MapReduce Online

UC Berkeley & Yahoo! Research
Presented by Hao Zhang

Outline

Overview

Pipelined MapReduce
Online Aggregation
Continuous Queries
Conclusion

Overview

MapReduce was originally designed for batch
jobs
Based on Hadoop framework

Pipeline data between operators to extend
MapReduce model beyond batch processing

Extra options/functions based on pipelining
Modified fault tolerance mechanism

Pipelined MapReduce

* Map tasks
»Read input data and perform Map function
» Use combiners to sort the intermediate output

»Send intermediate output to Reduce tasks through
TaskTracker

e Reduce tasks
» Read intermediate data and sort it
» Apply Reduce function to generate final output

Pipelined MapReduce

* Original MapReduce

» Accumulate outputs of Map tasks and send them
to corresponding Reduce tasks

* MapReduce Online

» Pipeline output of Map tasks to Reduce tasks soon
after they are produced

»Separate Map function and output in different
thread

» Straightforward approach, needs rate adaption

Pipelined MapReduce

e Rate adaption

» Reduce tasks may be unable to accept input at the
moment

» Balance the workload of combiners and Reduce
tasks

> Reduce transmission overhead

Pipelined MapReduce

* Pipelining scheme
» Enables early utilization of Reduce tasks

» Reduce the effect of combiners by moving sorting
work from combiners to Reduce tasks

» May reduce overall performance if Reduce tasks
are the bottlenecks

Pipelined MapReduce

10 GB Blocking (5 Reduces) 10 GB Pipelining (5 Reduces)
s Map progress == == Reduce progress s Map progress == == Reduce progress
100% — 100% o
80% J‘r A 80% /_ .
! 7 r g o L7
E 40% "r ;" E 40% /,J
20%] 20% rd
0% T T - T T T T T T T T 0% 4 T T T T T T T T T T T
0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300 350 400 450 500 550
Time (seconds) Time [seconds)
10 GB Blocking (1 Reduce) 10 GB Pipelining (1 Reduce)
—— Map progress == == Reduce progress e lap progress == == Reduce progress
100% — 100% ——
-— - -
205 ’— _ - - - /-’_ _ .
§ eo%] f! E— § oon / -
" | ¢ B /.’
20% 20% £
L), /[
D% |! T T T T T T T T T T T T T T T T U% 1 T T T T T T T T T T T T T T T T T
0

2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34

Time (minutes)

0 2 4 & B8 10 12 14 16 18 20 22 24 26 28 30 32 34

Time [minutes)

Pipelined MapReduce

* Modifications on fault tolerance
» Split intermediate data into more files

»Reduce tasks keep intermediate data as “tentative”
until informed

» Map tasks retain intermediate data in disk until
job finishes

» More complicated scheme but more robust to
task failure

Pipelined MapReduce

* Pipelining between jobs
» Final result cannot be generated before job
finished
» Used for online aggregation

» Needs task scheduling on high level

Online Aggregation

* Generate rough approximation in a much
shorter period of time

* Progress metric can only be estimated

* Approximation metric should be defined by
users, otherwise the error would be too large

Online Aggregation

Relative Error

—— ol progress metric

0.8

s Samiple fraction metric

os TN
N

0.5 f \

os | ~

~

0.2

N

0.1

o - —

°$3REE§8RE5385853853%
= = L I o It | M M = =5

oM
= i~ L2 I i]

Time (secs)

= u

Click Count

B Final answer

T.E+09
6.E+09
S.E+09
4. E+09
3.E+09
2.E+09
1.E+09
0.E+00

W Sample fraction metric W Job progress metric

oL o A . A
{)‘#J & S &{b R {\BLF‘ &é‘ & o 1@-@
LSl 2 & o Q"b 2 o & R

h d
2
Language

(a) Relative approximation error over time

(b) Example approximate answer

Online Aggregation

* Rely on users to provide proper metric

* Multi-job online aggregation is possible and
can be easily supported

* Fault tolerance in multi-job online
aggregation needs storage of approximations
to recover from failure

Continuous Queries

e Used to analyze constantly arriving data
stream

* Original MapReduce model introduces large
latency and has to re-compute all data

* Modified version runs continuously and make
use of previous results

Continuous Queries

* No major modification to MapReduce Online
* Minor modifications:

» Force Map tasks to send output to Reduce tasks
promptly

» Invoke Reduce tasks periodically

» Reduce tasks should be able to utilize previous
results

Continuous Queries

* Modifications on fault tolerance
» Map tasks can no longer retain all output

» Recovering from failure can only rely on finite
history

»Need to checkpoint states of the tasks periodically
» Cannot apply to all functions

Continuous Queries

Application Example: Monitoring system

Qutlier Detection

100000
Q0000
80000
70000
60000 EEE—
50000
40000
30000
20000
10000

Pagesswapped

Conclusion

* Pipelining scheme can only reduce completion
time when reduce tasks are not the bottleneck

» Provide pipelining scheme as an option

» Automatically determine the number of tasks

* Fault tolerance needs more states and
checkpoints, but could reduce repetitive work

* Online aggregation and continuous queries
are potential research areas

Discussion

* |s optimal scheduling feasible?

* To what extend would scheduling improve the
performance?

* |s MapReduce the ideal framework for
continuous work?

