
MapReduce Online

UC Berkeley & Yahoo! Research
Presented by Hao Zhang

Outline

• Overview

• Pipelined MapReduce

• Online Aggregation

• Continuous Queries

• Conclusion

Overview

• MapReduce was originally designed for batch
jobs

• Based on Hadoop framework

• Pipeline data between operators to extend
MapReduce model beyond batch processing

• Extra options/functions based on pipelining

• Modified fault tolerance mechanism

Pipelined MapReduce

• Map tasks

Read input data and perform Map function

Use combiners to sort the intermediate output

Send intermediate output to Reduce tasks through
TaskTracker

• Reduce tasks

Read intermediate data and sort it

Apply Reduce function to generate final output

Pipelined MapReduce

• Original MapReduce

Accumulate outputs of Map tasks and send them
to corresponding Reduce tasks

• MapReduce Online

Pipeline output of Map tasks to Reduce tasks soon
after they are produced

Separate Map function and output in different
thread

Straightforward approach, needs rate adaption

Pipelined MapReduce

• Rate adaption

Reduce tasks may be unable to accept input at the
moment

Balance the workload of combiners and Reduce
tasks

Reduce transmission overhead

Pipelined MapReduce

• Pipelining scheme

Enables early utilization of Reduce tasks

Reduce the effect of combiners by moving sorting
work from combiners to Reduce tasks

May reduce overall performance if Reduce tasks
are the bottlenecks

Pipelined MapReduce

Pipelined MapReduce

• Modifications on fault tolerance

Split intermediate data into more files

Reduce tasks keep intermediate data as “tentative”
until informed

Map tasks retain intermediate data in disk until
job finishes

More complicated scheme but more robust to
task failure

Pipelined MapReduce

• Pipelining between jobs

Final result cannot be generated before job
finished

Used for online aggregation

Needs task scheduling on high level

Online Aggregation

• Generate rough approximation in a much
shorter period of time

• Progress metric can only be estimated

• Approximation metric should be defined by
users, otherwise the error would be too large

Online Aggregation

Online Aggregation

• Rely on users to provide proper metric

• Multi-job online aggregation is possible and
can be easily supported

• Fault tolerance in multi-job online
aggregation needs storage of approximations
to recover from failure

Continuous Queries

• Used to analyze constantly arriving data
stream

• Original MapReduce model introduces large
latency and has to re-compute all data

• Modified version runs continuously and make
use of previous results

Continuous Queries

• No major modification to MapReduce Online

• Minor modifications:

Force Map tasks to send output to Reduce tasks
promptly

Invoke Reduce tasks periodically

Reduce tasks should be able to utilize previous
results

Continuous Queries

• Modifications on fault tolerance

Map tasks can no longer retain all output

Recovering from failure can only rely on finite
history

Need to checkpoint states of the tasks periodically

Cannot apply to all functions

Continuous Queries

Application Example: Monitoring system

Conclusion

• Pipelining scheme can only reduce completion
time when reduce tasks are not the bottleneck

Provide pipelining scheme as an option

Automatically determine the number of tasks

• Fault tolerance needs more states and
checkpoints, but could reduce repetitive work

• Online aggregation and continuous queries
are potential research areas

Discussion

• Is optimal scheduling feasible?

• To what extend would scheduling improve the
performance?

• Is MapReduce the ideal framework for
continuous work?

