduces amount of data for computation

• Simple function in each operators:

•  1. Stream partitioning performed by dispatching layer
–  Identify relevant data for queries
–  Partitioning of data streams and multicast to multiple operators

•  2. Computation done by processing layer
–  Execution of query operators

47

SEEP: Scalable & Elastic Event Processing

• Decompose queries into multiple stream processing operators
–  System exploits intra-query parallelism

• Adapt to variations in workload by scaling out

Host

Host

Host

Stream

Operator

SEEP: Scalable & Elastic Event Processing

partitioning
merging

Host

Host

Host

Host

• Partition and merge streams to utilise more hosts

El
as

tic
ity

Twitter Storm & Yahoo S4

• Yahoo! S4 (http://incubator.apache.org/s4/)

–  Java framework for implementing stream processing applications
–  Hides stream “plumbing” from developers
–  Uses Zookeeper for coordination

• Twitter Storm (https://github.com/nathanmarz/storm)

–  Focus on fault-tolerance: acknowledgement of processed tuples
–  Spouts produce data; bolts process data
–  Different mechanisms for stream partitioning and bolt parallelisation

• This is just the beginning... lots of open challenges...

50

Conclusions

51

• Stream processing will grow in importance
–  Handling the data deluge
–  Just provide a view/window on subset of data
–  Enables real-time response and decision making

• Principled models to express stream processing semantics
–  Enables automatic optimisation of queries, e.g. finding parallelism
–  What is the right model?

• Resource allocation matters due to long running queries
–  High stream rates and many queries require scalable systems
–  Handling overload becomes crucial requirement
–  Volatile workloads benefit from elastic DSPS in cloud environments

Thank You! Any Questions?

52

Peter Pietzuch
<prp@doc.ic.ac.uk>

http://lsds.doc.ic.ac.uk

