
SPAR
The Little Engine(s) That Could:
Scaling Online Social Networks

Arman Idani

28 Feb 2012

R202 – Data Centric Networking

Background

• Social Networks are hugely interconnected

• Scaling interconnected networks is difficult

• Data locality

• Network traffic

• Programming semantics

• Social networks grow significantly in a short period of time

• Twitter grew ~15x in a month (Early 2009)

How to Scale OSNs?

• Horizontal scaling

• Cheap commodity servers

• Amazon EC2, Google AppEngine, Windows Azure

• How to partition the data?

• The actual data and replicas

• Application scalability?

Designer’s Dilemma

• Commit resources to adding features to OSNs?

• Appealing features and attracts new users

• Might not scale in the same pace as users’ demand

• Death-by-success scenario (e.g. Friendster)

• Make a scalable system first and then add features

• High developer resource

• Might not compete well if competitors are richer feature-wise

• No death-by-success

Data Partitioning

• Random partitioning and replication (DHT)

• Locality of interconnected data not preserved

• High network workload

• Deployed by Facebook and Twitter

• Full replication

• Lower network workload

• High server/user requirement

Solution?

• How to achieve application scalability?

• Preserve locality for all of the data relevant to the user

• Local programming semantics for applications

SPAR

• Replicas of all friend data on the same server

• Local queries to the data

• Illusion that OCN is running on a centralized server

• No network bottleneck

• Support for both relational databases and key-value stores

Example (ONS)

Full Replication

DHT

DHT + Neighbour Replication

SPAR

SPAR Requirements

• Maintain local semantics

• Balance loads

• Machine failure robustness

• Dynamic online operations

• Be stable

• Minimize replication overhead

Partition Management

• Partition Management in six events:

• Node/Edge/Server

• Addition/Removal

• Edge addition

• Configuration 1: exchange slave replicas

• Configuration 2: move the master

• Server addition

• Option 1: Redistribute the masters to the new server

• Option 2: Let it fill by itself

Implementation

• SPAR is a middle-ware between datacenter and application

• Applications developed as if centralized

• Four SPAR components:

• Directory Service

• Local Directory Service

• Partition Manager

• Replication Manager

DS and LDS

• Directory Service

• Handles data distribution

• Knows about location of master and slave replicas

• Key-table lookup

• Local Directory Service

• Only access to a fraction of key-table

• Acts as a cache

Partition Manager

• Maps the users’ keys to replicas

• Schedules movement of replicas

• Redistributes replicas in case of server addition/removal

• Can be both centralized or distributed

• Reconciliation after data movements

• Version-based (Similar to Amazon Dynamo)

• Handling failures

• Permanent or transient

Replication Manager

• Propagates updates to replicas

• Updates are queries

• Propagates queries, not data

EXAMPLE!

Example

Evaluation

• Measurement driven evaluation

• Replication overhead

• K-redundancy requirement

• Twitter

• 12m tweets by 2.4m users (50% of twitter)

• Facebook

• 60k users, 1.5m friendships

• Orkut

• 3m users, 224m friendships

Vs.

• Random Partitioning

• Solutions deployed by Facebook, Twitter

• METIS

• Graph Partitioning (offline)

• Focus on minimizing inter-partition edges

• Modularity Optimizations (MO+)

• Community detection

Results

Twitter Analysis

• Twitter (12m tweets by 2.4m users), K=2, M=128

• Average replication overhead: 3.6

• 75% have 3 replicas

• 90% < 7

• 99% < 31

• 139 users (0.006%) on all servers

Adding Servers

• Option 1: wait for arrivals to fill in

• 16 to 32 Servers

• Replication overhead: 2.78

• 2.74 if started with 32

• Option 2: redistribution all nodes

• Overhead: 2.82

Removing Servers

• Removal of one server

• 500k (20%) movement of nodes

• A very high penalty, but not common to scale down the network

• Transient removal of servers (fault)

• Temporarily assign a slave replica as master

• No locality requirement

• Wait for the failed server to come back and restore

SPAR in the Wild

• Apache Cassandra (key-value)

• Random Partitioning

• MySQL (relational database)

• Full replication

• Not feasible to even try

• 16 commodity servers

• Pentium Duo 2.33

• 2GB RAM

• Single HDD

Response Times

Network Activity

SPAR (+)

• Scales well and easily

• Local programming semantics

• Low network traffic (when running apps)

• Low latency

• Fault tolerance

• No designer’s dilemma

SPAR (-)

• Assumption: All relevant data are one-hop away

• Is it true? Maybe not

• To maintain locality of two hops, replication overhead will be
increased exponentially

• No support for privacy

• Users have different privacy settings for different users, so
replicas of each user for each friendship will be different

• Practically no scale-down

