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Overview

MapReduce was originally designed for batch
jobs
Based on Hadoop framework

Pipeline data between operators to extend
MapReduce model beyond batch processing

Extra options/functions based on pipelining
Modified fault tolerance mechanism



Pipelined MapReduce

* Map tasks
»Read input data and perform Map function
» Use combiners to sort the intermediate output

»Send intermediate output to Reduce tasks through
TaskTracker

e Reduce tasks
» Read intermediate data and sort it
» Apply Reduce function to generate final output



Pipelined MapReduce

* Original MapReduce

» Accumulate outputs of Map tasks and send them
to corresponding Reduce tasks

* MapReduce Online

» Pipeline output of Map tasks to Reduce tasks soon
after they are produced

»Separate Map function and output in different
thread

» Straightforward approach, needs rate adaption



Pipelined MapReduce

e Rate adaption

» Reduce tasks may be unable to accept input at the
moment

» Balance the workload of combiners and Reduce
tasks

> Reduce transmission overhead



Pipelined MapReduce

* Pipelining scheme
» Enables early utilization of Reduce tasks

» Reduce the effect of combiners by moving sorting
work from combiners to Reduce tasks

» May reduce overall performance if Reduce tasks
are the bottlenecks



Pipelined MapReduce
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Pipelined MapReduce

* Modifications on fault tolerance
» Split intermediate data into more files

»Reduce tasks keep intermediate data as “tentative”
until informed

» Map tasks retain intermediate data in disk until
job finishes

» More complicated scheme but more robust to
task failure



Pipelined MapReduce

* Pipelining between jobs
» Final result cannot be generated before job
finished
» Used for online aggregation

» Needs task scheduling on high level



Online Aggregation

* Generate rough approximation in a much
shorter period of time

* Progress metric can only be estimated

* Approximation metric should be defined by
users, otherwise the error would be too large



Online Aggregation
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Online Aggregation

* Rely on users to provide proper metric

* Multi-job online aggregation is possible and
can be easily supported

* Fault tolerance in multi-job online
aggregation needs storage of approximations
to recover from failure



Continuous Queries

e Used to analyze constantly arriving data
stream

* Original MapReduce model introduces large
latency and has to re-compute all data

* Modified version runs continuously and make
use of previous results



Continuous Queries

* No major modification to MapReduce Online
* Minor modifications:

» Force Map tasks to send output to Reduce tasks
promptly

» Invoke Reduce tasks periodically

» Reduce tasks should be able to utilize previous
results



Continuous Queries

* Modifications on fault tolerance
» Map tasks can no longer retain all output

» Recovering from failure can only rely on finite
history

»Need to checkpoint states of the tasks periodically
» Cannot apply to all functions



Continuous Queries

Application Example: Monitoring system
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Conclusion

* Pipelining scheme can only reduce completion
time when reduce tasks are not the bottleneck

» Provide pipelining scheme as an option

» Automatically determine the number of tasks

* Fault tolerance needs more states and
checkpoints, but could reduce repetitive work

* Online aggregation and continuous queries
are potential research areas



Discussion

* |s optimal scheduling feasible?

* To what extend would scheduling improve the
performance?

* |s MapReduce the ideal framework for
continuous work?



