
CIEL: A UNIVERSAL 
EXECUTION ENGINE FOR 
DISTRIBUTED DATA-FLOW 

COMPUTING

Derek G. Murray, Malte Schwarzkopf, Christopher Smowton,
Steven Smith, Anil Madhavapeddy, Steven Hand

University of Cambridge Computer Laboratory



INTRODUCTION

• Background Influences

• What is CIEL?

• Features

• Skywriting

• Evaluation

• Conclusions



BACKGROUND INFLUENCES

• Map-Reduce/Hadoop

• Dryad

• Pregel

• Piccolo



WHAT IS CIEL?

• Universal data-centric distributed execution engine

• Designed for large dataset, coarse-grained parallelism 

• Based on data-dependent dynamic control flow

• Uses 3 primitives - objects, references and tasks

• Primary Goal is to produce object output



FEATURES

• Dynamic task graphs

• System architecture

• Deterministic naming & Memoisation

• Fault tolerance

• Streaming



DYNAMIC TASK GRAPHS

Objects 

• Unstructured finite-length sequence of bytes

• Unique name

• Immutable when written



DYNAMIC TASK GRAPHS

References 

• Comprises name and set of locations where object is stored

• Can be a future reference to object yet produced



DYNAMIC TASK GRAPHS

Tasks 

• Non-blocking atomic computation

• Has one or more dependencies - represented as references

• Includes special object that specifies the behaviour of the task

• Two externally-observable behaviours - publish objects and spawn new tasks



DYNAMIC TASK GRAPHS

Object Evaluation

• Role = evaluate one or more objects corresponding to job outputs

• Job can be specified as single root task with only concrete dependencies

• Two natural strategies - Eager and Lazy evaluation



FEATURES

• Dynamic task graphs

• System architecture

• Deterministic naming & Memoisation

• Fault tolerance

• Streaming



SYSTEM ARCHITECTURE

• Single master coordinating end-to-end execution of jobs

• Several workers are used for execution of individual tasks

• DTG maintained by master in object and task table

• Master Scheduler (multiple queue based) responsible for making progress in CIEL 
computation

• Executor = generic component that prepares input data for consumption



FEATURES

• Dynamic task graphs

• System architecture

• Deterministic naming & Memoisation

• Fault tolerance

• Streaming



FEATURES

• Dynamic task graphs

• System architecture

• Deterministic naming & Memoisation

• Fault tolerance

• Streaming



FEATURES

• Dynamic task graphs

• System architecture

• Deterministic naming & Memoisation

• Fault tolerance

• Streaming



SKYWRITING

• Key Features - ref, spawn, exec., spawn.exec, the dereference operator

• Tasks - key feature = ability to spawn new tasks in the middle of jobs

• Data-dependent control flow



EVALUATION

• Grep

• k-means

• Smith-Waterman

• Binomial options pricing

• Fault-tolerance



CONCLUSIONS

• Superset of features of existing distributed engines

• Skywriting 

• Flexibility - Supports MapReduce job or Dryad graph

• System-wide fault tolerance 

• Streaming

• Memoisation



THANKS

• Any Questions?


