SPAR

The Little Engine(s) That Could:
Scaling Online Social Networks

Arman ldani

28 Feb 2012
R202 - Data Centric Networking

facebook

Background

Social Networks are hugely interconnected

Scaling interconnected networks is difficult
Data locality
Network traffic
Programming semantics

Social networks grow significantly in a short period of time
Twitter grew ~15x in a month (Early 2009)

How to Scale OSNs?

Horizontal scaling
Cheap commodity servers
Amazon EC2, Google AppEngine, Windows Azure

How to partition the data?
The actual data and replicas

Application scalability?

Designer’s Dilemma

Commit resources to adding features to OSNs?
Appealing features and attracts new users
Might not scale in the same pace as users’ demand
Death-by-success scenario (e.g. Friendster)

Make a scalable system first and then add features
High developer resource
Might not compete well if competitors are richer feature-wise
No death-by-success

Data Partitioning

Random partitioning and replication (DHT)
Locality of interconnected data not preserved
High network workload
Deployed by Facebook and Twitter

Full replication
Lower network workload
High server/user requirement

Solution?

How to achieve application scalability?
Preserve locality for all of the data relevant to the user
Local programming semantics for applications

SPAR

Replicas of all friend data on the same server
Local queries to the data
lllusion that OCN is running on a centralized server

No network bottleneck

Support for both relational databases and key-value stores

Example (ONS)

Full Replication

0.
OO0 @ == 01010
Y0000 T oo

DHT

read =
write traffic =
m =
< >

DHT + Neighbour Replication

B o

-
7 TN r = \ read traffic =0 "-‘\ ,-..\
@@l 3 ,I 5; write traffic = 8 | 2 y [4 }@@
@ ~ - ~ memory = 8

I\"'cll" \h-p

.
'fgx‘f?\ (o) tf;\®®®
< -

I\'-ll' _,.l

read traffic =0
write traffic = 2
memory = 2

(+)

00"‘0 &)

©

-
read traffic =0

write traffic = 10
memory = 10

OXO,
GO

0000
eolololo%

)
OO

(a)
-
@ @ read traffic = 10 { @ @
write traffic = 0
@ memory =0 @
k OJO), © O

(b)

S - read traffic =0 P P
ololalalEilalalolo
NN memory = 8 N N -

;- =\
/

:
19,17
NN

(c)

@ @ read traffic = 0

- write traffic = 2

C 7N
| 4

®

SPAR Requirements

Maintain local semantics
Balance loads

Machine failure robustness
Dynamic online operations
Be stable

Minimize replication overhead

Partition Management

Partition Management in six events:
Node/Edge/Server
Addition/Removal

Edge addition
Configuration 1: exchange slave replicas
Configuration 2: move the master

Server addition
Option 1: Redistribute the masters to the new server
Option 2: Let it fill by itself

Implementation

SPAR is a middle-ware between datacenter and application
Applications developed as if centralized

Four SPAR components:
Directory Service
Local Directory Service
Partition Manager
Replication Manager

DS and LDS

Directory Service
Handles data distribution
Knows about location of master and slave replicas
Key-table lookup

Local Directory Service
Only access to a fraction of key-table
Acts as a cache

Partition Manager

Maps the users’ keys to replicas
Schedules movement of replicas
Redistributes replicas in case of server addition/removal
Can be both centralized or distributed
Reconciliation after data movements
Version-based (Similar to Amazon Dynamo)
Handling failures
Permanent or transient

Replication Manager

Propagates updates to replicas
Updates are queries
Propagates queries, not data

EXAMPLE!

Node 6 rep. in M2
Node 1 rep. in M2
Edge 1-6 created

4 .
2
3
4
\
w
5
c
w
o
e
o
/
2
3
4
N a!
\-© MY

Node 6 rep. in M1
Node 1 rep. in M3

Nodes 2,3,4 rep. in M3
Node 1 rep. in M1
Node 5 replica deleted in M1

Node 1 moves to M3 [~ , N
| 3 ~7
4
- MY

6
2
3
4
- M1
Node 5 replica deleted in M3

M3

Evaluation

Measurement driven evaluation
Replication overhead
K-redundancy requirement

Twitter
12m tweets by 2.4m users (50% of twitter)

Facebook
60k users, 1.5m friendships

Orkut
3m users, 224m friendships

Vs.

Random Partitioning
Solutions deployed by Facebook, Twitter

METIS

Graph Partitioning (offline)
Focus on minimizing inter-partition edges

Modularity Optimizations (MO+)
Community detection

10

replication overhead

replication overhead
-
o

o~

o

r RANDOM/r_ SPAR
n w

o]

151

Twitter (K=0), number of servers

.ﬂuﬂlﬂiﬂll 11 I

mMWMI|||

4 8 16 32 64 128256512
Twitter (K=2), number of servers

601

40

201

40}

20

o

Results

Orkut (K=0), number of servers

MMMJMWWW

[=]=]

MMHMAWWW

16 32 64 128256512
Orkut (K=2), number of servers

T T T

—e— Twitter
—&— Orkut
—&— Facebook

1 1 1 1

151

10}

15

10}

Facebook (K=0), number of servers

|| I SPAR
MO+
[IMETIS
I Random

Ll |HH‘ i

il |HH|| “

16 32 64 128256512
Facebook (K=2), number of servers

0.6

o o
NS

[=]

ratio of actions upon edge

T T T T T T T T | —
1 T T R R e L LT R e LR LRI LT
8 -

I nothing

move

new user (both)

I new user

0.5

4 8 16 32 64
number of servers

128

256 512

1.5

2 25 3 35 4 4.5
edge creation events x 10°

Twitter Analysis

Twitter (12m tweets by 2.4m users), K=2, M=128
Average replication overhead: 3.6
75% have 3 replicas
90% < 7
99% < 31
139 users (0.006%) on all servers

Adding Servers

Option 1: wait for arrivals to fill in
16 to 32 Servers
Replication overhead: 2.78
2.74 if started with 32

Option 2: redistribution all nodes
Overhead: 2.82

Removing Servers

Removal of one server
500k (20%) movement of nodes
A very high penalty, but not common to scale down the network

Transient removal of servers (fault)
Temporarily assign a slave replica as master
No locality requirement
Wait for the failed server to come back and restore

SPAR in the Wild

Apache Cassandra (key-value)
Random Partitioning

MySQL (relational database)
Full replication
Not feasible to even try

16 commodity servers
Pentium Duo 2.33
2GB RAM
Single HDD

o N bk O 0 B

Response Times

=

- p J
- A
- I 2

,Q./f“

A5

¥ # SPAR(800Req/s)

§ SPAR (400Reqg/s)

SPAR (200Reqg/s)

Random (400Reqg/s)

Random (200Reqg/s)
(

Random 1QOReq/s)

”""'—""—""“/:f;l:‘:-f;:%;f{a/“t‘:"i —————-—

100

Response Time (ms)

Network Activity

70 £l
60 | Random —8H— i
5o | SPAR -@- |
8, 40 :
S 30 f]
20 r .
1O B e mm e ————— V.
O(B, ----------- {Dr====mmmmm== Drmmmmmmmaan) e 9 --------- ?-] -?
50 100 150 200 250 300 350 400

Request Rate

SPAR (+)

Scales well and easily

Local programming semantics

Low network traffic (when running apps)
Low latency

Fault tolerance

No designer’s dilemma

SPAR (-)

Assumption: All relevant data are one-hop away
Is it true? Maybe not

To maintain locality of two hops, replication overhead will be
increased exponentially

No support for privacy

Users have different privacy settings for different users, so
replicas of each user for each friendship will be different

Practically no scale-down

